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CHAPTER 1

Introduction

1.1 Background on Statistical Finance

Financial health plays a pivotal role in the overall well-being of an economy,

organization, or individual. This can certainly be assessed qualitatively, but in

order to make comparisons both vertically and horizontally, it makes sense to

quantify this notion with the use of numbers and statistics. Therefore, it is

vitally important to have standards and means to manage, monitor, maintain,

and grow wealth. This leads to the emergence of statistical finance.

There are two streams in quantitative financial analysis or investment val-

uation: fundamental and technical, both of which make use of mathematical

models for valuation. Fundamental analysis is an evaluation method that at-

tempts to measure an asset’s or investment’s intrinsic value by examining related

economic, financial and other qualitative and quantitative factors. Fundamental

analysts attempt to study everything that can affect the security’s value, includ-

ing macroeconomic factors (like the overall economy and industry conditions)

and organizational-specific factors (like financial condition and management of

the entity of interest). The goal of performing fundamental analysis is to produce

a value that an investor can compare with the security’s current price, with the

aim of figuring out what sort of position to take with that security.

On the other hand, technical analysis is a method of evaluating assets or
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securities by analyzing statistics generated by market activity, such as past prices

and volume. Technical analysts do not attempt to measure a security’s intrinsic

value, but instead use charts and other tools to identify patterns that can suggest

future activity. Technical analysts believe that the historical performance of

stocks and markets are good indications of future performance.

In this paper, we introduce and demonstrate some investment management

methods in the technical analysis branch, which involve the use of well known

statistical theories and methods.

1.1.1 Investment Types

Investing can be described as the redirection of resources from being consumed

today to creating benefits in the future. [19] In other words, it is the use of as-

sets to earn income or profit. Although we are no longer in a bartering society

where goods were often more perishable, it is preferable, if not essential, to invest

instead of keeping assets idle, so that investments can grow to fight against infla-

tion and future uncertainties. This gives birth to the different types of financial

instruments and investments we see today. A financial investment is the current

commitment of dollars for a period of time in order to derive future payments that

will compensate the investor for the time the funds are committed, the expected

rate of inflation, and the uncertainty of the future payments. [15] The following

are examples of some common types of investments:

Equities Title of ownership to a company which gives the right to receive a

dividend, with the amount of the dividend being calculated according to

the company’s earnings.

Bonds Loans issued by a company or by a Government/State that give rise to
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regular payment of coupons, which constitute the interest on the loan, and

redemption of the security at maturity.

Money Market Instruments Short-term borrowing and lending for managing

the cash in a portfolio.

Derivatives Investments whose values are “derived” from underlying assets or

instruments. Examples are options, futures, and swaps. The use of deriva-

tives allows portfolio managers to be more flexible and effective in devel-

oping and applying investment strategies due to the use of leverage. For

example, derivative instruments allow the portfolio exposure to be modified

in terms of assets and currencies, without modifying the real composition

of the underlying portfolio. They also allow portfolio risk to be hedged and

performance to be improved by using a leverage effect on the return. [1]

In this paper, we focus on equity investments. Specifically, we will be using

stocks as the sole investment in all examples since such data are widely acessi-

ble. And since the idea behind this type of investment is intuitive and easy to

understand, it is an ideal tool to be used as an introduction and demonstration

of the statistical methods we will be discussing.

1.1.2 Choosing Investments

We focus our attention on stock investments in this paper. In the previous section

we mentioned the two school of thoughts on investment analysis, fundamental and

technical. In terms of choosing equity investments, meaning which companies’

stocks to purchase or sell, it is intuitive for the company’s past performance

as well as future business plans to be considered. In order to do so, analyses

on the company’s financial statements and accounting or financial records need

3



to be conducted, and the intrinsic value of the company can be estimated and

compared with its current stock price. A decision on whether to purchase or sell

shares of this company can then be made. This is the fundamentalist approach of

choosing investments. As we can see, most of the analyses focus on the business

side.

The technical school of thought, however, focus on the behavior of the stock

prices against factors such as market movements and other economic factors like

interest rates and unemployment patterns. In this case, the internal matters of

the companies is less of a concern. As you can see, in this paper, we lean towards

the technical school of thought and arbitrarily determine our investment portfolio

to be the 30 stocks currently listed under the Dow Jones Industrial Average list.

1.1.3 Managing Investments

Once securities are chosen and portfolio formed, it needs to be managed in order

to maximize the benefits (minimize the losses). This gives rise to the idea of

portfolio management. Portfolio management consists of constructing portfolios

with proper allocation of assets and then making them evolve in order to reach

the return objectives defined by the investor, while respecting the investor’s con-

straints in term of risk and asset allocation. The investment methods used to

reach the objectives range from quantitative investment, which originated from

modern portfolio theory, to more traditional methods of financial analysis as we

previously defined. [1] In this paper, we introduce and demonstrate methods of

managing portfolios using modern portfolio theory.
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1.2 A Preview of Discussion Topics

1.2.1 Portfolio Selection: Modern Portfolio Theory

Modern Portfolio Theory is Harry Markowitz’s theory of portfolio choice in an

uncertain future. In this theory, he quantified the difference between the risk

of portfolio assets taken individually and the overall risk of the portfolio. The

theory offers a solution to the problem of portfolio choice for a risk-averse investor:

the optimal portfolios, from the rational investor’s point of view, are defined as

those that have the lowest risk for a given return. These portfolios are said to be

mean-variance efficient. This theory is the foundation of our Portfolio Selection

discussion.

1.2.2 Risk Management: Value-at-Risk

After a so-called optimal portfolio is selected, there comes the need to monitor

and manage the return and risk components of this portfolio of choice. While

it is desirable to maximize expected returns, it is equally important to keep the

risk component under control, especially for investments that depend heavily

on the volatility factor such as Options. For institutions that invest heavily in

different types of financial instruments, such as banks or hedge funds, there is

a strong need to integrate and measure the risks involved firm-wide. This gives

rise to the development of Value-at-Risk, which summarizes the worst loss over

a target horizon with a given level of confidence. [12] In this paper, although

we only focus on stock portfolio which are less complex than investments held

by financial institutions mentioned above, the demonstration of VaR calculations

will give readers a flavor of how the methods work and what kind of statistical

ideas are utilized.
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CHAPTER 2

Portfolio Selection

2.1 Modern Portfolio Theory

Together with William Sharpe and Merton Miller, Harry Markowtiz was awarded

the Nobel Prize for their research in 1990. In the research, Markowitz demon-

strated that the portfolio risk came from the covariances of the assets that made

up the portfolio. The marginal contribution of a security to the portfolio return

variance is therefore measured by the covariance between the security’s return and

the portfolio’s return rather than by the variance of the security itself. Markowitz

thus established that the risk of a portfolio is lower than the average of the risks of

each asset taken individually and gave quantitative evidence of the contribution

of diversification. [1]

In this paper, we apply Markowitz’s idea and methodologies to real life data

and assess the observed results.

2.1.1 Risk and Return

It is essential to discuss the basic characteristics of the return and its dispersion

(going forward, we define risk as the standard deviation of the asset/portfolio of

interest) of an asset as well as a portfolio before we proceed to the discussion of

portfolio selection methodologies. For any asset, the expected return, variance,
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and covariance are expressed as follows:

R̄i =
N∑
t=1

Rit

N
(2.1)

σ2
i =

N∑
t=1

(Rit − R̄i)
2

(N − 1)
(2.2)

cov(Ri, Rj) = σij =
N∑
t=1

(Rit − R̄i)(Rjt − R̄j)

(N − 1)
(2.3)

where

N denotes the numbers of observed returns of asset i, and

Rit denotes the tth observed return of asset i.

Further, the correlation coefficient ρ between assets A and B is always between

-1 and 1 and is expressed as follows:

ρ =
cov(RA, RB)

σAσB
(2.4)

For a portfolio with assets that are linear combinations of one another, the

expected return and variance are expressed as follows:

R̄p = E(Rp) =
N∑
i=1

xiR̄i (2.5)

σ2
p =

N∑
j=1

x2
jσ

2
j +

N∑
j=1

N∑
k=1
k 6=j

(xjxkσjk) (2.6)

where

xi denotes the proportion of asset i held in the portfolio.

7



2.1.2 Diversification

The variance expression in Equation 2.6 reveals the usefulness of diversification

in reducing risk attributed to the correlation that exists between asset returns.

Before going into the detail of choosing the optimal diversification weights, we

present a simple example of why diversification works. [3]

Assume we have a portfolio of N assets with equal amounts of capital invested

in each. With this assumption, our variance expression becomes:

σ2
p =

N∑
j=1

(
1

N
)2σ2

j +
N∑
j=1

N∑
k=1
k 6=j

(
1

N

1

N
σjk) (2.7)

=
1

N

N∑
j=1

[
σ2
j

N

]
+
N − 1

N

N∑
j=1

N∑
k=1
k 6=j

[
σjk

N(N − 1)

]
(2.8)

=
1

N
σ̄2
j +

N − 1

N
σ̄jk (2.9)

From the above expression, we can easily see that as we increase the number

of assets N , say to infinity, the first term approaches zero, while the second term

approaches σ̄jk, which is the covariance term. This means that the individual

risk of securities can be diversified away, and what is left to contribute to total

portfolio risk is the covariance, which can be interpreted as the systemic market

risk.

2.1.3 Short Sales

Now we are convinced that diversification is beneficial in reducing risks, we go into

the discussion of short sales. As noted previously, xi denotes the weights of each

asset within the portfolio, and the sum of these weights must equal to the total

available capital. In reality, capital can be obtained by a person’s own savings,

or by means of lending or borrowing. Therefore, these weights can be positive

8



(savings) as well as negative (loans). In the case when borrowing is not possible,

we call it “Short Sales not allowed”, and this translate to the constraint where

all the weights xi must be positive. On the other hand, if borrowing is possible,

we call this scenario “Short Sales Allowed”, and the xi can be either positive or

negative. Short Sales simply means to borrow a security (or commodity futures

contract) from a broker and selling it, with the understanding that it must later

be bought back (hopefully at a lower price) and returned to the broker. This is

a technique used by investors who try to profit from the falling price of a stock.

The constraint of the standard definition of Short Sales is

N∑
i=1

xi = 1

which makes sense intuitive. Simply put, this constraint ensures that the total

lending and borrowing of capital allocated to each asset in the portfolio sum to

the total capital available. This is the constraint to be used when solving the

optimization problem we will discuss in the next section.

Alternatively, Lintner has advocated a different definition of short sales, one

that is more realistic. He assumes that when an investor sells stock short, cash

is not received but rather is held as collateral. Furthermore, the investor must

put up an additional amount of cash equal to the amount of stock he or she sells

short. The investor generally does not receive any compensation on these funds.

However, if the investor is a broker-dealer, interest can be earned on both the

money put up and the money received from the short sales of securities [3]. This

leads to the constraint:

N∑
i=1

|xi| = 1

It is beyond the scope of this paper to go into the technicalities of how this

9



constraint is derived. However, both definitions of short sales will be used in our

concept demonstration and application section of this paper.

2.1.4 Portfolio Possibilities

If we plot the risks and returns of different portfolios consisting of different com-

bination of weights (with the standard definition of short-sales as our constraint),

we get the so-called portfolio possibilities curve. As an example, let’s explore a

portfolio with 3 assets. Generating different weight combinations, we get a pic-

ture resembling Figure 2.1. Here, the green portion represent possibilities where

short-sales are not allowed (no negative weights), and the blue portion otherwise.

As we can see, by having leverage (ability to short sell), investors are opened up

to a lot more possibilities of higher returns (and also higher risks). In both cases,

we realize that for the same amount of risk, there are always portfolios that yield

higher returns than others. These portfolios are called “efficient portfolios” and

they lie on the so-called “efficient frontier”. Intuitively, these portfolios are more

desirable. In this picture, the efficient frontier corresponds to the top half portion

of the portfolio possibilities area.

2.1.5 The Model and the Algorithm - An Overview

To achieve optimal diversification, a mathematical portfolio selection model was

developed by Markowitz. This model finds the composition of all the portfolios

that correspond to the efficiency criterion defined for a given set of securities, and

construct the corresponding efficient frontier. Simply put, the portfolio selection

model involves minimizing the variance (risk) for a given return or maximizing

the return for a given risk, which can be written as follows:

10
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Figure 2.1: Portfolio Possibilities Curve - Three Assets

Minimize σ2
p

under the conditions:

E(Rp) = E (2.10)
N∑
i=1

xi = 1 (2.11)

The efficient frontier calculation involves finding the weights of the assets that

make up each portfolio. This is equivalent to the computation of the efficient

frontier in Figure 2.1, with specified risk or return conditions to come up with an

optimal set of weights. As we can imagine, this optimization problem becomes

more computationally complicated to solve as we increase the number of assets

and constraints. We will not go into the mathematical detail of how this algorithm
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is derived in this paper, instead, the essence of the algorithm is described in the

following paragraphs.

First, the investor’s objective is defined as a function of the λ parameter, which

measures the investor’s aversion to risk. By varying λ, the characterization of the

complete efficient frontier can be obtained. Without constraints, the resolution

is achieved by defining the Lagrangian associated with the problem and equating

all its partial derivatives to zero. We then have a linear system that gives us the

proportions of the optimal portfolio (for each value of λ). If there are constraints

on the weights, then for each value of λ, the solution will contain xi values that

will be reflect the different xi limits. These variables will have down, in and up

status, respectively.

Since there are constraints in our optimization problem, we do not set all the

partial derivatives of the Lagrangian to zero, but instead, we assume that the

derivatives are strictly positive compared with the variables with down status,

and strictly negative compared with variables with up status. This is a specific

case of the Kuhn Tucker conditions. Assuming that the status of each variable is

known, it is easy to write the system of linear equations that allows the solution

to the problem to be calculated. The problem actually involves determining

the status of each of the variables. The status depends on the value of λ. For

each variable there is a critical value of λ for which the status of the variable

changes. This value is calculated according to the parameters of the problem.

We can then sequence the critical λ obtained for all the variables. The resolution

algorithm involves giving an initial status to the variables in order to calculate a

first solution that is valid up to the first critical λ. We then proceed sequentially

by carrying out the necessary modifications each time a variable changes status.

The portfolios that correspond to the critical λ are called “corner” portfolios.
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They are sufficient for calculating the whole efficient frontier. [1]

In the book Modern Portfolio Theory and Investment Analysis by Elton at.

el., techniques to solve for the solution to the portfolio problem under differ-

ent assumptions (short sales allowed and riskless lending/borrowing exists, short

sales allowed no riskless lending/borrowing, short sales not allowed with riskless

lending/borrowing, and short sales and riskless lending/borrowing not allowed)

are listed in detail. The main issues with these techniques are that huge amounts

of input data and computation time are needed. Furthermore, the input data

are in a form to which the security analyst and portfolio manager cannot easily

relate. For this reason, it is difficult to get estimates of the input data or to get

practitioners to relate to the final output. [3] Keeping this thought, we now move

onto the focus of this chapter where simplified alternative selection algorithms

are presented. These methods are less computationally demanding with more

manageable data collection requirements.

2.2 Portfolio Selection Methods - Simplified Alternatives

2.2.1 Equal Allocation

As we saw in Section 2.1.2, diversification is important in order to decrease risk

for the same amount of return, or increase return for the same amount of risk.

In our demonstration we used a simple equal allocation where

xi =
1

N
, N = Number of Assets in Portfolio

This is a simple way of diversifying a portfolio with no optimization needed.

As mentioned in the previous sections, for any kinds of portfolio, the respective
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expected return and variance are:

E(Rp) =
N∑
1

xiRi (2.12)

σp =

√√√√√ N∑
i=1

x2
iσ

2
i +

N∑
i=1

N∑
j=1
i 6=j

xixjσij (2.13)

Equal Allocation will be one of our demonstration portfolios in Chapter 4.

2.2.2 Single Index Model

William Sharpe (1963) studied Markowitz’s research and worked on simplifying

the calculations in order to develop a practical use of the model. This signifies

the birth of the Single Index Model, which is written as follows:

Rit = αi + βiRMt + εit (2.14)

where

Rit denotes the return on asset i;

RMt denotes the return on market index;

εit denotes the specific return on asset i; and

αi and βi are the coefficients to be determined.

The coefficients of the line, αi and βi , are obtained by linear regression of the

market returns on the asset returns for the same period. The method used is the

so-called ordinary least squares. The beta coefficient is given by:

βi =
cov(Rit, RMt)

var(RMt)
(2.15)

Following on from the model definition, the residual terms εit are non-correlated

with the market return. The total risk of an asset is therefore broken down into

a term for systematic risk (or market risk) and a term for non-systematic risk (or
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diversifiable risk), or

var(Rit) = β2
i var(RMt) + var(εit) (2.16)

This relationship, when applied to a portfolio containing N securities in the same

proportions, highlights the usefulness of diversification in reducing risk. The risk

of this portfolio is written as follows:

var(Rpt) = β2
pvar(RMt) +

1

N2

N∑
i=1

var(εit) (2.17)

The second term of this relationship tends towards 0 for a sufficiently large N .

Therefore, the risk of a broadly diversified portfolio is only made up of the market

risk. For all portfolios, the correlation coefficient between the index and the

portfolio, raised to the square, gives the percentage of the total variance of the

portfolio returns that is explained by the index movements.

The use of this model allows the Markowitz problem correlation matrix cal-

culation to be simplified considerably. We have:

cov(Rit, Rjt) = σij = βiβjσ
2
M , i 6= j (2.18)

and since cov(εi, εj) = 0, the residual returns are non-correlated, and:

var(Rit) = σ2
i = βiσ

2
M + var(εit) (2.19)

Instead of having to calculate the
N(N + 1)

2
terms from the complete matrix,

only (2N+1) terms remain to be determined. For a broadly diversified portfoltio,

therefore, the value of its return and risk are simply:

σp = βpσM =
N∑
i=1

xiβiσM (2.20)

E(Rp) = αp + βpE(RM) =
N∑
i=1

xiαi +
N∑
i=1

xiβiE(RM) (2.21)
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since the residual returns have a null mean. We therefore come back to a com-

pletely linear problem.

Elton and Gruber [5] [6] [7] further proposed techniques for determining op-

timal portfolios that give a better understanding of the choice of securities to

be included in a portfolio. The calculations are easy to carry out and lead to

similar results to those given by the Markowitz model with the complete matrix.

These techniques are founded upon the Single Index Model. The method is based

on an optimal ranking of the assets, established with the help of the simplified

correlation representation model. We determine a threshold in the list. All the

securities located above the threshold will be part of the optimal portfolio. Those

that are below the threshold will be excluded. The problem is to determine the

value of the threshold. We subsequently determine the percentage to be assigned

to each security, according to the characteristic parameters of each security and

the value of the threshold. The ratio used to rank the assets is given by:

E(Ri)−RF

βi
(2.22)

where

E(Ri) denotes the expected return of asset i;

RF denotes the risk-free rate; and

βi denotes the β of asset i defined by the Single Index Model.

The ratio is calculated for all the assets from which the investor is liable to

choose. The results are classified from the highest value to the lowest value. The

higher the value of the ratio, the more desirable it is to hold the security in the

portfolio. As a result, if a security is held in an optimal portfolio, then all the

securities for which this ratio is higher are also held in the portfolio. In the same

way, if a security is excluded from the portfolio, then all the securities with a lower

ratio will also be excluded. There is therefore a threshold value above which we
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select securities, and below which we exclude them. This value is denoted by C∗.

C∗ is calculated by an iterative procedure, by successively introducing the

securities from the list into the portfolio and by calculating the Ci value associated

with a portfolio containing i securities. Ci is expressed as follows:

Ci =

σ2
M

i∑
j=1

(E(Ri)−RF )βj
var(εj)

1 + σ2
M

i∑
j=1

β2
j

var(εj)

(2.23)

with the notation being the same as that used to present the Single Index Model.

We stop adding securities when the ratio associated with the candidate secu-

rity is lower than the value of Ci that was calculated for the portfolio. At the

end of this procedure we know the list of assets that will figure in the optimal

portfolio. What remains is to determine the proportion to attribute to each of

them. Denoting by xi the proportion of asset i to hold, we have:

xi =
Zi
N∑
i=1

Zi

(2.24)

where N denotes the number of securities in the portfolio, and

Zi =
βi

var(εi)

(
E(Ri)−RF

βi
− C∗

)
(2.25)

In the case where short-sales are not allowed, C∗ is simply Max(Ci). When short

sales are allowed, we include all securities in our portfolio and hold the previously

excluded securities short. C∗ then becomes the last Ci in our portfolio. Under

the standard definition, the weights is calculated the same way in Equation 2.24.

However, if we use the Linter’s definition of short sales as discussed in Section
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2.2.4, the Equation becomes:

xi =
Zi

N∑
i=1

|Zi|
(2.26)

Our R-application algorithm include both definitions of short-sales based upon

the above descriptions.

2.2.3 Constant Correlation Model

Similar to the Single Index Model algorithm shown above, another way of port-

folio selection is the Constant Correlation Model method. Under this method,

the pairwise correlation coefficients of securities are assumed to be constant. The

estimate for each pair of stocks is expressed as follows:

ρ =

N∑
i=1

N∑
j=1
i 6=j

ρij

N(N − 1)

2

(2.27)

where

ρij denotes the covariance between security i and j; and

N denotes the number of securities in the portfolio.

The selection algorithm of the Constant Correlation Model is similar to that

of the Single Index Model. The only difference is that instead of ranking by

excess return to β, we now rank the securities by the excess return to σ, which

is written as follows:

(Ri −RF )

σi
(2.28)

where

Ri denotes the expected return on security i;
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RF denotes the risk-free rate; and

σi denotes the standard deviation of the return of security i.

After securities are ranked using the above ratio, the securities with greater

excess return to σ than the cut-off point will be included into the optimal port-

folio. The cut-off point is computed as follows:

C∗ =
ρ

1− ρ+ ip

i∑
j=1

Rj −RF

σj
(2.29)

where

Rj denotes the expected return on security j;

RF denotes the risk free rate;

σj denotes the standard deviation of the return of security j, and

ρ denotes the constant correlation coefficient.

Same as before, we include securities with Ci greater than C∗, and the Zi is

expressed as follows:

Zi =
1

σi(1− ρ)

[
Ri −RF

σi
− C∗

]
(2.30)

and the weights of each security is expressed as:

xi =
Zi
N∑
i=1

Zi

(2.31)

where N denotes the number of securities in the portfolio. We can see that

this algorithm is very similar to the Single Index Model shown in the previous

section. In our R-Application, we program this as our calculation. The same

regarding short-sales apply here: when short-sales are not allowed, C∗ in this

problem is simply the Max(Ci). When short-sales are allowed, all securities are

included and C∗ is simply the last Ci in the iterative process. Optimal weights are

19



then calculated using Equation 2.24 and 2.26 respectively, depending on which

definition of short-sales we decide to use.

Once again, our R-application algorithm include both definition of short-sales

based upon the above descriptions.

Finally, the expected return and risk of this portfolio can be expressed as:

Rp =
N∑
i=1

xi(Ri −RF ) +RF (2.32)

σp =

√√√√√ N∑
i=1

x2
iσ

2
i +

N∑
i=1

N∑
j=1
j 6=i

xixjσij (2.33)

2.2.4 Other Models

Other than the methods discussed above, there are also the Multi-Group Model

as well as Multi-Index Model that can similarly be used to find optimal portfolios

using iterative algorithms. However, since these models require information that

are not as utterly available when we download data from open sources, we do not

include them into our R-Application and discussions in this paper.

2.3 Critiques on Modern Portfolio Theory

Theoretically impressive and applicable once simplified, modern portfolio theory

has nevertheless drawn severe criticisms. The principle objection is with the

concept of β: while it is possible to measure the historical β for an investment,

it is not possible to forecast it accurately. Without an accurate forecast, it is

impossible to build a theoretically perfect portfolio. The theory also assumes

it is possible to select investments whose performance is independent of other

investments in the portfolio. However, in times of financial distress or market
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turmoil, correlation of securities tend to increase and the undiversifiable risk

of every portfolio increases, making the optimal portfolio not as valid as what

theoretically holds. We will later see also that similar criticisms are made to our

next discussion topic of Risk Management based on Value-at-Risk.
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CHAPTER 3

Risk Management

3.1 Background and History

From our discussion of portfolio selection in the previous chapter, so far, we have

been defining “risk” as a portfolio’s standard deviation or volatility. Recall that

an investor’s goal is to achieve a certain predetermined range of return (normally

high) with a predetermined level of risk (usually low) involved. Therefore, besides

looking at a portfolio’s performance in generating returns, it is also important

to monitor and manage its associated risk regularly in order to be in line with

the aforementioned goal. Risk management gets even more crucial for entities

whose investments are heavily dependent on the movements of financial markets,

as well as other factors that potentially have impacts on such movements.

3.1.1 Types of Risks

Market Risk arises from movements in the level or volatility of market prices.

This is the risk we focus on in our application section.

Credit Risk originates from counterparties unwillingness or inabilities to fulfill

their contractual obligations. This party can be an individual, corporation,

or government. Credit risk has been historically more difficult to measure

and manage due to the relatively lower frequency of default of corporations
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or governments, which makes it harder to find sufficient data to model such

behavior.

Liquidity Risk can be further broken down into market liquidity and funding

liquidity risk. The former refers to the inability to conduct a transaction at

prevailing market prices due ot the size of the position relative to normal

trading lots. The latter, also called cash flow liquidity risk, refers to the

inability to meet payments obligations. These are risks that closely relate

to the timing of transactions occurred.

Operational Risk arises from human and technological errors or accident. This

kind of risk is extremely difficult to model and manage.

Other risks include legal risk, environmental risk, etc.

Progresses and advancements are made everyday in the management of each of

the risks described above. Management and model of market risk is undoubtedly

the most mature among all due to the availability of data that are involved in the

modeling of such risk. Hence, in our application section we will be focusing on

the measure of market risk, specifically for portfolios that consist of only stocks.

3.1.2 Consequences of the Lack of Risk Management

Although this paper serves as an introduction to the measurement and manage-

ment market risk related to stock portfolios, it is worthwhile to briefly mention

some historical (and current) events that caught the the world’s attention to bet-

ter manage financial risks. The following are some financial disasters that arose

mainly due to the lack of risk management.

Portfolio Insurance [22] Around 1980, a dynamic hedging technology was de-
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veloped by Leland, Obrien, and Rubinstein in which the principle came

from option pricing theory. The principle of this product is to hedge a

stock portfolio against market risk by selling stock index futures short or

buying stock index put options. This product worked well until the market

crash of October 1987, which was later blamed to have aggravated the dis-

astrous outcome of the crash. “Portfolio Insurance” in the face of the 1987

market meltdown shows that even theoretically sophisticated models face

the risk of market and need to be more closely monitored by users as well

as governmental agencies to prevent catastrophic outcomes.

Long Term Capital Management [11] In 1994, hedge fund Long Term Cap-

ital Management (LTCM) which consisted of an all star team of traders

and academics was formed in an attempt to create a fund that would profit

from the combination of the academics’ quantitative models and the traders’

market judgment and execution capabilities. LTCM primarily uses trading

strategy of convergence to profit from arbitrage opportunities. Not surpris-

ingly, it generated stellar performance until swap spreads started widening

unexpectedly after the Russia’s default on its government obligations along

with other global events. The 1998 failure of LTCM created great turmoil

in the world’s financial system. Many lessons were learned from the LTCM

case at great cost. At the minimum, we learned that when evaluating risks

of any investment portfolios, one should not rely solely on mathematical

models, but instead should use them as aids along with judgment and com-

mon sense. Also, one needs to keep in mind of unexpected correlations

or the breakdown of historical correlations, and perform stress testing and

extreme scenario analysis to any investment profile.

Financial Crisis of 2007-2009 The “financial meltdown” we are currently ex-
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periencing (at the time this paper is written) has a global effect very much

like the previous two events but at an even greater magnitude due to in-

creased globalization. The immediate cause of the crisis was the bursting of

the United States housing bubble. Contributed to the growth of the housing

bubble is primarily due to the lax of lending (credit risk), deregulation, and

overleveraging. It is beyond the scope of this paper to decipher each of the

components that make up this crisis. But a lesson learned, undoubtedly,

is that proper risk management and education in financial products could

have given more obvious alerts to regulators and investors alike, and the

outcome of the disaster could have been mitigated.

These very few examples all involved the lack of risk management and the

short of investors’ and even governments’ knowledge in very complicated financial

instruments. It is therefore essential that not only financial institutions, but

investors and governments, be well educated in the qualitative and quantitative

aspects of investing in order to prevent more disasters from happening.

3.2 Measuring Risk: Value-at-Risk (VaR)

Due to the complexity of portfolios held by institutional investors these days,

there is a strong need to have a standardized way to measure the risk that is

exposed by the entity, especially those that play major roles in the world’s fi-

nancial market (e.g. financial institutions). This is especially necessary now

that complex financial instruments such as options, swaps, and different types

of structured loans like collateralized mortgage obligations (CMO) and collater-

alized debt obligations (CDO) abound. Different portfolio classes have different

ways of risk assessments (e.g. duration for a fixed income portfolio, β for an
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equity business, etc.) and these risks are difficult to be combined in a meaningful

way. It is also difficult to aggregate results available at different times, such as

positions marked in different time zones, or a high frequency trading desk with

a business holding relatively illiquid positions. But since every business unit in

a financial institution contributes to profit and loss in an additive fashion, and

many of them mark-to-market daily, it is natural to define firm-wide risk using

the distribution of possible losses at a fixed point in the future. It is based on

the desire to have a meaningful measure of firm-wide risk that gave birth to

Value-at-Risk (VaR).

In the simplest term, VaR attempts to make a statement regarding the risk

of a firm or a particular combination of portfolios similar to the following:

We are 95% certain that we will not lose more than $1,300 in the next 1 day.

Figure 3.1 shows pictorially the statement we just made. In this figure, we

can see that the value-at-risk amount of $1.3K is the cut-off point where there is

5% of worse possible losses lying below this point.

As we can see, three parameters come into play: a confidence level, a time

horizon, and an amount of loss. It is important NOT to perceive VaR as the

“worst case scenario”, since the amount is only the worst loss based on a certain

confidence level. This means that there is still a 5% chance that the loss can get

worse, or a lot worse, than the amount stated. An extreme case can be seen in

Figure 3.2. Here, we can see that although the VaR is still $1.3K, the potential

loss is now greater. Therefore, VaR can be perceived as the “best of the worst

cases” instead.

In practice, the time horizon N is almost always set to N = 1. This is because

there is not enough data to estimate directly the behavior of market variables
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Figure 3.1: Value-at-Risk Visual Demonstration

Figure 3.2: Value-at-Risk Extreme Case
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over periods of time longer than 1 day. The usual assumption is:

N-day VaR = 1-day VaR x
√
N

This formula is exactly true when the changes in the value of the portfolio on

successive days have independent identical normal distributions with mean zero.

In other cases, it is an approximation.

In general, the algorithm for computing VaR is as follows:

1. Mark-to-Market of the current portfolio (i.e., calculate value of portfolio)

2. Measure the variability of the risk factors

3. Set the time horizon

4. Set the confidence level

5. Report the worst loss by processing all the preceding information

In simple terms, VaR can be derived from the probability distribution of the

future portfolio value f(w). At a given confidence level c, we want to find the

worst possible realization W ∗ such that the probability of exceeding this value is

c:

c =

∫ ∞
W ∗

f(x)dw (3.1)

or such that the probability of a value lower than W ∗, p = P (w ≤ W ∗), is 1− c:

1− c =

∫ W ∗

−∞
f(x)dw = P (x ≤ W ∗) = p (3.2)

In other words, the area from −∞ to W ∗ must sum to p = 1− c. The number

W ∗ is called the quantile of the distribution, which is the cut-off value with a

fixed probability of being exceeded. (1−c) corresponds to the area shaded in light

blue in Figure 3.1. In the following sections we describe three specific methods

of calcuating VaR.
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3.2.1 Parametric - RiskMetrics

VaR computation is simple if the distribution of returns can be assumed to belong

to a parametric family such as the normal distribution. In this case, VaR can

be derived directly from the portfolio’s standard deviation using a multiplicative

factor that depends on the confidence level. First, we translate the general dis-

tribution f(w) into a standard normal distribution Φ(ε), where ε has mean zero

and standard deviation of unity. We associate W ∗ with the cut-off return R∗

such that W ∗ = W0(1 + R∗), where W0 is the value of the portfolio at the time

of measurement. Further, we can associate R∗ with a standard normal deviate

α ≥ 0 by setting

−α =
−|R∗| − µ

σ
(3.3)

This is equivalent to setting

1− c =

∫ W ∗

−∞
f(x)dw =

∫ −|R∗|

−∞
f(r)dr =

∫ −α
−∞

Φ(ε)dε (3.4)

Now we can easily find the solution by using the cumulative standard normal

distribution table, which gives us the area to the left of a standard normal variable

with value equals to d:

N(d) =

∫ d

−∞
Φ(ε)dε (3.5)

With this, we can easily see that with parameters µ, σ expressed on daily basis

(as what we will have in our example in Chapter 5), VaR can be expressed as

follows:

V aR(mean) = W0(R
∗ − µ) = W0ασ

√
∆t (3.6)

where ∆t simply equals to 1 since we our parameters are expressed in terms of

days. If they are expressed as annual terms, ∆t will be 250 (estimated number

of trading days per year).
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Further, we can break down this parametric approach into two methods which

involves different definitions of our σ term. In the Equally Weighted Moving

Average approach, the calculation of portfolio standard deviation is:

σt =

√√√√ 1

k − 1

t−1∑
s=t−k

(xs − µ)2 (3.7)

where

σt denotes the estimated standard deviation of the portfolio;

k denotes the number of days included in “observation period”;

xs denotes the change in portfolio value on day s; and

µ denotes the mean change in portfolio value.

It is not difficult to see that under this method, each observed data point is given

the same weight. If we want to give higher importance to more recent data,

we should consider using the Exponentially Weighted Moving Average

approach instead. Under this approach, different weights are attached to past

observations, with the most recent observation receiving much higher weights

than earlier observations. The expression for the standard deviation is as follows:

σt =

√√√√(1− λ)
t−1∑
s=t−k

λt−s−1(xs − µ)2 (3.8)

where λ denotes the decay factor that determines the rate at which the weights

on past observations decay as they become more distant. This approach aims

to capture short-term movements in volatility. In our R-application, this can be

easily calculated by the cov.wt() function.

3.2.2 Historical Simulation

While the parametric approach assumes a normal distribution for the observed

data which is almost always not the case, historical simulation method does not
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require such an assumption. Under this approach, there is no need to calculate

the expected value and standard deviations. Instead, the actual percentiles of

the observation period are used as the VaR measures. For example, for an ob-

servation period of 1000 days, the 95th percentile historical simulation VaR is

the 51th largest loss observed in the sample of 1000 outcomes (because the 5%

of the sample that should exceed the risk measure equals 50 losses). This can be

very easily implemented in our R-application by using the quantile() function.

Historical simulation approaches do not make the assumptions of normality or

serial independence which can be viewed as a strength of this method. How-

ever, relaxing these assumptions also implies that this approach does not easily

accommodate translations between multiple percentiles and holding periods. [8]

A variant of this approach is the Historical Bootstrapping method, which

introduces elements of randomness into the historical method above. Under this

approach, we sample from all observations available and create a window (e.g., 250

days) of portfolio values. From this point, VaR is calculated the same way as the

historical method by simply obtaining the quantile of this new window of portfolio

values. In other words, the bootstrap randomizes the selection of a historical

period, rather than using a fix window of data as before. Again, under this

method, no distributional assumptions (e.g., normality) are made which means

it can include fat tails, jumps, or any departure from the normal distribution.

Also, the cross-sectional correlation between different assets in the portfolio is

preserved (as we are using the portfolio returns rather than returns of each asset

of the portfolio). However, extensive amount of data is needed to get a good

approximation. Finally, by resampling at random, any pattern of time variation

is broken which means this method relies heavily on the assumption that returns

are independent over time. We can clearly realize these shortcomings in this

model in our concept demonstration section in Chapter 5.
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3.2.3 Monte Carlo Simulation

When we introduce more complicated assets into our portfolio such as options,

a more sophisticated method than the parametric approach is needed. Financial

instruments such as options do not exhibit normal distribution in their returns,

so when introduced into an equity-only portfolio, they change the distribution

of the portfolio’s return. As a result, tracking error and other mean/variance

statistics no longer describe the portfolio’s risk. To meet this need, the Monte

Carlo Simulation approach is used.

Under this approach, different factor return outcomes are simulated. While

the equity part of the portfolio stays the same as parametric, the option returns

are computed through the appropriate options pricing model (e.g. Barone-Adesi,

Whaley for American options and Black-Scholes for European options). The re-

sulting security returns are aggregated into a single, simulated portfolio return

for each outcome in the Monte Carlo Simulation. Such a distribution of portfolio

returns more accurately describes a nonlinear portfolio than the normal distribu-

tion assumed by the parametric method.

The basic use of this approach in this paper can be summarized as follows:

1. From a data set in a fixed time period, calculate portfolio value V =

f(xi, x2, ...), where x1, x2, ... are risk factors that determine the value of

the portfolio. For instance, for a two-stock portfolio, the expression will

be V = w1x1 + w2x2 where wi denotes the weights of asset i. If options

are included in the portfolio, this function will be non-linear and we will

need to use valuation models such as the Black-Scholes formula, where risk

factors such as strike price, interest rate, volatility, time to maturity, etc.

are used. In this paper, we consider only linear portfolios (stocks).
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2. Measure the variance-covariance matrix of all risk factors (the xi’s in step

one) similar to what is done in the parametric approach.

3. Generate as many trials of artificial returns as needed assuming normal

distribution with the variance-covariance matrix obtained above.

4. To obtained the above, the Cholesky matrix is used. This can be done

conveniently in R using the mvrnorm() command in the MASS package,

with specified number of iterations.

5. For each scenario (iteration), portfolio return/value is calculated using the

f(xi) function specified in step one.

6. Now, an empirical distribution of the portfolio values is generated. Simi-

lar to the historical approach, we then measure VaR as the corresponding

quantile.

It is not difficult to see that for linear portfolios (with no options) the VaR

obtained from this method will be the same as that from the parametric ap-

proach. Therefore, this method is of best value when we have a portfolio with

mixed classes (with options). This method is often seen as superior since it does

not make distributional assumptions on the risk factors (valuation model is used

to value the portfolio instead of approximation using normal assumptions). How-

ever, it depends on the assumptions made on the valuation model used and thus

is prone to model risk. Moreover, it requires high computational power.

In this paper, since we use stock portfolio (which is linear) the superiority

of the Monte Carlo simulation method is not obvious. However, we include the

use of this method for demonstration purposes. The exact algorithm in our R-

application can be found in Chapter 6.
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3.3 Model Validation

3.3.1 Back Testing

Model validation is an integral component of a systematic risk-management pro-

cess. Back testing VaR numbers provides valuable feedback to users about the

accuracy of their models. The procedure also can be used to search for possible

improvements. Literally, back testing involves testing how well the VaR estimates

would have performed in the past.

Suppose that we are calculating a 1-day 95% VaR. Back testing would involve

looking at how often the loss in a day exceeded the 1-day 95% VaR that would

have been calculated for that day. If this happened on about 5% of the days, we

can feel reasonably comfortable with the methodology for calculating VaR. If it

happened on, say, 8% of days, the methodology is suspicious. If it happened on

2% of days, we also suspect the method to be overly conservative.

Currently, regulatory guidelines have required banks with substantial trading

activity to set aside capital to insure against extreme portfolio losses. This is

called the market risk capital requirement. [2] The requirement is expressed as

follows:

MRCt = max

(
V aRt(0.01), St

1

60

59∑
i=0

V aRt−1(0.01)

)
(3.9)

where St denotes the multiplication factor that is applied to the average of previ-

ously reported VaR estimates which varies with back testing results. Specifically,

St is determined by classifying the number of 1% VaR violations in the previous
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250 trading days, N , into three distinct categories as follows:

St =


3.0 if N ≤ 4, Green

3 + 0.2(N − 4) if 5 ≤ N ≤ 9, Yellow

4.0 if 10 ≤ N , Red

(3.10)

As we can see, the current regulatory framework for financial institution put

VaR and back testing results on very high priority when it comes to capital

requirements. It is thus worthwhile for us to demonstrate the ideas using a

simple stock portfolio in Chapter 5.

3.3.2 Stress Testing - Scenario Analysis

Stress testing involves estimating how the portfolio would have performed under

some of the most extreme market moves seen in the last 10 to 20 years. For

example, to test the impact of an extreme movements in the US equity prices, a

company might set the percentage changes in all market variables equal to those

on October 19, 1987 (S&P moved by 22.3 σ’s). If this is considered to be too

extreme, the company might choose January 8, 1988 (S&P moved by 6.8 σ’s).

These scenarios can also be artificially generated.

Stress testing can be considered as a way of taking into account extreme events

that do occur from time to time but that are virtually impossible according to

the probability distributions assumed for market variables. For example, under

the assumption of a normal distribution, a 5-σ daily move in a market variable

happens about once every 7000 years, but, in practice, it is not uncommon to see

such move once or twice every 10 years. [9]
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3.4 Critiques on VaR

In his bestsellers The Black Swan and Fooled by Randomness, Nassim Taleb

summarizes the shortcomings of value-at-risk (and portfolio theory) pretty con-

vincingly. He stated that the field of statistics is based upon the law of large

numbers, where “as you increase the sample size, no single observation is going

to hurt you.” [21] [20] However, in risk management, it is the tail events that

are of interest. While VaR gives us the “best of the worst” case scenario based

upon some confidence level, there is no indication of how bad it can get below

that cut-off point. Also, distributional assumptions are made in the calculation

of VaR, and that does not always apply. But when we use historical simulation

(thus no distributional assumptions), we are limited to assuming the future re-

sembling the past. Value-at-risk methodology is therefore only part of the full

story about the risk of a particular portfolio.
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CHAPTER 4

Concept Demonstration - Portfolio Selection

4.1 The Data

Application of the portfolio selection algorithms discussed in Chapter 2 is made

simple with the use of computer softwares such as Matlab, R, or Microsoft Excel.

For this paper, we use statistical software R. Data needed to compute efficient

portfolios are daily/monthly return information of the securities we are interested

in, as well as the corresponding market data over the same period. In this paper,

we use the 30 stocks currently listed under the Dow Jones Industrial Average as

our portfolio securities, and the DJIA index as our market. Names of the DJIA

companies are listed in Table 4.1. Such data is openly available at online sources

such as www.finance.yahoo.com and www.google.com/finance. In this project,

we download daily price information from Yahoo as *.csv files and convert them

into monthly returns to proceed with our portfolio analysis.

The convention is to convert daily data into monthly for the purpose of port-

folio selection analysis. We can see how the prices and returns of our data look

before conversion in Figure 4.1 and Figure 4.2. We observe violent fluctuations

on the daily graphs.

After we convert the daily data into monthly, we are ready to employ the

portfolio selection algorithms discussed in Chapter 2. We can compare Figure 4.3

and Figure 4.4 to what we had before and we will notice the change in magnitude
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Figure 4.1: Daily Price Plot for DJIA Stocks June 01 - Dec 07

Daily Return Plot of DJIA Stocks June 2001 − Dec 2007
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Figure 4.2: Daily Return Plot for DJIA Stocks June 01 - Dec 07
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Monthly Price Plot of DJIA Stocks June 2001 − Dec 2007
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Figure 4.3: Monthly Price Plot for DJIA Stocks June 01 - Dec 07

Monthly Return Plot of DJIA Stocks June 2001 − Dec 2007
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Figure 4.4: Monthly Return Plot for DJIA Stocks June 01 - Dec 07
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of fluctuations from daily to monthly.

We hereby include the summary statistics of the monthly return information

for each stock in our portfolio in Table 4.1. The original data downloaded from

www.finance.yahoo.com was daily data, but we can easily convert them into

monthly with the help of statistical software such as R. Please note that the

conversion algorithm is not included in this paper.

4.2 Portfolio Selection Results

We include the 30 DJIA stocks in our portfolios and use the 5 methods (Equal

Allocation, Single Index Models with and without short sales, and Constant

Correlation Models with and without short sales) discussed in Chapter 2 to come

up with the optimal weights for each stock. The reason we do not use other

methods such as the Multi-Group and Multi-Index is because data required for

those methods are not as readily available to download from open sources such

as Yahoo and Google. Since we want our R-program to be very scalable, we

therefore only choose to use the 5 methods we discussed. Once run through

our data management and portfolio selection R-application, we get the portfolio

allocation recommendations as shown in Table 4.2.

Using the allocation recommendations obtained, we calculate what would have

been the risk and return for each of the portfolios and plot them on the same

graph. This way, we can easily see the effect of diversification. See Table 4.3 and

Figure 4.5 for the results.

In Figure 4.5, we easily notice the effect of diversification. Here, all the

portfolios, regardless of method used, are in the range of relatively lower risk,

whereas individual stocks (the black dots) all yield relatively low returns with

40



Company Stock Min 1st Quartile Median Mean 3rd Quartile Max

Alcoa AA -0.254299 -0.042748 0.009531 0.004391 0.069700 0.171374

American Express AXP -0.304894 -0.019522 0.012208 0.008627 0.043840 0.226855

Boeing BA -0.405133 -0.030016 0.022791 0.008648 0.056331 0.221098

Bank of America BAC -0.137381 -0.013164 0.011398 0.008468 0.035512 0.116978

Caterpillar CAT -0.15145 -0.04116 0.01616 0.01646 0.06025 0.21784

Cisco CSCO -0.23116 -0.05032 0.01042 0.01065 0.05575 0.39906

Chevron Corp. CVX -0.22721 -0.02627 0.00848 0.01268 0.05435 0.15713

DuPont DD -0.155382 -0.032493 -0.005052 0.003686 0.034071 0.166352

The Walt Disney Co. DIS -0.320853 -0.027942 0.004151 0.005385 0.046886 0.187500

General Electric GE -0.1913772 -0.0340702 0.0026978 0.0003953 0.0350410 0.1419256

The Home Depot HD -0.255339 -0.044527 0.002392 -0.002989 0.055045 0.161264

Hewlett-Packard HPQ -0.34535 -0.02182 0.01051 0.01343 0.05544 0.30642

IBM IBM -0.214505 -0.030033 -0.003263 0.002441 0.040637 0.254500

Intel INTC -0.226682 -0.048394 0.006228 0.004802 0.074917 0.275531

Johnson & Johnson JNJ -0.081191 -0.021614 0.002174 0.005403 0.036661 0.118623

JPMorgan Chase JPM -0.307570 -0.033201 0.003083 0.006124 0.041057 0.231007

Kraft KFT -0.176827 -0.027273 0.009926 0.003912 0.036952 0.104689

Coca-Cola KO -0.155722 -0.019319 0.007847 0.007091 0.044338 0.115929

McDonald’s MCD -0.20640 -0.01947 0.01332 0.01276 0.05247 0.25854

3M MMM -0.132297 -0.019864 0.010458 0.006893 0.039181 0.128166

Merck MRK -0.317521 -0.041799 -0.003134 0.003823 0.057461 0.203267

Microsoft MSFT -0.168508 -0.033058 0.006211 0.005106 0.048024 0.247459

Pfizer PFE -0.135432 -0.042851 -0.020110 -0.004221 0.030991 0.149972

Procter & Gamble PG -0.06054 -0.01353 0.01100 0.01284 0.02921 0.12529

AT&T T -0.174304 -0.033179 0.012807 0.006367 0.056241 0.228513

Travelers TRV -0.218853 -0.039282 -0.003141 0.005504 0.049754 0.367872

United Technologies Corp. UTX -0.322611 -0.009724 0.017743 0.011420 0.047628 0.100141

Verizons Communications VZ -0.217910 -0.033800 0.009384 0.003697 0.034799 0.252432

Wal-mart WMT -0.179833 -0.026173 -0.002478 0.002357 0.031443 0.173722

ExxonMobil XOM -0.19478 -0.01997 0.01736 0.01249 0.04650 0.18374

Table 4.1: Summary Statistics of DJIA Stocks in Portfolio
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Stock Eq Alloc. SIM (SS Std.) SIM (SS Lint.) SIM (No SS) CC (SS Std.) CC (SS Lint.) CC (No SS)

AA 0.0333 -0.0755 -0.0228 0 -0.0744 -0.0155 0

AXP 0.0333 0.0209 0.0063 0 0.0494 0.0103 0

BA 0.0333 0.022 0.0066 0 0.0176 0.0037 0

BAC 0.0333 0.1668 0.0504 0.0047 0.214 0.0447 0

CAT 0.0333 0.1971 0.0596 0.0639 0.2393 0.0499 0.0885

CSCO 0.0333 0.0233 0.007 0 0.0214 0.0045 0

CVX 0.0333 0.1751 0.0529 0.1009 0.2538 0.053 0.0728

DD 0.0333 -0.0967 -0.0292 0 -0.0929 -0.0194 0

DIS 0.0333 -0.041 -0.0124 0 -0.0506 -0.0106 0

GE 0.0333 -0.1839 -0.0556 0 -0.2357 -0.0492 0

HD 0.0333 -0.1839 -0.0556 0 -0.2406 -0.0502 0

HPQ 0.0333 0.06 0.0181 0 0.0741 0.0155 0

IBM 0.0333 -0.0873 -0.0264 0 -0.1311 -0.0273 0

INTC 0.0333 -0.0472 -0.0143 0 -0.0663 -0.0138 0

JNJ 0.0333 0.0911 0.0276 0 0.0805 0.0168 0

JPM 0.0333 -0.0533 -0.0161 0 -0.0353 -0.0074 0

KFT 0.0333 0.0472 0.0143 0.012 -0.0684 -0.0143 0

KO 0.0333 0.1235 0.0373 0.0834 0.1142 0.0238 0

MCD 0.0333 0.1364 0.0412 0.0495 0.1858 0.0388 0.0272

MMM 0.0333 0.0789 0.0239 0 0.0921 0.0192 0

MRK 0.0333 -0.008 -0.0024 0 -0.0867 -0.0181 0

MSFT 0.0333 -0.0223 -0.0067 0 -0.0514 -0.0107 0

PFE 0.0333 -0.2273 -0.0687 0 -0.463 -0.0966 0

PG 0.0333 0.5668 0.1714 0.5507 1.0032 0.2093 0.6492

T 0.0333 0.0286 0.0087 0 -0.01 -0.0021 0

TRV 0.0333 -0.0217 -0.0066 0 -0.0483 -0.0101 0

UTX 0.0333 0.1936 0.0586 0.0156 0.2325 0.0485 0.046

VZ 0.0333 -0.0429 -0.013 0 -0.0935 -0.0195 0

WMT 0.0333 -0.0625 -0.0189 0 -0.1479 -0.0309 0

XOM 0.0333 0.2223 0.0672 0.1194 0.3182 0.0664 0.1163

Table 4.2: Portfolio Allocation Summary
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Figure 4.5: Portfolio Risk and Return using data from 2001-2007

Portfolio Return Risk

Market (DJIA) 0.0034 0.0377

Equal Allocation 0.0066 0.0404

Single Index with Short Sales (Standard) 0.0238 0.0379

Single Index with Short Sales (Lintner’s) 0.0072 0.0115

Single Index no Short Sales 0.0124 0.0268

Constant Correlation with Short Sales (Standard) 0.0334 0.0564

Constant Correlation with Short Sales (Lintner’s) 0.0070 0.0118

Constant Correlation no Short Sales 0.0130 0.0330

Table 4.3: Portfolio Risk and Return Snapshot 2001-2007
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higher risks. Comparing all portfolios, we see that the Constant Correlation with

standard definition of short sales yields the highest return in the period 2001-

2007. Following closely is the Single Index Model with standard definition of

short sales. This result makes sense since in the stardard definition of short sales,

as discussed in Chapter 2, we are assumed to have unlimited leverage. And with

this unlimited access to capital, it is not a surprise that a higher level of return

can be achieved. Back to Figure 4.5, the second set of “winners” are the SIM

and CCM without short sales, followed by the models with Lintner’s definition

of short sales. Finally, the Equal Allocation portfolio performed the worst with

high risk and low returns. However, it is worthwhile to note that all of these

portfolios performed better than the market (DJIA) during this period. This is

a reassuring observation. In other words, these portfolios are able to “beat the

market” in the 2001-2007 observation period. We now proceed with testing these

portfolios in years 2008-2009.

4.3 Portfolio Performance Review

With the allocation and corresponding risk and returns, we now compare perfor-

mance on returns of each portfolio using 2008-2009 data. See Table 4.4. Here

we see that the overall market and most of all portfolios, as well as a lot of the

stocks in the DJIA index, yielded negative returns (loss) during the period. This

is a solid demonstration of undiversifiable risk. All of our portfolios generate

losses with the exceptions of the 4 portfolios with short sales which give slightly

positive returns. We can see visually how the portfolios performed based upon

their relative risk and return on the same plot in Figure 4.6. Once again, the

two winners in this picture are the portfolios with standard definition of short

sales, meaning unlimited leverage. Following are the two portfolios with Lintner’s
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definition of short sales which is slightly more restrictive than the previous two,

but we can see clearly that they involve a much lower level of risk.

Finally, we plot a time series of return vs. time for our testing period and the

result can be seen in Figure 4.7. In this picture, we can see that all portfolios move

along the direction of the market, again another strong evidence of undiversifiable

systemic risk. The reason we focus on returns in this exercise is because that is the

tangible quantity investors often use to evaluate performance of an investment.

On the other hand, if we were holding options which gets priced by σ, it is very

important to look at also (or only) the change in dispersion. In this exercise,

however, since we are demonstrating portfolio selection concept by a simple stock

portfolio, we focus on returns.

It is important to take a step back and recall the purpose of this exercise. One

of the main reasons for investors to employ statistical theories on financial data

is to try to come up with tools that can help maintain and grow wealth. One

way to assess whether the portfolio selection algorithm and allocations work to

achieve our financial goal is to compare the portfolio returns against the market,

or our initial investment goals. In Table 4.4, we notice that the market and all

portfolio generate negative returns. Among all of the portfolios, the portfolios

that involved short sales were able to “beat the market”. By looking at Figure

4.6, we realize the effect of diversification: most of all the individual stocks all

generated losses on average during 2008-2009, with some that performed way

below -2%. With diversification, we can see clearly that all of the portfolios

perform in the higher range of the spectrum. 2008-2009 is a time of financial

turmoil, and it is reasonable that losses are generated due to “undiversifiable

risk”, or “systemic risk”. “None of the portfolios perform poorly in the year

2008-2009” - this is a subjective and qualitative statement. Therefore, whether
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these tools are useful depends heavily on the investor’s personal preference and

tolerance in risk and return.

Portfolio Return Risk

Market (DJIA) -0.0106 0.0760

Equal Allocation -0.0016 0.0858

Single Index with Short Sales (Standard) 0.0024 0.0403

Single Index with Short Sales (Lintner’s) 0.0007 0.0122

Single Index no Short Sales -0.0031 0.0379

Constant Correlation with Short Sales (Standard) 0.0033 0.0486

Constant Correlation with Short Sales (Lintner’s) 0.0007 0.0101

Constant Correlation no Short Sales -0.0037 0.0375

Table 4.4: Portfolio Risk and Return Snapshot 2008-2009
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Figure 4.7: Portfolio Performance in 2008-2009

4.4 Some Critiques

The critiques on Modern Portfolio Theory mentioned in Section 2.3 also apply

here. Most notably is the use of historical data in constructing future invest-

ment portfolios of being backward-looking. Indeed, there is no guarantee that

the future is going to resemble the past. Therefore, the portfolio selection meth-

ods discussed in this chapter should be viewed as suggestions only and should

be considered and used with due care. Investors should be equipped with also

fundamental knowledge in finance in order to make sound investment decisions.
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CHAPTER 5

Concept Demonstration - VaR Management

As discussed in Chapter 3, Value-at-Risk is a risk management measure used

in banks for their complex portfolios that include diverse classes of financial

instruments. In this chapter, we demonstrate how the different methods are used

in managing risk of our linearly dependent stock portfolio.

5.1 The Data

We use the same data set (2001-2007) as our Chapter 4 demonstration so to be

consistent. Here, we use daily returns instead of monthly since we are interested in

1-day value-at-risk (VaR). We already saw the daily price and return movements

of the 30 DJIA stocks in Figure 4.1 and 4.2 in the previous chapter. Summary

statistics of the daily returns of our demonstrated portfolios are listed in Table 5.1.

We also show distribution patterns of the different portfolios in Figure 5.1 to 5.7.

5.2 Value-at-Risk Calculations

From the histograms, we feel confident making the claim that distributions of all

our portfolio returns revolve around the mean, which for all cases are somewhere

close to zero, as we can see from the “bell shape” of the histograms. However, the

overlay of the normal curve (in blue) shows that there might be a problem of the
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Portfolio Min 1st Quartile Median Mean 3rd Quartile Max

Equal Alloc. -0.0651265 -0.0050814 0.0005460 0.0003535 0.0056717 0.0597972

Single Index (SS Standard) -0.082545 -0.005958 0.001486 0.001182 0.008131 0.039522

Single Index (SS Lintner’s) -0.0249610 -0.0018016 0.0004494 0.0003576 0.0024589 0.0119512

Single Index (No SS) -0.0636476 -0.0043466 0.0005896 0.0006180 0.0058793 0.0491483

Constant Corr.(SS Standard) -0.109954 -0.008050 0.002214 0.001650 0.011207 0.061177

Constant Corr.(SS Lintner’s) -0.0229442 -0.0016798 0.0004620 0.0003443 0.0023386 0.0127659

Constant Corr. (No SS) -0.0653077 -0.0044116 0.0006845 0.0006533 0.0059953 0.0496990

Table 5.1: Summary Statistics of Portfolio Returns

Equal Alloc. Distribution 2001−2007
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Figure 5.1: Equal Allocation Portfolio Return Distribution
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Single Index (SS Std.) Distribution 2001−2007
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Figure 5.2: Single Index Model (Standard Short Sales) Distribution
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Figure 5.3: Single Index Model (Lintner’s Short Sales) Distribution
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Single Index (No SS) Distribution 2001−2007
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Figure 5.4: Single Index Model (No Short Sales) Distribution

Constant Corr. (SS Std.) Distribution 2001−2007
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Figure 5.5: Constant Correlation (Standard Short Sales) Distribution

51



Constant Corr. (SS Lint.) Distribution 2001−2007
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Figure 5.6: Constant Correlation (Lintner’s Short Sales) Distribution

Constant Corr. (No SS) Distribution 2001−2007
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Figure 5.7: Constant Correlation (No Short Sales) Distribution
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assumptions of normality (which is used in parametric method as well as Monte

Carlo). This is one of the major critiques of VaR methods as a risk measure.

Also, we can see the problem of “fat tail” in almost all of our portfolios. Since

the method for calculating VaR using all approaches do not change regardless of

which portfolio we use, for demonstration purposes, therefore, we will choose the

Equal Allocation Portfolio as our portfolio.

We calculate next day VaR’s for all data points we have using the Parametric,

Historical, and Monte Carlo methods discussed in Chapter 3. Hence we will have

a long series of VaR’s values from the 7 years worth of daily returns data. The

reason we want that many VaR’s is because we want to validate the coverage by

each of the models and to find out which model yields the best results.

Notice that since our data starts from June 2001 to Dec 2007, the most

recent “Next-Day VaR” means the one-day VaR for the trading day after our

last data point, December 31, 2007. To get a series of VaR’s retrospectively,

we simply calculate next-day VaR using previous data under different specified

conditions. For example, to calculate the VaR of 12/30/2007, we use data from

the previous 250 trading days prior to 12/30/2007 to come up with the VaR.

And then we proceed to calculating the VaR for 12/29/2007 in a similar fashion.

We keep doing this until the amount of data get exhausted. For starter, we

can see a summary of next-day VaR (Jan 2, 2008) using the 3 methods (total

of 5 approaches) discussed, all with a one-year data length window under 95%

confidence. Refer to Table 5.2. For example, looking at the Parametric (Equally

Weighted) value, we make the claim that we are 95% confident that the loss

encountered by this portfolio tomorrow (January 2, 2008) will not exceed 1.54%.
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Next-Day VaR (1/2/2008)

Parametric Eq. -0.0154

Parametric Ex. -0.0190

Historical -0.0175

Historical Bootstrap -0.0153

Monte Carlo -0.0151

Table 5.2: Next-Day VaR: 95% C.I., 1-Year Window

5.3 VaR Model Performance Review using Back Testing

Recall that by calculating next-day VaR we are interested in making the following

statement:

We are C% certain that we will not lose more than $V in the next X day.

By now we have 3 methods (5 approaches total) of calculating this at-risk

amount, but which method should be our ultimate choice? In the following

sections we will review the results of these methods using our equal allocation

portfolio using back testing. In simple terms, we calculate a series of next-day

VaR and compare these calculated numbers with what the actual loss was in

history. With this comparison, we are able to back test whether we indeed have

only 5% of the times that the predicted VaR’s (losses) are of greater magnitude

than the actual loss. We use this failure rate to assess which model is the “best”.

In Table 5.3 we have a summary of all of our models’ back test results un-

der a 95% confidence level over different data window lengths. We use our R-

application (details in Chapter 6) to calculate these series of VaR’s during year

2001-2007 using the above criteria, and compared them with what the actual
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gains/losses were in history. With such comparisons, we come up with the back

test summary table. The percentage amounts shown on Table 5.3 represent the

percentage of calculated VaR that underestimated the actual loss (actual loss

greater than what as “predicted”).

Skimming briefly, all the failure rates are within reasonable range which as-

sures us that the models are reasonably constructed. Next, we proceed to the

determination of which model yields the most ideal results. First of all, we need

to take a step back and recall the purpose of back testing. By back testing, we

are trying to assess which model we can trust when coming up with a next-day

value-at-risk amount of our particular portfolio. We want something that will

give us an amount that is 95% of the time correct. In other words, we want the

model to give us a failure rate no more than 5%, but at the same time not ex-

tremely below the threshold either, since that will mean that the model is overly

conservative and that resources might be wasted for unnecessarily high capital

requirement (recall current regulatory framework discussed in Chapter 3). Hav-

ing this in mind, we can reasonably say that the historical bootstrapping method

is overly conservative. In Figure 5.11, we see an interesting pattern when com-

pared to the graphs of all other methods. As discussed in Chapter 3, the random

movements we observe here is related to the breakdown of time variation, which

means total return independence are assumed. In investment language, we can

see it as a breakdown of “time memory” of the trend. On the other hand, going

back to Table 5.3, the historical simulation method yields failure rates that are

all above the 5% threshold, so we can conclude that this method is too lax for

our purpose. Similarly, the Monte Carlo method also gives us coverage rate that

are unsatisfactory (all above 5%). We are then left with the parametric mod-

els. Recall that we want failure rates that are close to but not over 5%, with

this criteria, the “winner” in this model competition is parametric with equally
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Window Parametric (Eq) Historical (Eq) Historical (BS) Monte Carlo Lambda Parametric (Exp.)

12-mo 0.0482 0.0561 0.0331 0.0568 0.97 0.0510

6-mo 0.0489 0.0568 0.0309 0.0554 0.94 0.0482

3-mo 0.0510 0.0633 0.0331 0.0575 0.90 0.0510

1-mo 0.0518 0.0891 0.0618 0.0640 0.80 0.0611

Table 5.3: Back Testing Results for VaR Models - Failure Rates
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Figure 5.8: Back Testing: Parametric VaR Equally Weighted

weighted moving average using a 6-month data window.

Of course, this is a very rudimentary exercise of demonstrating how each

method is used and validated. More data and portfolio varieties will be needed if

we were doing this exercise for a real financial institution with complex investment

portfolios. And with more complicated portfolios that consist of complex financial

instruments, we would definitely be able to see the advantage of using the Monte

Carlo method over the linear parametric method.

56



Parametric VaR − Exponentially Weighted Moving Average
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Figure 5.9: Back Testing: Parametric VaR Exponentially Weighted

Historical VaR − Equally Weighted Moving Average
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Figure 5.10: Back Testing: Historical VaR Equally Weighted
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Historical VaR − Bootstrapped From All Available History
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Figure 5.11: Back Testing: Historical VaR Boostrapping

Monte−Carlo Simulated VaR − 1000 Iterations Each
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Figure 5.12: Back Testing: Monte Carlo Simulated VaR
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5.4 Some Critiques

The criticisms made by Nassim Taleb in his international best sellers as mentioned

in Section 3.4 also apply here. In our exercise, we found that using the parametric

method with equally weighted moving average is the most reasonable way to

calculate VaR’s for our stock portfolio. With that, we conclude that we are 95%

confident that the next-day loss (the trading day following 12/31/2007) will be

no worse than -1.54%. However, what happens to the remaining 5%? For this

remaining 5%, we can experience losses of -2%, or -20%, or even -200% and

below! In risk management, we are interested in knowing and preparing for the

worst possible scenario, and it is these tail events that we should pay attention

to. In other words, value-at-risk method gives us only the beginning of the story.

The detail and possible ending of this story will need to be further explored.

Nevertheless, value-at-risk is a value-adding tool in terms of making investors

or portfolio managers aware of possible danger, and it is certainly playing an

important role in risk management for financial institutions today.
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CHAPTER 6

The R-Application

6.1 The Motivation

One main goal of this paper is to develop a user-friendly tool for beginning

investors or students in statistical finance to apply the ideas discussed in the

previous sections onto real life data. This is made possible by statistical soft-

ware R. We hereby include all the R-functions used to calculate the related

results shown in Chapter 4 and 5. Soft copies of these codes are posted on

http://theses.stat.ucla.edu/. They can be downloaded and run on your local ma-

chine so that anyone can start constructing and analyzing their stock portfolios

in R once data are downloaded and working directory properly set.

6.2 The Source Codes

Here we include source codes of each of the functions used in this paper so that

one can see clearly how each function is structured and notice their similarities

and differences. Users can also extend and modify these codes to suit their specific

needs.
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6.2.1 Data Management

To use this function, download daily/monthly stock price data from Yahoo Fi-

nance and save them into your working directory as *.csv (where * is the name

of the file). This function can easily merge data into usable data frames to be

called out by R. The command for this function is DataMerge() and once run,

the function will spit out a total.Rdata file and a total.csv file in the working

directory you previously specified. Make sure to download both Stock data and

Index data (if Single Index Model is to be used. See next section). For example,

in our case, we type:

DataMerge(num=30,idx="dji",stk=c("aa","axp","ba","bac","cat","csco","cvx",
"dd","dis","ge","hd","hpq","ibm","intc","jnj","jpm","kft","ko","mcd","mmm",
"mrk","msft","pfe","pg","t","trv","utx","vz","wmt","xom"))

where num is the number of stocks in the portfolio, idx is the name of the index

we are using, and stk is the character string of the names of the stock *.csv files

downloaded from Yahoo. Source codes as follows:

DataMerge <- function(num=num1, idx=idx1, stk=stk1){
if(class(idx)!="character") stop("Input names of stocks as characters")
if(class(stk)!="character") stop("Input names of index as characters")
a <- read.csv(paste(idx,".csv",sep=""), header = TRUE)
ddow <- as.Date(a$Date)
pdow <- a$Adj.Close
rdow <-(a$Adj.Close[-length(a$Adj.Close)]-a$Adj.Close[-1])/a$Adj.Close[-1]
adow <- data.frame(ddow[-length(a$Date)],pdow[-length(a$Date)],rdow)
names(adow) <- c("Date", paste("p",idx,sep=""), paste("r",idx,sep=""))
total <- adow
for(k in 1:num){
a <- read.csv(paste(stk[k],".csv",sep=""), header = TRUE)
d <- as.Date(a$Date)
r <-(a$Adj.Close[-length(a$Adj.Close)]-a$Adj.Close[-1])/a$Adj.Close[-1]
p <- a$Adj.Close
a <- data.frame(d[-length(a$Date)],p[-length(a$Date)],r)
names(a) <- c("Date", paste("p",k,sep=""), paste("r",k,sep=""))
total <- merge(total, a, all=FALSE, sort=FALSE)
}

write.csv(total, "new_total.csv")
save(total, file="new_total.RData")

}
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6.2.2 Portfolio: Equal Allocation

Suppose that we have merged our data using the DataMerge() discussed above

where the downloaded data are daily prices. Then in order to use the portfolio

selection functions, based upon convention, we will need to convert the data from

daily into monthly returns (algorithm not included in this paper). Or, to avoid

doing that, we can download monthly data at the beginning and run DataMerge()

directly on monthly data. Once the data frame is merged and set up, we can run

the portfolio functions which will give us with the optimal weights of each stock

to be allocated, as well as the expected return and risk of this portfolio based

upon historical data supplied into the function. For example, in our paper, we

type the following:

port.eq(data=ret.mon)

where ret.mon is the name of my data frame or matrix with monthly returns of

each stock in each column. Source codes as follows:

port.eq <- function(data=ret.mon){
mean.ret <- apply(data, 2, mean)
vcov.ret <- cov(data)
num.stock <- ncol(data)
e.weight <- (1/num.stock)*rep(1,num.stock)
ret.equal <- t(mean.ret) %*% e.weight
var.equal <- t(e.weight) %*% vcov.ret %*% e.weight
return(list(stock=names(data),weights=e.weight,
return=ret.equal,risk=var.equal^.5))

}

6.2.3 Portfolio: Single Index (With Short Sales)

Once we have a return data frame or matrix set up, similar to the Equal Allocation

Portfolio case above, we can easily calculate our Single Index Model optimal

portfolio weights, return, and risk using the port.sim.ss() function if short

sales are allowed. For example, in our paper, we type the following:
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port.sim.ss(data=ret.mon,idx=dji.mon,rf=0.001,lint=TRUE)

where ret.mon is the name of my data frame or matrix with monthly returns of

each stock in each column, dji.mon is the market return data (in this case we

use the DJIA index as our market), rf is the risk free rate (in this case we use the

3 year treasury bill rate published on www.finance.yahoo.com), and lint is the

logical argument of whether we want to apply the Lintner’s definition of short

sales. Source codes as follows:

port.sim.ss <- function(data=ret.mon, idx=dji.mon, rf=0.001, lint=FALSE){
if(length(data[,1])!=length(idx[,1]))
stop("The number of Portfolio and Index returns must equal.")

num.stock <- ncol(data)
mean.ret <- apply(data, 2, mean)
mean.idx <- apply(idx, 2, mean)
var.idx <- var(idx)
vcov.ret <- cov(data)
sigma.ret <- rep(0,num.stock)
for (i in 1:ncol(vcov.ret)){
sigma.ret[i]<-sqrt(vcov.ret[i,i])
}

a <- rep(0,num.stock)
b <- rep(0,num.stock)
for(i in 1:num.stock){
q <- lm(data[,i]~idx)
a[i]<-q$coef[1]
b[i]<-q$coef[2]
}

stock <- rep(0,num.stock); mse <- rep(0,num.stock); Rbar <- rep(0,num.stock)
Ratio <- rep(0,num.stock); col1 <- rep(0,num.stock); col2 <- rep(0,num.stock)
col3 <- rep(0,num.stock); col4 <- rep(0,num.stock); col5 <- rep(0,num.stock)
for(i in 1:num.stock){
Rbar[i] <- a[i]+b[i]*mean.idx
mse[i] <- sum(lm(data[,i]~idx)$residuals^2)/(nrow(data)-2)
Ratio[i] <- (Rbar[i]-rf)/b[i]
stock[i] <- i
}

xx <- (cbind(stock, a, b, Rbar, mse, Ratio))
aaa <- xx[order(-Ratio),]
col1 <- (aaa[,4]-rf)*aaa[,3]/aaa[,5]
col3 <- aaa[,3]^2/aaa[,5]
for(i in(1:num.stock)) {

col2[i] <- sum(col1[1:i])
col4[i] <- sum(col3[1:i])
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}
for(i in (1:num.stock)) {

col5[i] <- var.idx*col2[i]/(1+var.idx*col4[i])
}

z.short <- (aaa[,3]/aaa[,5])*(aaa[,6]-col5[length(col5)])
lint <- lint
ifelse(lint, x.short <- (z.short)/sum(abs(z.short)), x.short <- z.short/sum(z.short))
a.single.short <- t(aaa[,2]) %*% x.short
b.single.short <- t(aaa[,3]) %*% x.short
ret.single.short <- a.single.short + b.single.short * mean.idx
sd.single.short <- sqrt(b.single.short^2 * var.idx +(t(x.short^2)) %*% aaa[,5])
table <- cbind(aaa,z.short,x.short)
return(list(table=table,stock=names(data[(aaa[,1])]),
weights=x.short,return=ret.single.short,risk=sd.single.short))

}

6.2.4 Portfolio: Single Index (No Short Sales)

The Single Index Model without short sales works the same way as the previous

function where short sales are allowed. The only difference is that it spits out the

weights assuming that there no borrowing/lending opportunities available, and

so the Lintner’s definition logical argument in no longer needed. In our case, we

input our criteria as follows:

port.sim.ss(data=ret.mon,idx=dji.mon,rf=0.001)

Source codes as follows:

port.sim.nss <- function(data=ret.mon, idx=dji.mon, rf=0.001){
if(length(data[,1])!=length(idx[,1]))
stop("The number of Portfolio and Index returns must equal.")

num.stock <- ncol(data)
mean.ret <- apply(data, 2, mean)
mean.idx <- apply(idx, 2, mean)
var.idx <- var(idx)
vcov.ret <- cov(data)
sigma.ret <- rep(0,num.stock)
for (i in 1:ncol(vcov.ret)){
sigma.ret[i]<-sqrt(vcov.ret[i,i])
}

a <- rep(0,num.stock)
b <- rep(0,num.stock)
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for (i in 1:num.stock){
q <- lm(data[,i]~idx)
a[i]<-q$coef[1]
b[i]<-q$coef[2]
}

stock <- rep(0,num.stock); mse <- rep(0,num.stock); Rbar <- rep(0,num.stock)
Ratio <- rep(0,num.stock); col1 <- rep(0,num.stock); col2 <- rep(0,num.stock)
col3 <- rep(0,num.stock); col4 <- rep(0,num.stock); col5 <- rep(0,num.stock)
for(i in 1:num.stock){
Rbar[i] <- a[i]+b[i]*mean.idx
mse[i] <- sum(lm(data[,i]~idx)$residuals^2)/(nrow(data)-2)
Ratio[i] <- (Rbar[i]-rf)/b[i]
stock[i] <- i
}

xx <- (cbind(stock, a, b, Rbar, mse, Ratio))
aaa <- xx[order(-Ratio),]
col1 <- (aaa[,4]-rf)*aaa[,3]/aaa[,5]
col3 <- aaa[,3]^2/aaa[,5]
for(i in(1:num.stock)) {

col2[i] <- sum(col1[1:i])
col4[i] <- sum(col3[1:i])

}
for(i in (1:num.stock)) {

col5[i] <- var.idx*col2[i]/(1+var.idx*col4[i])
}

table1 <- cbind(aaa, col1, col2, col3, col4, col5)
table2 <- table1[1:which(col5==max(col5)), ]
z.no.short <- (table2[,3]/table2[,5])*(table2[,6]-max(col5))
x.no.short <- abs(z.no.short)/abs(sum(z.no.short))
a.single.no.short <- t(table2[,2]) %*% x.no.short
b.single.no.short <- t(table2[,3]) %*% x.no.short
ret.single.no.short <- a.single.no.short + b.single.no.short * mean.idx
sd.single.no.short <- sqrt(b.single.no.short^2 *
var.idx + (t(x.no.short^2)) %*% table2[,5])

table <- cbind(table2[,1:6],z.no.short,x.no.short)
return(list(table=table,stock=names(data[(table2[,1])]),
weights=x.no.short,return=ret.single.no.short,risk=sd.single.no.short))

}

6.2.5 Portfolio: Constant Correlation (With Short Sales)

Constant Correlation works the same way as the Single Index Model functions

only that it is not required to input the market information since they are not

part of the calculation. In our case where short sales are allowed, we type the
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following:

port.cc.ss(data=ret.mon,rf=0.001,lint=TRUE)

Source codes as follows:

port.cc.ss <- function(data=ret.mon, rf=0.001, lint=FALSE){
num.stock <- ncol(data)
mean.ret <- apply(data, 2, mean)
vcov.ret <- cov(data)
sigma.ret <- rep(0,num.stock)
for (i in 1:ncol(vcov.ret)){
sigma.ret[i]<-sqrt(vcov.ret[i,i])
}

corr.ret <- cor(data)
rho <- (sum(corr.ret)-num.stock)/(num.stock*(num.stock-1))
x <- rep(0,5*num.stock)
xx <- matrix(x,ncol=5,nrow=num.stock)
stock <- seq(1,num.stock,1); Rbar <- rep(0,num.stock); Rbar_f <- rep(0,num.stock)
sigma <- rep(0,num.stock); Ratio <- rep(0,num.stock); col1 <- rep(0,num.stock)
col2 <- rep(0,num.stock); col3 <- rep(0,num.stock)
Rbar <- mean.ret
Rbar_f <- Rbar-rf
for (i in 1:num.stock){
sigma[i] <- sqrt(vcov.ret[i,i])
}

Ratio <- Rbar_f/sigma.ret
xx <- (cbind(stock, Rbar, Rbar_f, sigma, Ratio))
aaa <- xx[order(-Ratio),]
for(i in (1:num.stock)){
col1[i]<-rho/(1-rho+i*rho)
col2[i]<-sum(aaa[,5][1:i])
}

for(i in (1:num.stock)){
col3[i]<-col1[i]*col2[i]
}

table <- cbind(aaa, col1, col2, col3)
z_cons <- (1/((1-rho)*table[,4]))*(table[,5]-table[,8][nrow(table)])
lint <- lint
ifelse(lint, x_cons <- (z_cons)/sum(abs(z_cons)), x_cons <- z_cons/sum(z_cons))
R_cons_short <- t(aaa[,2]) %*% x_cons
tempcorr <- matrix(rho, nc=num.stock, nr=num.stock)
for(i in (1:num.stock)){
tempcorr[i,i]<-1
}

sd_cons_short <- sqrt((t(x_cons*table[,4])) %*%
tempcorr %*% (x_cons*table[,4]))

table <- cbind(table[,1:5],z_cons,x_cons)
return(list(table=table,stock=names(data[(table[,1])]),
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weights=x_cons,return=R_cons_short,risk=sd_cons_short))
}

6.2.6 Portfolio: Constant Correlation (No Short Sales)

Finally, the Constant Correlation short sales not allowed function works the same

way as the one with short sales allowed. The only difference is that we get weights

assuming there is no short sales opportunities available. In our case, we type the

following:

port.cc.nss(data=ret.mon,rf=0.001)

Source codes as follows:

port.cc.nss <- function(data=ret.mon, rf=0.001){
num.stock <- ncol(data)
mean.ret <- apply(data, 2, mean)
vcov.ret <- cov(data)
sigma.ret <- rep(0,num.stock)
for (i in 1:ncol(vcov.ret)){
sigma.ret[i]<-sqrt(vcov.ret[i,i])
}

corr.ret <- cor(data)
rho <- (sum(corr.ret)-num.stock)/(num.stock*(num.stock-1))
x <- rep(0,5*num.stock)
xx <- matrix(x,ncol=5,nrow=num.stock)
stock <- seq(1,num.stock,1); Rbar <- rep(0,num.stock); Rbar_f <- rep(0,num.stock)
sigma <- rep(0,num.stock); Ratio <- rep(0,num.stock); col1 <- rep(0,num.stock)
col2 <- rep(0,num.stock); col3 <- rep(0,num.stock)
Rbar <- mean.ret
Rbar_f <- Rbar-rf
for (i in 1:num.stock){
sigma[i] <- sqrt(vcov.ret[i,i])
}

Ratio <- Rbar_f/sigma.ret
xx <- (cbind(stock, Rbar, Rbar_f, sigma, Ratio))
aaa <- xx[order(-Ratio),]
for(i in (1:num.stock)){
col1[i]<-rho/(1-rho+i*rho)
col2[i]<-sum(aaa[,5][1:i])
}

for(i in (1:num.stock)){
col3[i]<-col1[i]*col2[i]
}

67



xxx <- cbind(aaa, col1, col2, col3)
table <- xxx[1:which(xxx[,8]==max(xxx[,8])),]
z_cons_no <- (1/((1-rho)*table[,4]))*(table[,5]-table[,8][nrow(table)])
x_cons_no <- abs(z_cons_no)/sum(abs(z_cons_no))
R_cons_no <- t(table[,2]) %*% x_cons_no
tempcorr <- matrix(rho,nc=nrow(table),nr=nrow(table))
for(i in (1:nrow(table))){
tempcorr[i,i] <- 1
}

sd_cons_no <- sqrt((t(x_cons_no*table[,4]))
%*% tempcorr %*% (x_cons_no*table[,4]))

table <- cbind(table[,1:5],z_cons_no,x_cons_no)
return(list(table=table,stock=names(data[(table[,1])]),
weights=x_cons_no,return=R_cons_no,risk=sd_cons_no))

}

6.2.7 VaR: Parametric (Equally Weighted)

For our value-at-risk and the corresponding back testing functions, there are

more input criteria. Similar as before, we need a merged data frame or matrix of

returns (daily in the example of this paper) to carry out the computations. For

example, we type the following to get 1-day parametric VaR’s (equally weighted

moving average):

MyVarParEq(port=port,wei=e.weight,comp.days=1,size.days=251,conf=0.95)

where port is the data frame or matrix of daily returns of all the stocks in our

portfolio, e.weight is the vector of stock allocation of our portfolio, comp.days

is the number of next day VaR we want to compute (if we put 1, it give us the

VaR of the day after our last day in our data set), size.days is the window

length, meaning the number of days we use to compute the variance-covariance

information for each VaR, and conf is the confidence level. Source codes as

follows:

MyVarParEq <- function(port=port,wei=e.weight,comp.days=1,size.days=251,
conf=0.95){
if(nrow(port)-size.days<comp.days)
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stop("Not enough data. Try lowering comp.days or size.days")
val <- port %*% wei
pvar <- c(rep(0,comp.days))
for(i in 1:comp.days){
a <- 1+i; b <- size.days+i
data <- port[a:b,]
var_cov <- cov(data)
var <- t(wei) %*% var_cov %*% wei
sd <- var^.5
pvar[i] <- qnorm(conf,0,1) * sd * -1
}

pfail <- sum((val[0:comp.days]<0)&(val[0:comp.days]<pvar))/length(pvar)
return(list(VaR=pvar,Fail=pfail))

}

6.2.8 VaR: Parametric (Exponentially Weighted)

Parametric VaR with exponentially weighted moving average works very similarly

to its equally weighted counterpart. Only this time, we need to also specify the

decay factor lambda, lamb.

MyVarParEx(port=port,wei=e.weight,comp.days=1,size.days=251,conf=0.95,lamb=0.97)

Source code as follows:

MyVarParEx <- function(port=port,wei=e.weight,comp.days=1,size.days=251,
conf=0.95,lamb=0.97){
if(nrow(port)-size.days<comp.days)
stop("Not enough data. Try lowering comp.days or size.days")

val <- port %*% wei
pvar <- c(rep(0,comp.days))
for(i in 1:comp.days){
a <- 1+i; b <- size.days+i
data <- port[a:b,]
j <- 0:(nrow(data)-1)
ewma.wt <- lamb^j; ewma.wt <- ewma.wt/sum(ewma.wt)
cov.ewma <- cov.wt(data, wt=ewma.wt)
var_cov <- cov.ewma$cov
var <- t(wei) %*% var_cov %*% wei
sd <- var^.5
pvar[i] <- qnorm(conf,0,1) * sd * -1
}

pfail <- sum((val[0:comp.days]<0)&(val[0:comp.days]<pvar))/length(pvar)
return(list(VaR=pvar,Fail=pfail))

}
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6.2.9 VaR: Historical (Equally Weighted)

For historical VaR, we need to specify our portfolio return data frame as well as

the number of days we want to calculate and use for the final percentile (which

will become our VaR). For example, in our exercise we type the following:

MyVarHistEq(port=port,wei=e.weight,comp.days=1,size.days=251,conf=0.95)

Source codes as follows:

MyVarHistEq <- function(port=port, wei=e.weight, comp.days=1, size.days=251,
conf=0.95){
if(nrow(port)-size.days<comp.days)
stop("Not enough data. Try lowering comp.days or size.days")

val <- port %*% wei
hvar <- c(rep(0,comp.days))
for(i in 1:comp.days){
a <- 1+i; b <- size.days+i
data <- val[a:b,]
hvar[i] <- quantile(data,1-conf)
}

hfail <- sum((val[0:comp.days]<0)&(val[0:comp.days]<hvar))/length(hvar)
return(list(VaR=hvar, Fail=hfail))

}

6.2.10 VaR: Historical (Bootstrapping)

Historical Bootstrapping is similar to the previous method, but this time we

bootstrap from the historical data instead of taking the actual historical sequence

as is. Therefore, we are using all available history, from first day in data frame

until the day before the calculated VaR to bootstrap a sample of data of length

“size.days”. From this sample, the function draws the percentile based on the

specified confidence level. For example, in our exercise we type the following:

MyVarHistBS(port=port,wei=e.weight,comp.days=1,size.days=251,conf=0.95)

Source codes as follows:
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MyVarHistBS <- function(port=port, wei=e.weight, comp.days=1, size.days=251,
conf=0.95){
if(nrow(port)-size.days<comp.days)
stop("Not enough data. Lower comp.days.")

val <- port %*% wei
hbvar <- c(rep(0,comp.days))
for (i in 1:comp.days){
a <- i+1
data <- port[a:nrow(port),]
portboot <- data[sample(nrow(data),size.days,replace=TRUE),]
valboot <- portboot %*% wei
hbvar[i] <- quantile(valboot, 1-conf)
}

hbfail <- sum((val[0:comp.days]<0)&(val[0:comp.days]<hbvar))/length(hbvar)
return(list(VaR=hbvar, Fail=hbfail))

}

6.2.11 VaR: Monte Carlo Simulation

Finally, for Monte Carlo Simulated VaR we specify the portfolio, weight, compute

days, the size of the window of the simulated sample, and the number of artificial

returns to generate (iterations) when simulating based on the mean and variance

of the window length of portfolio data. For example, we type the following:

MyVarMC(port=port,wei=e.weight,comp.days=1,size.days=251,conf=0.95,iter=1000)

Source code as follows:

MyVarMC <- function(port=port, wei=e.weight, comp.days=1, size.days=251,
conf=0.95, iter=1000){
val <- port %*% wei
mcvar <- c(rep(0,comp.days))
for(i in 1:comp.days){
a <- 1+i; b <- size.days+i
data <- port[a:b,]
mu <- apply(data, 2, mean)
var_cov <- cov(data)
mc_ret <- mvrnorm(iter, mu, var_cov)
mc_port_ret <- mc_ret %*% wei
mcvar[i] <- quantile(mc_port_ret, 1-conf)
}

mcfail <- sum((val[0:comp.days]<0)&(val[0:comp.days]<mcvar))/length(mcvar)
return(list(VaR=mcvar,Fail=mcfail))

}
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CHAPTER 7

Concluding Remarks

This paper serves as an introduction and demonstration of statistical finance the-

ories and their applications with a simple user-friendly stock investment portfolio.

As emphasized previously, these tools are a good start to learn about investment

management but in no way are they all-encompassing. Hence, the ideas and

applications should be considered “work in progress” and it is of an investor’s

and statistician’s best interest to keep updating oneself with knowledge and tech-

niques in order to fine-tune these tools. The reason financial crises happen from

time to time is a sound proof of the ever-changing financial environment that

calls for some ever-improving theories and applications.

This paper opens doors to many future possibilities. The R-Application pre-

sented in Chapter 6 can be customized and modified into an R-Package for edu-

cational purposes in the statistical finance area, or as an introductory investment

tool for beginning investors and students. Further, to answer to the criticisms

encountered by Modern Portfolio Theory and Value-at-Risk methods discussed

in Section 2.3, 3.4, 4.4 and 5.4, investment management topics such as Semi-

Variance, Geometric Mean Returns, Safety First Portfolios, and Extreme Value

Theory are a few among many to be explored, studied, and evaluated. Hence,

the portfolio selection and risk management framework laid out in this paper is

only the beginning to a very broad array of future explorations, and it is our job

as scholars to continue to contribute and improve existing theories and methods.
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