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part one

MODELS OF ACTUARIAL FINANCE





one

Introduction and Motivation

1.1 The Drunk Gambler Problem

A few years ago I was asked to give a keynote lecture on the subject of re-
tirement income planning to a group of financial advisors at an investment
conference that was taking place in Las Vegas. I arrived at the conference
venue early—as most neurotic speakers do—and while I was waiting to go
on stage, I decided to wander around the nearby casino, taking in the sights,
sounds, and smells of flashy cocktail waitresses, clanging coins, and musty
cigars. Although I’m not a fan of gambling myself, I always enjoy watching
others get excited about the mirage of a hot streak before eventually losing.

On this particular random walk around the roulette tables, I came across a
rather eccentric-looking player smoking a particularly noxious cigar, though
seemingly aloof and detached from the action around him. As I approached
that particular table, I noticed two odd things about Jorge; a nickname I
gave him. First, Jorge appeared to be using a very primitive gambling strat-
egy. He was sitting in front of a large stack of red $5 chips, and on each
spin of the wheel he would place one—and only one—of those $5 chips as
a bet on the black portion of the table. For those of you who aren’t famil-
iar with roulette, this particular bet would double his money if the spinning
ball landed on any one of the 18 black numbers, but it would cost him his
bet if the ball came to a halt on any of the 18 red numbers or the occasional
2 green numbers. This is the simplest of all possible bets in the often com-
plicated world of casino gambling: black, you win; red or green, you lose.

Yet, watching him closely over a number of spins, I noticed that—re-
gardless of whether the ball landed on a black number (yielding a $10 pay-
off for his $5 gamble) or landed on red or green numbers (causing a loss of
his original $5 chip)—he would continue mechanically to bet a $5 chip on
black for each consecutive round. This seemed rather boring and pointless
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4 Introduction and Motivation

to me. Most gamblers double up, get cautious, react to past outcomes, and
take advantage of what they suppose is a hot streak. Rarely do they do the
exact same thing over and over again.

Even more peculiar to me was what Jorge was doing in between roulette
rounds, while the croupier was settling the score with other players and get-
ting ready for the next spin. In one swift motion, Jorge would lift a rather
large drinking glass filled with some unknown (presumably alcoholic) bev-
erage, take a deep gulp, and then put the glass back down next to him. But,
immediately upon his glass touching the green velvet surface, a waitress
would top up the drinking glass and Jorge would mechanically hand her
one of the $5 chips from his stack of capital. This process continued after
each and every spin of the wheel. Try to imagine this for a moment. The
waitress waits around for the wheel to stop spinning so that she can pour
Jorge another round of gin—or perhaps it was scotch—so that she can get
yet another $5 tip from this rather odd-looking character.

As I was standing there mesmerized by Jorge’s hypnotic actions and re-
peated drinking, I couldn’t help but wonder whether Jorge would pass out
drunk and fall off his stool before he could cash in what was left of his chips.

There was no doubt in my mind that, if he continued with the same strat-
egy, his stash of casino chips would continue to dwindle and eventually
disappear. Note that after each round of spinning and drinking, his invest-
ment capital would either remain unchanged or would decline by $10. If
the ball landed on black and he then paid $5 for the drink, he would be back
where he started. If the ball landed on red and he then paid $5, the total
loss for that round was $10. Thus, his pile of chips would never grow. The
pattern went something like this: 26 chips, 26 chips, 26 chips, 24 chips, 22
chips, 22 chips, 20 chips, and so forth.

In fact, I was able to develop a simple model for calculating the odds that
Jorge would run out of chips before he ran out of sobriety. From where I was
standing, it appeared that he had about 20 more chips or $100 worth of cash.
There was a 47.4% chance (18/38) he would get lucky with black on any
given spin, and I loosely assumed a 10% chance he would pass out with any
swig from the glass. Working out the math—and I promise to do this in de-
tail in Section1.6—there is a15% chance he’d go bankrupt while he was still
sober. Stated from the other side, I estimated an 85% chance he would pass
out and fall off his chair before his stack of chips disappeared. That would
be interesting to observe. Obviously, the model is crude and the numbers are
rounded—and perhaps Jorge could hold his liquor better than I assumed—
but I can assure you the waitress wanted Jorge’s blacks to last forever.

I was planning to stick around to see whether my statistical predictions
would come true, but time was running short and I had to return to my



1.2 The Demographic Picture 5

speaking engagement. As I was rushing back, weaving through the many
tables, it occurred to me that I had just experienced a quaint metaphor on
financial planning and risk management as retirees approach the end of the
human life cycle.

With just a bit of imagination, think of what happens to most people as
they reach retirement after many years of work—and hopefully with a bit
of savings—but with little prospect for future employment income. They
start retirement with a stack of chips that are invested (wagered or allocated)
among various asset classes such as stocks, bonds, and cash. Each week,
month, or year the retirees must withdraw or redeem some of those chips in
order to finance their retirement income. And, whether the roulette wheel
has landed on black (a bull market) or on green or red (flat or bear market),
a retiree must consume. If the retiree lives for a very long time, there is a
much greater chance that the chips will run out. If, on the other hand, the
retiree spends only five or ten years at the retirement table, the odds are that
the money will last. The retiree can obviously control the number of chips
to be removed from the table (i.e., the magnitude of retirement income) as
well as the riskiness of the bets (i.e., the amount allocated to the various
investments). Either way, it should be relatively easy to compute the prob-
ability that a given investment strategy and a given consumption strategy
will lead to retirement ruin.

So, in some odd way, we are all destined to be Jorge.

1.2 The Demographic Picture

In mid-2005 there are approximately 36 million Americans above the age
of 65, which is approximately 13% of the population. By the year 2030 this
number is expected to double to 70 million. Indeed, the fastest-growing
segment of the elderly population is the group of those 85+ years old. The
aging of the population is a global phenomenon, and many from the over-65
age group will continue working on a part-time basis well into their late six-
ties and seventies. A fortunate few will have earned a defined benefit (DB)
pension that provides income for the rest of their natural life. Most others
will have likely participated in a defined contribution (DC) plan, which
places the burden of creating a pension (annuity) on the retiree. All of these
retirees will have to generate a retirement income from their savings and
their pension wealth. How they should do this at a sustainable rate—and
what they should do with the remaining corpus of funds—is the impetus for
this book.

Table1.1provides some hard evidence, as well as some projections, on the
potential size and magnitude of the retirement income “problem.” Using
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Table 1.1. Old-age dependency ratioa

around the world

Year b

Country 2000 2010 2030

Australia 29.1% 34.7% 51.4%
Austria 36.6% 42.9% 77.3%
Belgium 40.5% 44.7% 68.5%
Canada 29.1% 35.2% 58.8%
Denmark 35.3% 45.5% 65.0%
Finland 35.9% 47.0% 70.6%
France 37.9% 43.0% 63.0%
Germany 41.8% 46.0% 76.5%
Greece 42.5% 46.8% 69.2%
Ireland 28.0% 30.7% 42.5%
Italy 42.7% 49.7% 78.5%
Japan 41.4% 58.4% 79.0%
Mexico 13.9% 16.2% 28.7%
New Zealand 28.6% 33.9% 54.9%
Poland 29.8% 31.4% 50.8%
South Korea 18.3% 23.9% 53.0%
Spain 38.2% 42.2% 69.7%
Sweden 41.7% 51.0% 72.5%
Switzerland 37.6% 48.9% 84.4%
Turkey 16.4% 17.8% 28.6%
United Kingdom 38.1% 43.3% 66.1%
United States 29.3% 33.2% 52.0%

a Size of population aged at least 60 divided by size of
population aged 20–59.

b Figures for 2010 and 2030 are estimated.
Source: United Nations.

data compiled by the United Nations across different countries, the table
shows the number of people above age 60 as a fraction of the (working)
population between the ages of 20 and 59. The larger the ratio, the greater
the proportion of retirees in a given country. This ratio is often called the
old-age dependency ratio, since traditionally the older people within a soci-
ety are dependent on the younger (working) ones for financial and economic
support. Stated differently, a larger dependency ratio creates a larger bur-
den for the younger generation.

In the year 2000, the old-age dependency ratio hovered around 30% for
the United States and Canada, but by 2030 this number will jump to 52%
in the United States and to 59% in Canada, according to UN estimates. At
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Table 1.2. Expected number of years spent in retirement
around the world

Males Females

Country 2000 2010 2030 2000 2010 2030

Australia 19.0 19.7 21.0 27.1 27.8 29.1
Austria 21.1 22.1 23.8 27.3 28.6 30.2
Belgium 22.0 23.1 24.8 29.8 30.9 32.5
Canada 18.5 19.2 20.5 25.5 26.2 27.5
Denmark 17.3 18.0 19.3 22.9 24.1 25.7
Finland 20.3 20.9 22.3 25.2 26.0 27.2
France 20.5 21.4 23.2 26.7 27.5 29.0
Germany 19.4 20.2 22.1 25.3 26.6 28.2
Greece 18.4 18.9 20.2 23.7 24.4 25.7
Ireland 16.9 17.4 18.7 22.7 23.6 25.2
Italy 19.5 20.1 21.4 27.0 27.8 29.1
Japan 16.3 17.3 18.9 23.5 24.7 26.8
New Zealand 18.3 18.8 20.2 24.8 25.5 26.9
Spain 18.8 19.3 20.7 25.7 26.4 27.7
Sweden 18.7 19.4 20.6 23.2 23.9 25.4
Switzerland 16.6 17.2 18.4 24.3 24.9 26.2
Turkey 14.8 15.4 16.7 15.3 15.9 17.0
United Kingdom 18.0 18.9 20.5 23.8 25.0 26.8
United States 16.8 17.6 19.4 22.0 23.2 24.9

Notes: The actual retirement age varies by country. Figures for 2010 and 2030
are estimated.
Sources: Watson Wyatt and World Economic Forum.

the other extreme are countries like Mexico and Turkey, whose dependency
ratios are currently in the low to mid-teens and should grow only to 28% by
2030. Despite the variations, these numbers are increasing in all countries.

According to a recent report prepared by the consulting firm of Watson
Wyatt for the World Economic Forum, the main causes for the projected
increases in the dependency ratio are a lower fertility ratio and the unprece-
dented increases in the length of human life. People live longer—beyond
ages 60, 70, and 80, as demonstrated in Table 1.2—but they aren’t born any
earlier. So, the ratio of older people to younger people within any country
continues to increase.

Human longevity is a fascinating topic in its own right. According to
Dr. James Vaupel, Director of the Max Planck Institute for Demographic
Research, the average amount of time that females live in the healthiest
countries has been on the rise during the last 160 years at a steady pace of
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three months per year. For example, in 2005 Japanese women are estimated
to have a life expectancy of approximately 85 years. Currently, Japanese
women are the record holders when it comes to human longevity, and the
projection is that—four years from now, in 2009—Japanese women will
have a life expectancy of 86 years. Now let your imagination do the math-
ematics. What will the numbers look like in twenty or thirty years?

The oncoming wave of very long-lived retirees—who will possibly be
spending more time in retirement than they did working—will require ex-
tensive and unique financial assistance in managing their financial affairs.
Moreover, financial planners and investment advisors, who are on the front
line against this oncoming wave, are hardly ignorant of this trend. Some
have begun to retool themselves to better understand and meet the needs
of this unique group of retirees. They are pressuring insurance companies,
investment banks, and money managers to design, sell, and promote retire-
ment income (a.k.a. pension) products that go beyond traditional assets.

For thirty years the financial services industry has focused on the accu-
mulation phase for millions of active workers. Mutual fund and investment
companies were falling all over themselves to provide guidance on the right
mix of mutual funds, the right savings rate, and the most prudent level of
risk to build the largest nest egg with the least amount of risk. The terms
“asset allocation” and “savings rate” have become ubiquitous. Most in-
vestors understand the need for diversified investment portfolios.

What consumers and their advisors have less of an appreciation for are
the interactions between longevity, spending, income, and the right invest-
ment portfolio. In part, the fault for this intellectual gap lies at the doorsteps
of those instructors who teach portfolio theory within a static, one-period
framework in which everybody lives to the end of the period. In fact, I
have been teaching undergraduate, graduate, and doctoral students in busi-
ness finance for over fifteen years and am continuously dismayed by their
lack of knowledge about (and interest in) actuarial and insurance matters.
Of course, learning about pensions or term life and disability insurance is
not the most enjoyable activity when the competing course in the other lec-
ture hall is teaching currency swap contracts, exotic derivatives, and hedge
funds. Death and disability can’t compete. For the most part, the students
lack a framework that links the various ideas in a coherent manner. I hope
this book helps make some of these actuarial issues more palatable and
interesting to financial “quants.”

Against this backdrop of financial demographics, product innovation, and
human longevity, this book will attempt to merge the analytic language of
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modern financial theory with actuarial and insurance ideas motivated by
what we may call the retirement income dilemma.

1.3 The Ideal Audience

The ideal audience for this book is . . . me. Yes, me. I know it might sound
a bit odd, but writing this book has most basically given me a wonderful
opportunity to collect and organize my thoughts on the topic of retirement
income planning. I suspect that most authors will confirm a similar feeling
and objective. Researching, organizing, and writing this book have helped
me establish the financial and mathematical background needed to under-
stand the topic with some rigor and depth. I am using this book also as a
textbook for a graduate course I teach at the Schulich School of Business at
York University (Toronto) on the topic of financial models for pension and
insurance.

On a broader and more serious level, this book has two intended audi-
ences. The first group consists of the growing legion of financial planners
and investment advisors who possess a quantitative background or at least a
numerical inclination. This group is in the daily business of giving practical
advice to individual investors. They need a relevant and useful framework
for explaining to their clients the risks they incur by either spending too
much money in retirement, not having a diversified investment portfolio,
or not hedging against the risks of underestimating their own longevity.
And so I hope that the numerous stories, examples, tables, and case studies
scattered throughout this book can provide an intuitive foundation for the
underlying mathematical ideas. Yes, I know that some parts of the book,
especially those involving calculus, may not be readily accessible to all.
But as Dr. Roger Penrose—a world-renowned professor of mathematical
physics at Oxford University—said in the introduction to his recent book
The Road to Reality: A Complete Guide to the Laws of the Universe: “Do
not be afraid to skip equations or parts of chapters when they begin to get
a mite too turgid! I do this often myself . . . .”

The second audience for this book consists of my traditional colleagues,
peers, and fellow researchers in the area of financial economics, pensions,
and insurance. There is a growing number of scholars around the world
who are interested in furthering knowledge and practice by focusing on
the normative aspects of finance for individuals. Collectively, they are cre-
ating scientific foundations for personal wealth management, quite simi-
larly to the fine tradition of personal health management and the role of
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personal physicians. Indeed, work by such luminaries as Harry Markowitz
(1991) and Robert Merton (2003) has emphasized the need for different
tools when addressing personal financial problems as opposed to corporate
financial problems.

1.4 Learning Objectives

This book is an attempt to provide a theory of applied financial planning
over the human life cycle, with particular emphasis on retirement planning
in a stochastic environment. My objective is not necessarily to analyze what
people are doing or the positive aspects of whether they are rational, utility
maximizing, and efficient in their decisions, but rather to provide the under-
lying analytic tools to help them and their advisors make better financial
decisions. If I could sum up—in a half-joking manner—the educational
objectives and underlying theme that run through this book, it would be to
guide Jorge on his investment /gambling strategy so that he could continue
tipping the waitress after every spin of the wheel and, it is hoped, pass out
before his money is depleted. On a more serious note, this book is about
developing the analytic framework and background models to help retir-
ing individuals—and those who are planning for retirement—manage their
financial affairs so that they can maintain a comfortable and dignified life-
style during their golden years.

The main text consists of twelve chapters (an appendix of tables and a
bibliography are also included). An ideal background for this book would
be a basic understanding of the rules of differential and integral calculus,
some basic probability theory, and familiarity with everyday financial in-
struments and markets.

Here is a brief chapter-by-chapter outline of what will be covered.

Part I Models of Actuarial Finance

1. Introduction and Motivation. This chapter.
2. Modeling the Human Life Cycle. I review the basic time value of

money (TVM) mathematics in discrete time as it applies to the hu-
man life cycle. I present some deterministic models for computing the
amount of savings needed during one’s working years to fund a given
standard of living during the retirement years. I briefly discuss how
this relates to pension plans and the concept of retirement income re-
placement rates. The modeling is done without any need for calculus
and requires only a basic understanding of algebra.
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3. Models of Human Mortality. I introduce actuarial mortality tables and
hazard rates using the tools of continuous-time calculus and probabil-
ity. I present the analytic mortality workhorse of the book, which is
the Gompertz–Makeham (GoMa) and exponential model for lifetime
uncertainty. This chapter should help develop a thorough understand-
ing of the remaining lifetime random variable, which is critical to all
pension and insurance calculations.

4. Valuation Models of Deterministic Interest. I review the basics of
continuous-time versus discrete interest rates as well as the term struc-
ture of interest rates. I provide valuation formulas for coupon bonds
under a deterministic interest rate curve in continuous time. I intro-
duce the concept of duration and convexity in continuous time and
show how this can be used to approximate changes in bond prices.

5. Models of Risky Financial Investments. I develop models for under-
standing the long-term trade-off between risk and reward in the stock
market. The analytics of portfolio diversification and the probability
of losing money are examined. I start with some historical data and
evidence on asset class investment returns. I then motivate portfolio
growth rates and introduce the Brownian motion model underlying the
lognormal distribution of investment returns. The chapter ends with a
discussion of the difference between space and time diversification.

6. Models of Pension Life Annuities. I start by illustrating current market
quotes of pension annuities and then move on to the valuation of life
and pension annuities that provide income for the remainder of one’s
life. This is done by merging the concepts of interest rates, mortality
rates, and pensions. This chapter can also be understood within the
context of the valuation of bonds with a random maturity. The mod-
els are implemented for Gompertz–Makeham mortality; also, variable
immediate annuities and joint life annuities are valued.

7. Models of Life Insurance. Features of real-world insurance prices and
contracts are introduced. I then provide valuation formulas for basic
term life insurance. I discuss how these formulas relate to pension
annuities as well as the arbitrage relationship between them. Also
discussed are the taxation treatment of insurance and its various per-
mutations such as whole life, variable life, universal life, and so on.

8. Models of DB vs. DC Pensions. This chapter reviews the basic forms
of public and private pensions. I develop some models for computing
the value of a defined benefit (DB) pension promise and then compare
this to a defined contribution (DC) pension. I discuss basic pension
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funding and accounting issues, such as the accumulated benefit obli-
gation (ABO) and projected benefit obligation (PBO) in continuous
time. This chapter links ideas of mortality, annuities, and life-cycle
savings.

Part II Wealth Management: Applications and Implications

9. Sustainable Spending at Retirement. What is the most a retiree can
safely spend during retirement without running the risk of ruin? How
much do you need at retirement in a random and uncertain world? In-
troducing the stochastic present value (SPV), a simple little formula.

10. Longevity Insurance Revisited. An in-depth examination of the age-
related benefits from annuitization. I quantify mortality credits and
the Implied LongevityYield (ILY). Recent and future innovations in
longevity insurance are discussed.

Part III Advanced Topics

11. Options within Variable Annuities. An analysis of exotic put options
that are embedded within variable annuity policies (insurance sav-
ings accounts). I show how to value and price options that have a
random maturity date and are paid by installments.

12. The Utility of Annuitization. The utility function of wealth, and the
differences between value, price, and cost. I discuss the microeco-
nomic foundations of the demand for insurance and annuities. This
chapter gives another perspective on the best age at which to annu-
itize, using the tools and framework of “real option” pricing. Valua-
tion of the option to wait is also discussed.
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From an academic point of view, I can trace the intellectual lineage of
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with these co-authors. In some sense I should be described as an editor who
is compiling joint research ideas, not as the author of an original work. And,
although I have learned a tremendous amount from working with each of
these thirteen co-authors, I must single out Tom Salisbury and Chris Robin-
son for their mentorship and guidance ever since my days as a Ph.D. student.

Also, I owe a special thank-you to my co-editors at the Journal of Pen-
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bridge University Press. Jeff Brown, Steve Haberman, and Mike Orszag
have taught me a lot about pension economics and retirement planning dur-
ing many years of joint editorial work. Their own research on the topic of
retirement income has influenced my thinking and writing as well.

In addition, I would like to thank reviewers of the manuscript: Narat
Charupat, Dale Domian, Jim Dunlea, Gady Jacoby, Marie-Eve Lachance,
Joanne Lui, Mike Orszag, Scott Robinson, Mark Schell, Kevin Zhu, and Jun
Zhuo for their careful reading, quick turnaround, and helpful comments.
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planners, wealth managers, and investment advisors who have attended my
public lectures and keynote presentations on the analytics of retirement in-
come planning. They are the ones who have encouraged me to continue
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mathematical perspective. There is nothing more gratifying than hearing
their practical questions, translating them into the language of financial
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1.6 Appendix: Drunk Gambler Solution

For those of you who are wondering how to “solve” the drunk gambler prob-
lem, here is the answer. The gambler starts the evening in a casino with
initial capital denoted by w0, in dollars. On each spin of the roulette wheel
the gambler bets exactly $1 on Black, which has a probability denoted by
p of paying $2 at the end of the spin; there is a probability of 1− p of pay-
ing zero if the ball lands on either Red or Green. Then, after every spin, the
gambler pays $1 for a drink, regardless of whether he won or lost. The same
idea can be scaled up to $5, $10, or even $100 individual bets, as long as the
amount wagered on each spin is precisely the amount paid for the drink.

Either way, at the end of each round of spinning and drinking, the gam-
bler is left with capital (i.e. chips) in the amount of wi = wi−1 + Xi − 1,
where Xi is a random variable with Pr[Xi = +1] = p and Pr[Xi = −1] =
1 − p. Or, put another way: wi = wi−1 with probability p when the ball
lands on Black, and wi = wi−1 − 2 with probability 1 − p when the ball
lands on Red or Green.

Also, each time the gambler buys (and immediately consumes) a drink
for $1, there is a constant probability q that he “passes out” and thus effec-
tively ends the game (as well as the evening). Likewise, the probability that
he remains “sober” and survives to the next round is 1 − q. My critical as-
sumption in all of this—which simplifies the mathematics greatly—is that
sobriety is independent across drinks and so the odds of being sober after
i rounds is (1 − q)i; this is what happens under independent coin tosses or
with the roulette wheel itself.

Note that this person will eventually be “ruined” and run out of gambling
chips—even if he is still sober—provided that p < 0.5, which is the case
for most roulette wheels that are tilted in the house’s favor. Indeed, even on
a relatively honest table with 18 Blacks, 18 Reds, and 2 Greens, the odds of
getting Black is p = 18/38 = 47.3%.

The underlying random variable Xi, which here “moves the chips” from
one round to the next, is called a Bernoulli random variable. And the sum
of identical and independent Bernoulli random variables is (defined as) bi-
nomially distributed. The probability of being solvent after n rounds, where
n > w0/2, is the probability of getting at least n−w0/2 Blacks in a collec-
tion on n Bernoulli trials. For example, if the gambler starts with w0 = 20
dollars, then the probability of being solvent after n = 30 rounds (ignoring
whether the gambler is still sober or not) is equivalent to the probability of
getting n − w0/2 = 20 Blacks in a collection of n = 30 Bernoulli trials.
Note that if n < w0/2 then it is mathematically impossible to become
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ruined, since at worst the gambler has had a streak of n < w0/2 Reds and
paid only w0/2 for drinks. This still adds up to less than w0.

I now denote the probability of being ruined at precisely time i by Ri.

It is the probability of having wi−1 = 1 or wi−1 = 2 at the end of round
i − 1, multiplied by 1 − p. Note that if w0 is odd then w will equal 1 just
before ruin. But if w0 is even, then w will be equal to 2 just before ruin.
The probability I am trying to compute is the probability of being sober ex-
actly when the money runs out. This Ruined while Sober probability can
therefore be written as:

RwS :=
∞∑
i=1

Ri(1 − q)i. (1.1)

To start with, let k be the largest integer strictly less than w0/2—that’s
the largest number of Reds the gambler can have without being ruined. For
example, if w0 = 20 then k = 9, since if he gets more than 9 Reds the
chips are gone. The probability of becoming ruined precisely at time i can
be computed explicitly via

Ri = (1 − p)

(
i − 1

k

)
pi−1−k(1 − p)k. (1.2)

This formula is based on elementary combinatorial arguments. The number
of ways to get k Reds from a total of i − 1 spins is equal to i − 1 “choose”
k. This is then multiplied by the probability of getting k Reds and i −1− k

Blacks, which is pi−1−k(1 − p)k. The product of both these terms is then
multiplied by 1 − p, which is the probability of getting ruined on the ith
round. Putting all the bits and pieces together by adding up the infinite
number of terms in equation (1.2), the formula for the Ruined while Sober
probability can be expressed as

RwS :=
(

1 − q

1 − p + pq

)k+1

, (1.3)

which is equal to 1 when q = 0 and is less than 1 as long as q > 0.

For example, when p = 18/38 and q = 10% and k = 9, then the relevant
probability is 14.7%, which is the number I mentioned in the body of the
chapter. On the other hand, if the probability of passing out is a lower q =
5% in any given round, then the Ruined while Sober probability is a higher
38.5%. Also, if the gambler starts with w0 = 25 dollars, then the largest
number of Reds he can get and not be ruined is k = 12, so that RwS =
8.2% under a q = 10%. This is because the gambler is starting with a larger
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capital base and so it is more likely he will get drunk prior to the inevitable
point at which all his chips vanish. Indeed, under the same w0 = 25 and
k = 12, if the chances of passing out in any given round are reduced to
q = 5% then the Ruined while Sober probability is increased to RwS =
28.9%. Finally, if q = 0 and the gambler never gets drunk, then (1.3) col-
lapses to RwS = 100% regardless of either the value of p (getting Black)
or the value of w0, since the gambler is destined for ruin.
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Modeling the Human Life Cycle

2.1 The Next Sixty Years of Your Life

Suspend your disbelief for a moment and bear with me as I imagine the next
sixty years of your financial life. Assume that you enter the labor force or
start working at the age of 35. Your job is expected to pay a fixed and pre-
dictable $50,000 per year for the next thirty years, after which you retire
at age 65. This job provides no pension or retirement benefits. Rather, it
is your personal responsibility to make sure you save enough during your
thirty working years so that you can maintain a dignified standard of liv-
ing or consumption during your retirement years. For the moment, let us
ignore inflation and income taxes—two important issues I shall address in
detail later—and finally, imagine you die at the ripe old age of 95.

What fraction of your salary must you save during your thirty years of
work so that, when you retire with your accumulated nest egg, you can gen-
erate an equivalent income stream that will last for the remaining thirty
years of life?

Note that if your saving rate is too high—say $20,000 per year, leaving
you with only $50,000 − $20,000 = $30,000 annually to live off during
your working years—then you might end up with a much better lifestyle
when you are retired as compared to when you are working. That wouldn’t
make sense, would it? On the other hand, if you don’t save enough while
you are working then you might end up with a much lower standard of living
when you retire. Would that be desirable? Obviously some people prefer a
higher standard of living when they are young (especially if you ask them
while they are still young). Others say that retirement is when they plan to
“enjoy their money,” which is why they might want to save (much) more
during their working years. Yet another group will claim they just want a
smooth and predictable standard of living during their entire life, and some

17
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might argue that the point of saving money is to create a legacy and bequest
for remaining generations. In any case, the point here is definitely not to tell
you what you should do or should want. Rather, the point of this chapter
and the models developed in the next few pages is to examine the savings
needed to create a smooth profile of consumption over your entire life, as-
suming that your objective was to spend your last dollar on your last living
day. This is often called the “die broke” strategy.

This rather artificial problem is actually at the heart of financial planning,
and most textbooks on personal finance begin the discussion at precisely this
point. For starters, I will develop a series of formulas to answer this ques-
tion, assuming that interest rates or periodic investment returns are fixed
and known in advance. This simple case will set the stage for the more ad-
vanced scenario involving random investment returns, unknown mortality
(i.e., how long you will live in retirement), uncertain inflation, changing
wages, and unavoidable income taxes. For now, let me start by introducing
the following notation and symbols.

2.2 Future Value of Savings

Let i = 1, . . . , N denote the number of years you will be working, where
N is your final year of work (a.k.a. the “retirement year”). Let W denote
your constant wage or salary while you are working, let S denote your con-
stant annual savings—which is assumed to take place in one lump sum at
the end of each working year—and let C denote your desired consumption
or spending once you are retired (this will likewise be withdrawn or con-
sumed at the end of each retirement year). Note that, while you are saving
S dollars during your working years, these funds will accumulate and grow
at an effective annual investment rate of R. Therefore, at retirement you
will have accumulated the future value of savings:

FV(S, R, N) =
N∑

i=1

S(1 + R)(N−i). (2.1)

The intuition for this equation should be quite simple. The future value
of the S dollars you save at the end of the first (i = 1) year of work will
grow for a total of N − 1 years until retirement. This portion—or piece of
savings—grows to S(1+R)N−1. Then, the future value of the S dollars you
save at the end of the second (i = 2) year of work will grow for N − 2
years to a total value of S(1 + R)N−2, and so forth. Remember that sav-
ings are assumed to take place at the end of the year, and your last-portion
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S is saved one instant prior to retirement and thus will not accumulate any
interest. In other words, S(1 + R)(N−i) is exactly S when i = N.

Now, using no more than the basic algebraic formula for the sum of a
finite geometric series,

1 + x + x 2 + x3 + x4 + · · · + xn = xn+1 − 1

x − 1
,

the right-hand side of (2.1) can be expressed in closed form (provided
R > 0) and without a summation sign by

FV(S, R, N) = S
(1 + R)N − 1

R
. (2.2)

For example, if you save $1 at the end of each year for 30 years at a 5%
rate of interest, then the future value of your savings at retirement will be
FV(1, 0.05, 30) = $66.44. This expression scales linearly, so that the fu-
ture value of $1,000 saved for 30 years at the same 5% interest is $66,439;
if you save $10,000 per year, you will have $664,390 at retirement, and so
forth.

Of course, if I double the investment rate to 10% per year, then the future
value of savings increases by more than a factor of 2. The relationship is
not linear in the investment rate R. The precise value is FV(1, 0.10, 30) =
$164.50, which is roughly 150% more wealth at retirement when you earn
R = 10% versus R = 5%.

Observe that carelessly substituting R = 0% into (2.2) yields an error
because of the zero in the denominator. This does not mean that there is
no answer when R = 0. Rather, the correct way to approach a zero invest-
ment rate is by going back to equation (2.1) itself, or by taking the “calculus
limit” of equation (2.2) as R → 0. Either of these approaches leads to the
obvious FV(S, 0, N) = SN.

Note also that there is nothing special or unique about annual savings.
The conscientious worker could save the same S dollars per year but on
a monthly or weekly basis—in smaller pieces of S/12 or S/52. In this
case, the relevant future value of savings at retirement would be denoted
by FV(S/12, R/12,12N) or FV(S/52, R/52, 52N), where the interest R is
now defined as a nominal rate that is compounded 12 or 52 times per year.
For example, if you save $1 per year at a rate of R = 5% for 30 years,
then FV(1, 0.05, 30) = $66.44. On the other hand, if you save $0.25 per
quarter at a rate of 1.25% per quarter for a period of 30 years (120 quar-
ters), then the relevant value is FV(0.25, 0.0125,120) = $68.80, which is
more than what you get from saving the money annually. If the savings
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are deposited monthly then FV(1/12, 0.05/12, 360) = $69.36; if weekly,
FV(1/52, 0.05/52,1560) = $69.57. In each case the worker is saving a
total of $1 per year, but the higher frequency of saving and compounding
results in a higher future value of savings at retirement.

In sum, I have presented a versatile and general formula for computing
the future value of your retirement nest egg, assuming you save S for the
next N years. In any financial calculator, it is simply the future value of a
constant annuity.

2.3 Present Value of Consumption

Now let’s examine the retirement period in terms of income, spending,
and consumption. Imagine you have reached retirement with the nest egg
FV(S, R, N) and now intend to spend or consume C dollars per year from
your accumulated savings. At the end of each year, you withdraw C dollars
from your nest egg or investment account to finance your retirement needs.

I will now compute the present value (where the word “present” refers to
the exact date of your retirement) of your consumption and spending needs.
In terms of notation, let j = 1, . . . , D denote the years in retirement until the
year of death, which is denoted by D. For example, D = 30 is 30 years of
retirement. The formula we need now is the present value of consumption:

PV(C, R, D) =
D∑

j=1

C

(1 + R)j
. (2.3)

The present value of your planned consumption and spending during retire-
ment is the value of each year’s spending discounted by the relevant time
period. The end-of-first-year’s spending is discounted by (1+R)1, the end-
of-second-year’s spending is discounted by (1+ R)2, . . . . Add these pieces
together and you are left with equation (2.3).

Once again, using basic algebra to add up the series on the right-hand
side of (2.3), we arrive at

PV(C, R, D) = C
1 − (1 + R)−D

R
, (2.4)

with a similar understanding that PV(C, 0, D) = CD.

For instance, if you want a nest egg at retirement that is large enough
to provide you with D = 30 years of $50,000 per year, then you need
PV(1, 0.05, 30) = $15.37 per dollar of income, which is 50000 ×15.372 =
$768,600 of savings at retirement. Remember that all of this is assum-
ing your money earns a constant R = 5% per year in retirement. But if
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your money can earn a higher R = 10% per year during retirement, then
you need only PV(1, 0.1, 30) = $9.43 per dollar of retirement consumption
spending, or 50000 × 9.427 = $471,350 in retirement savings. Notice the
dramatic impact of the investment rate on the required sum of money.

At the risk of repeating myself, the main point can be stated as follows. If
all of your money is invested in a savings account or investment fund earn-
ing R% per annum and you intend on spending $1 per year for a period of
D years during retirement, then you must have at least PV(1, R, D) on the
date of retirement. If you start with less than PV(1, R, D) in your nest egg,
then your consumption spending of $1 per year will lead to financial ruin
at some point prior to the end of the D years.

Here is a more formal way to think about this statement. Assume that
you enter the retirement years with a lump sum of X dollars (i.e., your nest
egg). This money is then completely invested in a bank or savings account
that earns an effective R% each and every year. At the end of the first year
of retirement you spend or consume $1 from the portfolio, which leaves you
with the following wealth after your first year in retirement:

[nest egg at year 1] = X(1 + R) − 1.

You then continue investing the (large) remaining funds in the same ac-
count earning the same return of R% and spend another dollar at the end
of the second year of retirement (the dollar value is irrelevant because the
model scales linearly in wealth). Your wealth after your second year in re-
tirement is

[nest egg at year 2] = (X(1 + R) − 1)(1 + R) − 1.

In the same manner, the wealth after your third year of retirement is

[nest egg at year 3] = ((X(1 + R) − 1)(1 + R) − 1)(1 + R) − 1.

Notice the pattern. Each year you subtract $1 and then allow the remain-
der to grow at the exact same rate R. Do this for exactly D years and, after
collecting some terms, you should be left with the following simplified ex-
pression for the wealth after your Dth year in retirement:

[nest egg at year D] = X(1 + R)D −
D∑

j=1

(1 + R)D−j. (2.5)

Now here is the crucial part. If this number is greater than zero, then your
initial nest egg of X has lasted for D years. If this number is less than zero,
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you have been ruined prior to D years of retirement. More importantly, if
your wealth—or portfolio—hits zero precisely at the end of the Dth year
of retirement, then X must satisfy the following equation:

X :=
D∑

j=1

1

(1 + R)j
.

That is: If your initial retirement nest egg (exactly equal to X) is invested
at a rate of R% per year and if you consume $1 each year, then you will
run out of money at time D. This value of X is precisely the present value
of $1 consumed during retirement as presented in (2.3) and (2.4). Notice
the two distinct ways of arriving at the same statement. You need at least
PV(1, R, D) to finance D years of retirement consumption.

2.4 Exchange Rate between Savings and Consumption

We are well on our way to answering the main question posed earlier. We
have an expression for the future (retirement) value of your savings, and
we have an expression for the present (retirement) value of your spending
or consumption plan. Retirement is the focal point. If we set these values
equal to each other, then we can solve for the relationship between desired
consumption and required savings. Of course, there are many ways to an-
alyze the relationship between savings and consumption, and here I take a
relatively simple approach. I will incorporate utility theory into retirement
decision models in Chapter 12.

Equating (2.2) and (2.4) leaves us with

FV(S, R, N) = PV(C, R, D),

C = S
FV(1, R, N)

PV(1, R, D)
. (2.6)

One unit of savings S multiplied by the ratio in the right-hand side of equa-
tion (2.6) provides us with the equivalent units of consumption.

At the risk of overwhelming the reader with too many symbols, I will
define the exchange rate or ratio between the future value and the present
value by the Greek letter alpha.

α := FV(1, R, N)

PV(1, R, D)
= (1 + R)N − 1

1 − (1 + R)−D
. (2.7)

The α-value can range from a small number near 0 to a large number much
greater than 1. By carefully inspecting equation (2.7), you should come to
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Table 2.1. Financial exchange rate between $1 saved annually over
30 working years and dollar consumption during retirement

Number of years D over which retirement income is required
Investment
rate (R%) 15 20 25 30 35 40

0.0 2.000 1.500 1.200 1.000 0.857 0.750
1.0 2.509 1.928 1.579 1.348 1.183 1.059
2.0 3.157 2.481 2.078 1.811 1.623 1.483
3.0 3.985 3.198 2.732 2.427 2.214 2.058
4.0 5.044 4.127 3.590 3.243 3.005 2.834
5.0 6.401 5.331 4.714 4.322 4.058 3.872
6.0 8.140 6.893 6.184 5.743 5.453 5.254
7.0 10.371 8.916 8.106 7.612 7.296 7.085
8.0 13.235 11.538 10.612 10.063 9.720 9.500

10.0 21.627 19.321 18.122 17.449 17.056 16.821
12.0 35.433 32.309 30.770 29.960 29.519 29.275
14.0 58.088 53.870 51.912 50.950 50.465 50.216

the realization that α will increase as R increases or as N increases and that
α will decrease as D increases. Also, when N = D and R = 0, the corre-
sponding value is α = 1. Think about it: If investment rates are zero and
you are working for the same number of years you are retired, then you
must save the exact amount that you wish to consume.

Table 2.1 displays the savings/consumption exchange rate α assuming
N = 30 working years of saving under various values of the investment
rate R and retirement period D.

For example, if you can earn R = 5% on your savings during each year
of work and during 30 years of retirement, then each dollar of savings will
translate into a retirement income of $4.32 per year. If under the same R =
5% investment rate you desire income for only 25 years, then you can af-
ford to withdraw $4.71 per year during retirement. Thus, although 30 years
of saving $1 per year under a 5% investment rate accumulates to the same
FV(1, 0.05, 30) = $66.44 nest egg, you can afford to spend $4.71 for 25
years because this is equivalent to $4.32 for 30 years. Note that (respec-
tively) PV(4.714, 0.05, 25) ≈ $66.44 and PV(4.322, 0.05, 30) ≈ $66.44
for the present value of income, per equation (2.4).

Table 2.1 also confirms the intuition that when R = 0%, the nest egg
grows to the sum of savings NS. Moreover, the amount of income that
one can extract during retirement is precisely C = S when the number of
years in retirement D = N. Note also the unbelievably high α multiples
(i.e., the exchange rate) when the investment rate is R = 14%. A single
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dollar of savings for each of 30 working years will translate into $50 of an-
nual retirement income for 30 years. The α = 50 exchange rate should be
encouraging to savers who can invest aggressively and earn high rates of
return over long periods of time. Remember, though, that for this 50-to-1
deal to work you must earn R = 14% each and every year during the next
60 years of your life. It is not enough to earn 14% on average† or most of
the time. You must earn 14% each year for 30 years of saving and 30 years
of retirement. Only then will $1 provide you with $50 of income. Later I
will address what happens when investment returns or interest rates are un-
known and how to think about this problem, which is obviously the case
for actual 60-year horizons.

Note that I have avoided making any judgment on whether 4%, 8%, or
even 10% is a realistic investment rate over the long horizons we are dis-
cussing. I will return to this topic in Chapter 5. For now I will say only
that it would be ridiculous to assume you can earn any rate year after year,
since markets, interest rates, and bond yields are random and tend to fluc-
tuate over time.

Here is another way to use Table 2.1. Imagine that you contribute $1 to
a (personal pension plan) savings account during 30 working years in ex-
change for a lifetime pension income when you retire. If this pension plan
gives you $3 of retirement income for each $1 of contributions, or a 3-to-1
exchange rate, then the implied investment return from this pension arrange-
ment is approximately 3% if you plan to be retired for 20 years (unhealthy
male) and 4% if you plan to be retired for 35 years (healthy female). The
greater the implied investment return, the more lucrative is the pension deal.

To conclude this discussion, an interesting number in Table 2.1 is the
exchange rate α for a 30-year retirement when the interest rate R = 6%,
which some consider to be a reasonable long-term estimate for investment
returns after inflation is taken into account. In this case, $1 of saving per
year generates roughly $6 of retirement income per year, or $10,000 of sav-
ing per year provides almost $60,000 of income in retirement. Figure 2.1
provides a graphical illustration of the underlying financial life cycle in this
case. You can see the gradual change in wealth that is experienced during
30 years of saving $1 and 30 years of consuming $6, all under a constant
investment rate of 6%.

This idea of a savings/consumption exchange rate is at the core of most
government pension plans that require working citizens to save for retire-
ment by imposing a payroll tax on their wages and then provide them with
a pension or lifetime income when they retire. Of course, most government

† This holds whether the average is arithmetic or geometric (see Chapter 5 for this distinction).
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Figure 2.1. Constant investment rate

pension plans have elements of insurance and redistribution in addition to
pure savings. Namely, the income it provides during retirement is not nec-
essarily linked to your own savings and wages but rather to an average in-
dustrial wage earned by the working population. I will talk more about the
insurance and redistributive aspects of social pension systems in Chapter 8.

Nevertheless, despite the caution one must exercise in generalizing our
simple models, Table 2.2 provides a rough summary of the so-called ex-
change rate between savings and consumption from social (government-
funded) pension plans around the world. It displays the total payroll tax
paid by workers in various countries and compares it to the pension benefit
as a percentage of an average worker’s wages. For example, U.S. work-
ers “save” roughly 12% of their wages via a payroll tax (half paid by the
employer and half paid by the employee), and this entitles the worker to a
consumption stream (pension benefit) of approximately 39% of their wage
when they retire. Using our language, the exchange rate is a little more than
3-to-1. Mexico appears to have the highest exchange rate at 6-to-1 (which
is the only exchange rate in Figure 2.2 close to the 6-to-1 value mentioned
previously as a viable goal in retirement savings); Canada is not far behind
with a 4-to-1 rate. In fact, the implied “return” numbers might be close
to zero when you consider the long time over which the payroll taxes are
collected (i.e. saved) and the relatively short period of time over which the
pension income is paid out. Of course, any comparison between countries
should be done very carefully, since each has its own caps, exclusions, and
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Table 2.2. Government-sponsored pension plans:
How generous are they?

Consumption Saving (tax) Exchange
Country rate ≈ C/W rate ≈ S/W rate (α)

Belgium 34% 16% 2.08
Canada 33% 8% 4.23
France 26% 15% 1.76
Germany 39% 20% 2.00
Greece 46% 20% 2.30
Italy 73% 33% 2.23
Japan 42% 17% 2.40
Mexico 105% 18% 6.03
Netherlands 23% 24% 0.94
Poland 104% 33% 3.18
Portugal 77% 35% 2.22
Spain 61% 28% 2.16
Turkey 87% 20% 4.36
United Kingdom 14% 5% 2.75
United States 39% 12% 3.15

Source: Watson Wyatt calculations for World Economic Forum (data:
early 2000).

limits. But the general picture shows that savings (via payroll taxes) and
consumption (pension benefits) can be linked using a framework like the
one described here.

2.5 A Neutral Replacement Rate

I am now (finally) ready to answer the main question that initially sent us
down this path. I earn W = $50, 000 per year for N = 30 years and am
wondering how much I must save, denoted by S, so that my nest egg at re-
tirement will be enough to provide the same exact standard of living I had
prior to retirement, which is W − S.

Equation (2.6) provides us with a relationship between saving S and the
desired consumption C, which in this case is C = W − S. This leads to

W − S = Sα ⇐⇒ S = W

1 + α
, (2.8)

where once again α denotes the savings/consumption exchange rate. We
are searching for a value of S such that W −S is precisely equal to C, which
is αS. And so it all comes down to the investment rate R. When R = 8%
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and N = D = 30, we obtain α = 10.063 and therefore S = $4,520, ac-
cording to (2.8).

Observe that by saving S = $4,520 each year you are left with a net
wage of $45,480. The future value of S = $4,520 is FV(4520, 0.08, 30) ≈
$512,000, and the present value of the net wage (retirement income) is also
PV(45480, 0.08, 30) ≈ $512,000 in retirement. Stated differently, saving
4520/50000 = 9% of your wages will lead to an identical standard of liv-
ing at retirement, assuming you can earn R = 8% for 60 years.

If you can earn only R = 5% then the equivalent exchange rate is
α = 4.32194 and the required amount of saving is 50000/(1 + 4.32194) =
$9,395 each year. This leaves you with a net wage of $50,000 − $9,395 =
$40,605 per year. The future value of your savings is FV(9395, 0.05, 30) =
$624,200, which is equivalent to PV(40605, 0.05, 30) ≈ $624,200. In this
case, saving 9395/50000 ≈ 18.8% of your gross wage will create a retire-
ment income stream that is equivalent to your net wage.

In sum: If over a period of 30 working years you save 9% of your (con-
stant) gross salary, then you will have a large enough nest egg to create an
identical retirement income stream that will last for your 30 golden years—
assuming you can earn a consistent 8% on your investments. And if you
are satisfied with a retirement income stream that is lower than the 91% net
wage during your working years, you can obviously afford to save less.

2.6 Discounted Value of a Life-Cycle Plan

If we put both of the foregoing ingredients—savings and consumption
phase—together into one large equation, then the total discounted value
of both stages in the human life cycle can be expressed as the discounted
value of life-cycle plan:

DVLP(R, S, C, N, D) :=
N+D∑
i=1

Si − Ci

(1 + R)i
; (2.9)

here the variable Si = 0 (and Ci > 0) during the retirement spending years
whereas Ci = 0 (and Si > 0) during the working (saving) years, and i =
1, . . . , N + D. I am using the word “discounted” to remind you that we are
discounting all cash flows (both inflows and outflows) to the current time 0.
Earlier, my use of the words “present value” was meant to discount spend-
ing during retirement back to the point of retirement, which may still be far
in the future from time 0. I will try to stick to this distinction for most of
the book.
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In any event, by appealing to both (2.2) and (2.4) and by holding S and
C constant across all periods, the discounted value of the entire life-cycle
plan can be written and solved as

DVLP(R, S, C, N, D) = S(1 − (1 + R)−N)

R
− C(1 − (1 + R)−D)

R(1 + R)N
. (2.10)

The first part of equation (2.10) discounts N years of savings back to time 0,
and the second part discounts D years of spending to the retirement date and
then discounts that entire quantity back N years to time 0. If the discounted
value of savings equals the discounted value of consumption, the financial
plan is feasible. On the other hand, if the DVLP quantity is negative then
the plan is not sustainable. Either saving must be increased or spending
must be reduced or the investment rate R must (somehow) be increased.

For example, DVLP(0.05,1,10, 30, 30) = −20.19593. This should be
interpreted to mean that a life-cycle plan that saves $1 for 30 years (work)
and then spends or consumes $10 for 30 years (retirement) is not sustain-
able at an R = 5% investment rate. The discounted value has a deficit of
$20.19. This person would have to either save more while working or con-
sume less while retired. However, if we increase the investment rate to R =
8% then the discounted value of the same plan (S = 1, C = 10) is now
DVLP(0.08,1,10, 30, 30) ≈ 0, signifying that the financial plan is feasible.

2.7 Real vs. Nominal Planning with Inflation

In the previous few sections and in the models I have presented, wages W

are assumed to be constant during the entire life cycle and so the level of
savings S required to finance a consumption of C dollars was a constant
percentage of the wage. Obviously, wages do not actually remain constant
over the entire life cycle, in part because of productivity improvements but
also because inflation tends to increase the price of everything (including
wages) over time. So, I now move from a simple model in which wages
and savings remain constant (in nominal terms) over the working years
to a slightly more realistic framework in which wages increase each year
owing to general price inflation. Either way, my objective is to convince
you that—as long as you equally adjust all inputs for inflation—the struc-
ture of the equation remains the same.

Once I introduce price and wage inflation into this system, the symbol Si

will be used to denote the nominal dollar value of savings in period (or year)
i and the symbol Sπ

i to denote the real (after-inflation) value of savings in
period i. One way to think about this distinction is by picking a baseline
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calendar year, say 2005, and then converting all inflation-adjusted dollars
into year-2005 values. Thus, if you save S5 = 100 nominal dollars in the
year 2010 but inflation was 5% in each of the five years between 2005 and
2010, then the real value of savings in the year 2010 is Sπ

5 = 100/(1.05)5 =
78.35 dollars. Conversely, if you save Sπ

5 = 78.35 real dollars in period
i = 5 (the year 2010) and if the inflation rate was 5% during each year, then
the nominal value of savings in the year 2010 is S5 = 100.

Therefore, if you enter the labor force with a wage of W0 at the start of
period i = 0 (i.e., the year 2005) and if this wage increases each year owing
to a constant inflation rate denoted by π, then your nominal wage at the start
of period i will be

Wi = W0(1 + π)i. (2.11)

As a result, if you save Sπ real (after-inflation) dollars during each of your
N working years, then the amount of (nominal) dollars that you will have
accumulated is given by the following expression:

Sπ(1 + π)(1 + R)N−1 + Sπ(1 + π)2(1 + R)N−2

+ Sπ(1 + π)3(1 + R)N−3 + · · · + Sπ(1 + π)N, (2.12)

where R denotes the nominal investment rate earned in any given year.
However, I can decompose this number into a “real” component and an
“inflation” component to write the investment rate as

R = (1 + Rπ)(1 + π) − 1, (2.13)

where R is the nominal rate and Rπ ≤ R is the real inflation-adjusted rate.
Then, a bit of algebra allows us to express the future value of savings as

FVπ(S, R, N) = Sπ(1 + Rπ)N
N∑

i=1

(1 + π)i

((1 + Rπ)(1 + π))i
, (2.14)

which collapses to the familiar

FVπ(S, R, N) = Sπ (1 + Rπ)N − 1

Rπ
. (2.15)

The same results will follow when the present value of consumption is
computed at retirement. The relevant sum is replaced by

PVπ(C, R, D) = Cπ(1 − (1 + Rπ)−D)

Rπ

=
D∑

j=1

Cπ(1 + π)j

((1 + Rπ)(1 + π))j
. (2.16)
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Here is an example. You plan to save $10,000 in after-inflation dollars
each year for the next 30 years until retirement. Thus, at the end of year 1
you will save 10000(1 + π) nominal dollars, and at the end of year 2 you
will save 10000(1 + π)2 nominal dollars, and so on. These savings will
be invested at a real inflation-adjusted rate of Rπ = 8% per annum. The
nominal investment rate will be (1 + π)(1 + 0.08) − 1. Question: What
is the value—either real or nominal—of your retirement savings after 30
years? Answer: If you don’t know what π is, then you won’t be able to
obtain a nominal (pre-inflation) value of your nest egg. However, the real
(after-inflation) value can easily be calculated as follows:

10000
(1.08)30 − 1

0.08
= $1,132,832; (2.17)

the nominal value will be 1132832 × (1 + π)30 dollars.
In sum, you are entitled to use the exact same equation and methodol-

ogy to compute the future value of savings at retirement as for the present
value of consumption at retirement, provided that you replace both savings
(in dollars) and investment rates (in percent) to after-inflation values.

2.8 Changing Investment Rates over Time

When the interest (saving, valuation) rate R is not constant from one period
to the next, equation (2.9) should be expressed as the discounted value of
life-cycle plan:

DVLP =
N+D∑
i=1

(Si − Ci)

i∏
j=1

(1 + Rj)
−1. (2.18)

Here, as before, Si and Ci denote (respectively) savings and consumption
during time period i (i = 1, . . . , N + D), but the new product term involv-
ing Rj replaces the old (1 + R)−i. Thus, depending on the actual sequence
of values for Rj , the value of equation (2.18) might be positive or negative.
In fact, if the future Rj values are random or unknown then the DVLP will
also be random.

To make this point clear, Tables 2.3 and 2.4 illustrate the DVLP values
under two possible sequences of returns for Rj (j = 1, . . . , N + D), where
N = 5 and D = 5. One key point that should stand out is that—even
though the 10-year average rate of return is identical in both scenarios (i.e.,
8%)—the DVLP was positive in one case ($0.241) but negative in the other
(−$0.615). In other words, you could not fully meet your consumption
needs under the second scenario: your wealth would run out in the tenth year.
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Table 2.3. Discounted value of life-cycle plan = $0.241
under first sequence of varying returns

Wealth at
Year (i) Si − Ci ($) Rj (%) PV(Si − Ci) ($) year end ($)

1 1.0 8.68 0.92 1.00
2 1.0 −17.55 1.12 1.82
3 1.0 9.57 1.02 3.00
4 1.0 24.83 0.82 4.74
5 1.0 26.67 0.64 7.01
6 −1.5 42.66 −0.68 8.50
7 −1.5 −35.67 −1.05 3.97
8 −1.5 17.32 −0.90 3.15
9 −1.5 19.04 −0.75 2.25

10 −1.5 −15.53 −0.89 0.40

Note: Average R = 8%.

Table 2.4. Discounted value of life-cycle plan = −$0.615
under second sequence of varying returns

Wealth at
Year (i) Si − Ci ($) Rj (%) PV(Si − Ci) ($) year end ($)

1 1.0 10.34 0.48 1.00
2 1.0 26.65 0.72 2.27
3 1.0 −22.99 0.93 2.75
4 1.0 37.06 0.68 4.76
5 1.0 −3.63 0.70 5.59
6 −1.5 8.45 −0.97 4.56
7 −1.5 6.83 −0.91 3.37
8 −1.5 18.02 −0.77 2.48
9 −1.5 16.87 −0.66 1.40

10 −1.5 −17.61 −0.80 −0.35

Note: Average R = 8%.

Figure 2.2 provides a graphical illustration of the financial life cycle when
the underlying investment return Rj can vary from year to year. This partic-
ular graph is the outcome of a computer simulation that generated 60 years
of investment returns with an average return in any given year of E[Rj ] =
6% but with standard deviation (a.k.a. dispersion) of 20%. As in Figure 2.1,
the assumption is that $1 is saved for 30 years (from age 35 to age 64) and
then $5.74 is consumed for 30 years (from age 65 to age 94). The individual
dies on his or her 95th birthday. Notice that in this simulation the individ-
ual ran out of money at age 77, since wealth becomes negative at that point
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Figure 2.2. Varying investment rate

(and never recovers). The discounted value of this life-cycle plan was neg-
ative and thus the plan was not sustainable.

In order for the Si − Ci plan to be sustainable, the plotted wealth value
must stay above zero all the way to the end of the life cycle. That is, the
magnitude of the ruin (i.e., the amount by which the wealth value is below
zero at age 95) is somewhat secondary to the fact that the plan resulted in
ruin. Obviously, Figure 2.2 is but one of many possible outcomes from the
computer simulation. In other scenarios—under the same expected invest-
ment return of E[Rj ] = 6%—the wealth value never hits zero, which is
good news for the retiree. In later chapters I will explain how to quantify
this risk that the wealth value hits zero prior to the random date of death.

2.9 Further Reading

This chapter covers material that is rather basic when compared to the re-
mainder of this book. Yet the underlying ideas are most critical in setting
the stage for the long-term nature of our models. The notion of a discounted
value of a life-cycle plan will resurface again in later chapters.

The concept of a stochastic discounted value can be traced back in the ac-
tuarial literature to Buhlmann (1992) within the context of life-contingent
cash flows. For additional reading on the personal finance aspects of the
material presented here, I recommend the basic financial planning textbook
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by Ho and Robinson (2005). For a deeper understanding of the human life
cycle from an economic perspective, see the classic paper by Modigliani
(1986), which is a summary of his Nobel Prize lecture. Another classic piece
on the human life cycle isYaari (1965), which sets the tone for our later dis-
cussion on annuities. Finally, the papers by Bodie, Merton, and Samuelson
(1992) and Viceira (2001) take the arguments in this chapter one step fur-
ther by incorporating the discounted value of savings and human capital
into asset allocation models (more on this later).

2.10 Problems

Problem 2.1. Create a spreadsheet that models the next 60 years of your
life. Assume that you save $1 (real) each year during 30 years of work and
that you spend $8 (real) per year during 30 years of retirement. Gener-
ate ten sequences of 60 random returns that are normally distributed with
an average of E[Rπ ] = 8% and a standard deviation of SD[Rπ ] = 15%.

Compute the average and standard deviation of the DVLP under these ten
distinct sequences. For those sequences that resulted in a negative DVLP,
identify precisely the year (or period) in which you ran out of money.

Problem 2.2. Assume (a) that during your D = 30 years of retirement
you plan to consume Cπ = $100,000 per year and (b) that during this en-
tire period you will earn Rπ = 8% on your money. However, instead of
retiring with the appropriate value of PV(C, R, D) to fund your retirement,
you have only 75% of PV(C, R, D). In other words, you are 25% under-
funded at retirement. This obviously means that if you continue spending
Cπ then you will run out of money well before the age of death at period D.

Compute the period during which you will run out of money. Derive a gen-
eral expression for the “ruin period” if you retire with z < 100% of your
required nest egg. Also derive a general expression for the ruin period if
you retire with 100% of the required PV(C, R, D) nest egg but assuming
you earn only (R − z)% (instead of R%) during each year of retirement.
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Models of Human Mortality

3.1 Mortality Tables and Rates

It is time to get a bit more technical. In this chapter I will cover most of
what you need to know about mortality rates and tables in order to appre-
ciate the valuation and pricing of mortality-contingent claims. At various
points I will be using basic calculus to express the underlying mathematics.
But please don’t be discouraged if the material appears somewhat esoteric
or theoretical. My main objective is to arrive at a collection of formulas that
can be used independently of whether you understand every step of how
they were derived.

To begin with, the basis of all pension and insurance valuation is the
mortality table. A mortality table—perhaps better referred to as a vector or
collection of numbers—maps or translates an age group x into a probabil-
ity of death, qx , during the next year. For example, q35 is the probability
of dying before your 36th birthday, assuming you are alive on your 35th
birthday. By definition, 0 ≤ qx ≤ 1 and qN = 1 for some large enough
N ≈ 110. Table 3.1 displays a portion of one of the hundreds of different
mortality tables. This one is called the RP2000 (where “RP” denotes re-
tirement pension) healthy annuitant mortality table, which is available from
the Society of Actuaries, 〈www.soa.org〉. This portion of the table displays
conditional death rates from age x = 50 to age x = 105 only in increments
of 5 years; the complete table is provided in Chapter 14 of this book. For an
example of variation among the different available mortality tables, please
review Table 14.3, which is a table that is used to price insurance policies.
For an international comparison see Table 14.2, which lists q65 for different
countries as of the year 2000.

Figure 3.1 provides a visual plot of what a mortality table looks like. The
numbers start very low when you are young; they increase with age and

34
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Table 3.1. Mortality table for healthy
members of a pension plan

Conditional probability
of death at any age

Age Female qx Male qx

50 0.002344 0.005347
55 0.003531 0.005905
60 0.006200 0.008196
65 0.010364 0.013419
70 0.016742 0.022206
75 0.028106 0.037834
80 0.045879 0.064368
85 0.077446 0.110757
90 0.131682 0.183408
95 0.194509 0.267491

100 0.237467 0.344556
105 0.293116 0.397886
110 0.364617 0.400000
115 0.400000 0.400000
120 1.000000 1.000000

Source: Society of Actuaries, RP2000 (static).

tend to flatten out near age 100. Then, they jump to qN = 1 at the very last
entry of the mortality table. The actuaries and demographers who compile
these tables must make some assumptions and extrapolate at higher ages,
since they have very little data (which is used to estimate the numbers) on
which to base the death rates.

Note the difference between males and females. The annual death rate
qx for females is uniformly lower than the death rate for males at the same
age. Sometimes the numbers for males and females are averaged together
to create a “unisex” mortality table. Either way, the conditional probabil-
ity of survival in year x is equal to the complement of qx , or 1 − qx. Along
the same lines, sometimes you will see (1px) written as px in order to save
space.

3.2 Conditional Probability of Survival

The mortality table provides the probability of death or the probability of
survival within any one given year, but the conditional probability of sur-
vival goes a step further. That is: if an individual is currently aged x, then
the probability of surviving n more years is denoted and defined by
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Figure 3.1

(npx) =
n−1∏
i=0

(1 − qx+i ). (3.1)

Why is this the correct formula? Think of independent coin tosses. The
odds of getting n heads in a row is the product of the probabilities of getting
one head in one toss. If you think of getting heads as the conditional prob-
ability of survival (1 − qx+i ), then multiplying them together leads to the
required quantity. If you stare at equation (3.1) long enough, you should be
able to see the internal logic of the multiplications. You should also con-
vince yourself that if you fix the age x then the probability (npx) will decline
as n increases, since the odds of surviving to more advanced ages declines
as time progresses. Likewise, if you fix n and increase x, then (npx) also
declines with increasing age. For example, the probability of living for n =
30 more years is much higher when you are x = 20 years of age than when
you are x = 70 years of age. In fact, (30p20) is pretty close to100% whereas
(30p70) is pretty close to zero. In terms of notation, I will use n ≤ N for
discrete ages and t ≤ T for continuous ages. Needless to say, the quantity
(tpx) or (npx) is fundamental in actuarial finance and in the remainder of
this book.

A research study by the Society of Actuaries identified a number of risk
factors that have an immediate and direct impact on survival probabilities
during retirement. Some are obvious and some are not. For example, the
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precise age and gender of a retiree bear directly on the respective mortal-
ity rates. Older males have higher mortality rates than younger females. In
addition, (excessive) alcohol consumption, smoking, and obesity increase
hazard rates when other factors are held constant. Perhaps more surpris-
ingly, one’s occupation has an impact on mortality rates and not solely
because of “hazardous” jobs. Race and ethnicity affect mortality as well.
For example, Asians and Pacific Islanders have lower mortality rates over-
all than either Whites or Blacks. In addition, religion (i.e., being part of a
religious collective) and marriage (for males) lowers mortality. Of course,
many of these factors are correlated with each other, making it hard to iso-
late the “essential” factor driving mortality. Nevertheless, it is important to
stress that mortality is not homogenous across the population, and certainly
a “mortality table” is not the final word on your particular odds of survival.

3.3 Remaining Lifetime Random Variable

Now I will introduce a random variable (R.V.) denoted by Tx and indexed
by age x, which represents the remaining lifetime for an individual currently
aged x. The R.V. Tx has a probability density function (PDF) denoted and
defined by fx(t) when Tx is continuous and by Pr[Tx = xi] when the ran-
dom variable is discrete. Here, x + xi denotes the ages at which people
are “allowed” to die. For example, a 60-year-old could die after xi years,
where x1 = 10, x2 = 25, and x3 = 35. In this case T60 = {10, 25, 35},
and the probability mass function (PMF) replaces the PDF. I assume that
Pr[T60 = 10] = 8/12, Pr[T60 = 25] = 3/12, and Pr[T60 = 35] = 1/12
(and will return to this momentarily).

What does the cumulative distribution function of Tx look like? First, I
will use the function Fx(t) to denote the conditional probability of dying
before the age of x + t. This probability must equal 1 when added to (tpx),
the conditional probability of surviving t more years (as introduced in the
previous section). Since

(tpx) := 1 − Fx(t) = Pr[Tx ≥ t],

it follows that the cumulative distribution function (CDF), which is the prob-
ability that the remaining lifetime is less than a value of Tx , will simply be

Fx(t) := 1 − (tpx) = Pr[Tx < t]. (3.2)

To state this in another way: when the random variable Tx is continuous,
the CDF is
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Fx(t) =
∫ t

0
fx(s) ds; (3.3)

when the random variable Tx is discrete,

Fx(n) =
n∑

i=1

Pr[Tx = xi]. (3.4)

Returning to my example where Tx = {10, 25, 35}, Fx(10) would denote
the probability of dying at or before the age of 70. The precise value of
Fx(10) would be

Pr[T60 ≤ 10] = 8

12
.

Similarly, for Fx(25) and Fx(35) we have

Pr[T60 ≤ 25] = 8

12
+ 3

12
= 11

12
and

Pr[T60 ≤ 35] = 8

12
+ 3

12
+ 1

12
= 1,

respectively.
Observe also that the expected value of the remaining lifetime R.V. is

equal to the average of the remaining lifetimes weighted by their probabil-
ities. Once again using the same values, the expected remaining lifetime
works out to

E[T60 ] = 8

12
× 10 + 3

12
× 25 + 1

12
× 35 = 15.833 years.

3.4 Instantaneous Force of Mortality

Now that I have demonstrated the intuition behind the conditional proba-
bility of survival (tpx), I will show how this probability can be represented
in another way, which will be useful in defining the instantaneous force of
mortality (IFM). As long as (tpx) is constant or decreasing with respect to
t, then this function can be represented as

(tpx) = exp

{
−
∫ x+t

x

λ(s) ds

}
, (3.5)

where the curve λ(s) ≥ 0 for all s ≥ 0. Think of λ(s) as the instantaneous
rate of death at age s. If t = 0 then (tpx) → 1, and when t → ∞ we must
have that (tpx) → 0 so that

∫ x+∞
x

λ(s) ds → ∞. In English this means
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that adding up the “instantaneous killing force” will eventually kill the in-
dividual. The probability of surviving to infinity must go to zero because
we cannot allow anyone to live forever. It might seem somewhat artificial
to worry about these things, but the point is that—if I am working in con-
tinuous time—then I must make sure the functions are making sense even
under the most extreme situations.

Note that by a simple change of variables u = s −x we can rewrite equa-
tion (3.5) as

(tpx) = exp

{
−
∫ t

0
λ(x + u) du

}
. (3.6)

Integrating the curve λ(s) from a lower bound x to an upper bound x + t

is mathematically equivalent to integrating the curve starting at λ(x + s)

from a lower bound 0 to an upper bound t. However, this change of bounds
will allow me to arrive at some important relationships.

Now that we have defined (tpx) in this (more restrictive) way, I may take
the derivatives of both sides of equation (3.6) to arrive at

∂

∂t
(tpx) = −(tpx)λ(x + t).

Therefore, the derivative of the cumulative distribution function Fx(t) or
1 − (tpx) is the probability density function fx(t), which is equivalent to

fx(t) = (1 − Fx(t))λ(x + t). (3.7)

3.5 The ODE Relationship

Based on (3.7), the ordinary differential equation (ODE) for the function
Fx(t), we can represent the IFM as

λ(x + t) = fx(t)

1 − Fx(t)
, t ≥ 0. (3.8)

Note that Fx(t) → 1 as t → ∞ (everyone dies eventually) and therefore
λ(t) → ∞ as t → ∞, unless fx(t) approaches zero faster (in the numer-
ator). Thus, the function Fx(t) and its derivative fx(t) will determine the
shape and behavior of λ(x + t). Note also that the relationship implied by
equation (3.8) leads to

Fx(t) = 1 − fx(t)

λ(x + t)
, (3.9)
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Figure 3.2. Relationships between mortality descriptions

which then implies

fx(t) = (tpx)λ(x + t). (3.10)

Collectively, these equations allow us to move from Fx(t) to fx(t) to λ(x+t)

and back again without using too much calculus.
In sum, the preceding relationships allow us to “create” mortality laws

in two different ways:

1. we can start with a CDF Fx(t) = 1− (tpx), take the derivative to cre-
ate the PDF fx(t), and then use equation (3.8) to obtain the IFM λ(x);
or

2. we can start with the IFM, build the CDF Fx(t) = 1 − (tpx) using
equation (3.5), and then take derivatives to arrive at the PDF fx(t).

Figure 3.2 shows how to visualize the relationships between three possible
descriptions of mortality.

Here is a question to ponder: Using some of the qualitative features we
would expect from the IFM curve, can we use any functional form for fx(t)

and Fx(t), or are there some natural restrictions on the remaining lifetime
random variable? For example, in the case of the familiar normal distribu-
tion, the CDF of the remaining lifetime random variable Tx is defined as

N(m, b, t) =
∫ t

−∞
1

b
√

2π
exp

{
−1

2

(
z − m

b

)2}
dz. (3.11)

For a refresher on the CDF of the normal distribution see Section 3.18,
which may also be of help for the material still to come.
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Table 3.2. Mortality odds when life is
normally distributed

Year F(t) f(t) f(t)/(1 − F(t))

1 5.48% 0.74% 0.78%
5 9.12% 1.09% 1.20%

10 15.87% 1.61% 1.92%
15 25.25% 2.13% 2.85%
20 36.94% 2.52% 3.99%
25 50.00% 2.66% 5.32%
30 63.06% 2.52% 6.81%
35 74.75% 2.13% 8.43%
40 84.13% 1.61% 10.17%
45 90.88% 1.09% 11.99%
50 95.22% 0.66% 13.88%

Note: E[Tx] = 25 years; σ = 15 years.

In order to assess how useful the normal distribution is for modeling Tx ,
we can rely on the Excel functions NORMDIST(t,mean,standard devia-
tion,true) for Fx(t) and NORMDIST(t,mean,standard deviation,false) for
fx(t) and thereby generate Table 3.2. Figures 3.3 and 3.4 plot the complete
data for the remaining lifetimes from 1 to 50 years. As an example of how
to interpret the data, note that—for an individual alive today—the proba-
bility of dying within 15 years is 25.25% whereas the probability of dying
during year 15 is 2.13%.

The shape of the hazard rate function λ(x), shown in Figure 3.4, appears
reasonable: the rate of death at any moment increases with age, which is
what one might expect. However, given a sufficiently high standard devi-
ation (15 years in our example), we have an anomaly. Note the shape of
the PDF function in Figure 3.3; given the properties of a normal distribu-
tion, the shape of this curve implies that there is a chance of dying within a
negative number of years, which of course is impossible. As a result, this
distribution is not useful for modeling Tx and we will need to explore other
alternatives.

3.6 Moments in Your Life

We can now define the concept of moments and then move on to life ex-
pectancy and standard deviation of the remaining lifetime. The word “mo-
ment” may seem like an odd word to use for describing this calculation,
but it basically captures the dispersion around a central point of value. If
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Figure 3.3

Figure 3.4

Tx is a continuous variable then the first moment of its distribution—or its
expected value—is defined as

E[Tx] =
∫ ∞

0
tfx(t) dt. (3.12)
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Table 3.3. Life expectancy at birth in 2005

Bottom 10 countries Top 10 countries

Swaziland 35.30 Japan 82.40
Lesotho 36.30 Sweden 80.70
Djibouti 37.60 Hong Kong 80.60
Botswana 38.20 Macao 80.07
Mozambique 38.40 Israel 79.97
Malawi 40.52 Iceland 79.91
Sierra Leone 42.37 Norway 79.73
South Africa 42.44 France 79.69
Burundi 42.66 Australia 79.64
Rwanda 43.33 Belgium 79.59

Source: Watson Wyatt.

Observe that this is equivalent to

E[Tx] =
∫ ∞

0
(tpx) dt. (3.13)

If you need to convince yourself of this relationship, write down the ex-
pression for the expectation (or average) using equation (3.12) and then use
integration by parts to convert the integrand, which can be stated as F ′

x(t)

times t, to Fx(t) itself. We will use this trick in several later chapters.
When Tx is a discrete random variable, the definition of the first mo-

ment is

E[Tx] =
N∑

i=1

xi Pr[Tx = xi]. (3.14)

Table 3.3 provides a sense of how the expected remaining lifetime at birth
E[T0 ] varies throughout the world. Japan sits at the top of the list with a
life expectancy of 82.4 years, and Swaziland is at the other end with a life
expectancy of only 35.3 years. Despite this variation, life expectancy has
been steadily improving throughout the world. The data in Table 3.4 illus-
trates the trend that has been observed since 1950.

Note that there is a difference between E[T0 ] and E[T1], for example.
The former is life expectancy at birth, while the latter is life expectancy at
the age of x = 1. In many countries there is a fairly large gap between these
two numbers due to infant mortality. In fact, much of the increase in life ex-
pectancy over the last hundred years or so becomes more noticeable when
computing E[T0 ] owing to the reduction in death during the first few days
of life.
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Table 3.4. Increase since 1950 in
life expectancy at birth E[T0 ]

Region Years

Asia 27.70
North Africa 26.20
South America 19.20
Western Africa 17.60
Southern Europe 14.90
Africa 14.80
Western Europe 11.63
North America 9.62

Source: Watson Wyatt.

Now that we have developed a basic understanding of the first moment,
or expected value, of Tx , we can move on to higher moments. The second
moment, or the square mean, for the continuous R.V. is

E[T 2
x ] =

∫ ∞

0
t 2fx(t) dt. (3.15)

Taking the root of the difference between the second moment and the first
moment squared yields the standard deviation of the random variable:

SD[Tx] =
√

E[T 2
x ] − E 2[Tx]. (3.16)

Squaring this quantity results in the variance of the random variable. These
important quantities will resurface at numerous points throughout the book.

3.7 Median vs. Expected Remaining Lifetime

A value distinct from the mean or expected remaining lifetime is the me-
dian remaining lifetime, which is related to Tx as follows:

Pr[Tx < M [Tx]] = 0.5. (3.17)

Another way to think of the median remaining lifetime is via

M [T ]px = 0.5. (3.18)

The probability of living to the median is 50%. The median remaining life-
time (MRL) will be less than the expected remaining lifetime (ERL) in all
cases. Here is the reason: since remaining lifetimes can only be positive—
you can’t live for additional negative years—it follows that the arithmetic
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average of a collection of positive numbers is always greater than the me-
dian of the same numbers. The bottom line is that one must be careful when
using such phrases as “people are living on average to 80 years.” This could
be either a median value M [T0 ] or a mean value E[T0 ], and the former is
less than the latter.

3.8 Exponential Law of Mortality

I’ve shown that modeling Tx using the normal distribution does not create a
realistic approximation of the remaining lifetime. Now I will examine an-
other possible model. Assume that the IFM curve satisfies λ(x + t) = λ,
which is constant across all ages and times. In this case, let us “build” the
Fx(t) and fx(t) functions using equation (3.5).

Note that we have

(tpx) = exp

{
−
∫ x+t

x

λ(s) ds

}
= e−λt. (3.19)

The integral in the exponent collapses to (i.e., can be solved to produce)
a linear function λt. This is because, since the function λ(x) is a horizon-
tal line, the area under the curve is simply the base ((x + t) − x) times the
height λ. In this case the current age x does not really affect the probability
of survival because all that matters is the magnitude λ of the IFM. In other
words, (tpx) is identical to (tpy) for any x and y as long as the underlying
λ is the same.

Think about what this means. At every age, the instantaneous probabil-
ity of death is the same. Did you know that lobsters have a constant IFM?
Their instantaneous probability of death is constant. In any event, thanks to
the relationship summarized in Figure 3.2, a number of mathematical ob-
jects “fall” into our lap:

Fx(t) = 1 − e−λt ; (3.20)

fx(t) = λe−λt. (3.21)

Remember that the expected remaining lifetime in the case of an expo-
nential model is

E[Tx] =
∫ ∞

0
tλe−λt dt = 1

λ
. (3.22)

For example: when λ = 0.10 the ERL is E[Tx] = 10, and when λ = 0.05 the
ERL is E[Tx] = 20. In contrast, the median remaining lifetime is obtained
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Table 3.5. Mortality odds when life is
exponentially distributed

Year F(t) f(t) f(t)/(1 − F(t))

1 3.92% 3.843% 4.00%
5 18.13% 3.275% 4.00%

10 32.97% 2.681% 4.00%
15 45.12% 2.195% 4.00%
20 55.07% 1.797% 4.00%
25 63.21% 1.472% 4.00%
30 69.88% 1.205% 4.00%
35 75.34% 0.986% 4.00%
40 79.81% 0.808% 4.00%
45 83.47% 0.661% 4.00%
50 86.47% 0.541% 4.00%

Note: E[T ] = 1/λ = 1/0.04 = 25 years.

by integrating the PDF curve from time 0 to the median remaining lifetime
and then solving for M [Tx]:

1

2
= e−λM [Tx ] ⇐⇒ M [Tx] = ln[2]

λ
<

1

λ
. (3.23)

Thus, when λ = 0.05 the MRL is M [Tx] = ln[2]/0.05 = 13.862 years, in
contrast to the ERL of 1/0.05 = 20 years. Notice the six-year gap between
the two measures. This gap is a result of the difference between means and
medians, which we will revisit later in the context of stock market returns.
The greater the volatility or dispersion of the numbers, the greater the vari-
ation between the mean and median. Here the mean is skewed (to the right)
by one or two outliers, but the median is not affected by that.

Now, Table 3.5 and Figure 3.5 can be used to assess the exponential law
of mortality relative to the normal distribution data presented earlier.

The exponential model of mortality appears to overcome some of the
problems of the normal model, and we will use the former in a number
of places throughout the book. There is, however, another model that also
provides a solution to the unrealistic assumption of a constant hazard rate.

3.9 Gompertz–Makeham Law of Mortality

As in the case of the exponential law of mortality, the Gompertz–Makeham
(GoMa) law of mortality is “built” using the IFM curve λ(x). In the GoMa
case, the definition is:
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Figure 3.5

λ(x) = λ + 1

b
e(x−m)/b, t ≥ 0, (3.24)

where m is the modal value of life and b is the dispersion coefficient. I shall
often return to the source and value of (m, b) within this book. According
to (3.24), the instantaneous force of mortality is a constant λ plus a time-
dependent exponential curve. The constant λ aims to capture the component
of the death rate that is attributable to accidents, while the exponentially in-
creasing portion reflects natural death causes. This curve increases with age
and goes to infinity as t → ∞.

When the individual is exactly x = m years old, the GoMa–IFM curve is
λ(m) = λ + 1/b, but when the individual is younger (x < m) the GoMa–
IFM curve is λ(x) < λ+1/b, and when the individual is older (x > m) the
GoMa–IFM curve is λ(x) > λ + 1/b. Thus, x = m is a special age point
on the IFM curve—it is the modal value.

The convention is to label equation (3.24) the Gompertz–Makeham law
when λ > 0 and simply Gompertz when λ = 0. In the Gompertz case,
typical numbers for the parameters are m = 82.3 and b = 11.4, under
which λ(65) = 0.01923 and λ(95) = 0.26724. You should note that, for
the most part, I will assume that λ = 0 whenever I work with the GoMa
law. Although certainly convenient from a mathematical perspective, this
assumption is also realistic because λ tends to have a very small value in
practice.
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By the construction specified in equation (3.5), the conditional probabil-
ity of survival under the GoMa–IFM curve is equal to

(tpx) = exp

{
−
∫ x+t

x

(
λ + 1

b
e(s−m)/b

)
ds

}
= exp{−λt + b(λ(x) − λ)(1 − e t/b)}, (3.25)

and Fx(t) = 1 − (tpx). Notice how the probability of survival declines,
in time, at a rate faster than λ. The additional terms in the exponent are
less than zero and thus accelerate the decline. For example: when λ = 0,
m = 82.3, and b = 11.4, equation (3.25) results in F65(20) = 0.6493 and
F65(10) = 0.2649 as well as F75(30) = 0.9988.

By taking derivatives of Fx(t) with respect to t, we recover the proba-
bility density function of the remaining lifetime random variable fx(t) =
F ′

x(t), which is left as an exercise problem.
We can also take the “easy” route by appealing to (3.10), which leads us to

fx(t) = exp{−λt + b(λ(x) − λ)(1 − e t/b)}
(

λ + 1

b
e(x+t−m)/b

)
; (3.26)

this is the (tpx) of the Gompertz–Makeham law multiplied by the IFM
curve λ(x + t).

The expected remaining lifetime under the Gompertz–Makeham law of
mortality is

E[Tx] =
∫ ∞

0
exp{−λt + b(λ(x) − λ)(1 − e t/b)} dt

= b�(−λb, b(λx − λ))

e(m−x)λ+b(λ−λx)
, (3.27)

where

�(a, c) =
∫ ∞

c

e−tt (a−1) dt

is the incomplete Gamma function, which can be easily evaluated for the
parameters a and c using the GAMMADIST function in Excel. A brief
technical note on this expression can be found in Section 3.17.

Tables 3.6 and 3.7 provide numerical examples of the expected life span
of males and females of age x under a variety of values for m and b. Note
that I have used different m, b values at different ages. Think of m and b as
parameters in a flexible functional form, with values selected that best fit
the survival probabilities at any given age.
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Table 3.6. Example of fitting Gompertz–Makeham
law to a group mortality table—Female

Age (x) m b x + E[Tx]

30 88.8379 9.213 83.61
40 88.8599 9.160 83.82
50 88.8725 9.136 84.21
60 88.8261 9.211 84.97
65 88.8403 9.183 85.69

Table 3.7. Example of fitting Gompertz–Makeham
law to a group mortality table—Male

Age (x) m b x + E[Tx]

30 84.4409 9.888 78.94
40 84.4729 9.831 79.31
50 84.4535 9.922 79.92
60 84.2693 10.179 81.17
65 84.1811 10.282 82.25

3.10 Fitting Discrete Tables to Continuous Laws

What is the best way to locate the Gompertz–Makeham or exponential pa-
rameters for the IFM that best fit a given mortality table such as Table 3.1?
Here are some possible techniques:

• equalize the ERL or the MRL so that they are the same under both dis-
tributions;

• pick one or two given survival points (tpx) on the mortality table and
then locate parameters that “fit” this probability;

• minimize the distance between the theoretical fx(t) and the empirical
(population) fx(t) over a given range; or

• any combination of these.

Table 3.8 and Figure 3.6 compare the survival probability (tp65) under a
Gompertz (i.e. λ = 0) and exponential specification that have been fit to
the unisex RP2000 table by matching the MRL (to equal 19 years across the
three data sets). Note the large difference between the exponential curve and
the other (Gompertz, RP2000) curve. The exponential model overestimates
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Table 3.8. How good is a continuous law of mortality?—
Gompertz vs. exponential vs. RP2000

Survival probability

Unisex
Age Gompertza Exponential b RP2000

65 1.000 1.000 1.000
70 0.929 0.837 0.929
75 0.821 0.701 0.822
80 0.666 0.587 0.667
84 0.509 0.509 0.509
85 0.467 0.491 0.466
90 0.256 0.411 0.249
95 0.092 0.344 0.088

100 0.016 0.288 0.020
105 0.001 0.241 0.003

a m = 86.34, b = 9.5; λ = 0. b λ = 3.555%.

Figure 3.6

the probability of living to very advanced ages and underestimates the prob-
ability of living to younger ages. In contrast, the Gompertz curve is virtually
indistinguishable from the RP2000.

I have just presented three general models for mortality. Two of them—
the normal and the exponential—are convenient to work with but are some-
what unrealistic. The third model, the Gompertz–Makeham distribution, is



3.11 General Hazard Rates 51

the more realistic of the three because (as demonstrated in Figure 3.6) it can
be “force fitted” to any number of true mortality tables at middle age. Note
though that at advanced ages the qx tend to flatten out (see Figure 3.1) and
so the Gompertz–Makeham law, which implies exponential growth, might
then not be a suitable model.

3.11 General Hazard Rates

The idea that the conditional survival probabilities can be generated via
the instantaneous force of mortality can be extended to more general event
probabilities. For example, the probability that someone is still working in
a given job, or the probability they are still contributing to a pension, can
be modeled via the instantaneous hazard rate (IHR). We will use the term
IFM when dealing specifically with death and use IHR when dealing with
other “decrements.”

For instance, it is common to model the rate at which people “lapse” or
“surrender” an insurance, annuity, or pension contract by using the curve

η(t) = η − η1

t + η2
, t > 0, (3.28)

where η ≥ 0, η1 ≥ 0, and η2 > 0. The hazard rate starts off at time 0 with
a value of η − η1/η2 and then increases at a rate of η1/(t + η2)

2 until it ap-
proaches the value η asymptotically. Hence, for this hazard rate function to
be positive and well-defined, we must impose the additional restriction that
η − η1/η2 > 0. From the construction provided by equation (3.8) we have

η(t) = h(t)

1 − H(t)
, (3.29)

where H(t) = Pr[L ≤ t] is the cumulative distribution function and h(t) =
H ′(t) is the probability density function of the random variable L. This leads
to the following solution:

H(t) = 1 − exp

{
−
∫ t

0
η(s) ds

}
. (3.30)

Some algebra and calculus then yield

H(t) = 1 − exp

{
−
∫ t

0
η ds

}
exp

{∫ t

0

η1

s + η2
ds

}

= 1 − e−ηt

(
t

η2
+ 1

)η1

. (3.31)
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Table 3.9. Working with the instantaneous hazard rate

Annual Hazard Integral Probability of
lapse rate: of η(s): nonlapse:

Year rate η(s)
∫ t

0 η(s) ds exp
{−∫ t

0 η(s) ds
}

1 2.0% 2.020% 2.020% 98.00%
2 2.0% 2.020% 4.041% 96.04%
3 3.0% 3.046% 7.086% 93.16%
4 4.0% 4.082% 11.169% 89.43%
5 5.0% 5.129% 16.298% 84.96%
6 6.0% 6.188% 22.486% 79.86%
7 7.0% 7.257% 29.743% 74.27%
8 10.0% 10.536% 40.279% 66.85%
9 12.0% 12.783% 53.062% 58.82%

10 14.0% 15.082% 68.144% 50.59%
11 18.0% 19.845% 87.989% 41.48%
12 20.0% 22.314% 110.304% 33.19%
13 20.0% 22.314% 132.618% 26.55%
14 20.0% 22.314% 154.932% 21.24%
15 20.0% 22.314% 177.247% 16.99%
16 20.0% 22.314% 199.561% 13.59%
17 20.0% 22.314% 221.876% 10.87%
18 20.0% 22.314% 244.190% 8.70%
19 20.0% 22.314% 266.504% 6.96%
20 100.0% 1000.000% 1266.504% 0.00%

This expression obviously collapses to 1 − e−ηt when η1 = 0. Finally, the
PDF for the future lapse-time random variable can be written explicitly as

h(t) =
(

η − η1

t + η2

)(
e−ηt

(
t

η2
+ 1

)η1
)

. (3.32)

Once again we have used the convenient relationship between the CDF,
PDF, and IHR.

The same ideas can be applied to discrete “lapsation” tables as well,
and this is shown in Table 3.9. Here, the second column contains the an-
nual lapse rates in percentage format. For example, during the first year,
2% of the population discontinue their coverage and surrender their poli-
cies. In the second year, 2% of the remaining (unlapsed) population sur-
render their policies. In the third year 3% surrender, and so forth. The final
row contains a lapse rate of 100%, which implies that anyone still hold-
ing a policy after 19 years will—at the end of the twentieth year—lapse or
surrender the policy with 100% certainty. View these rates as qx-values ap-
plied to lapsation and surrender as opposed to life and death. Remember that
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qx = 1 − exp
{−∫ 1

0 η(s) ds
}

by (3.5), and if we assume that η(s) is constant
over the interval from 0 to 1 then η = −ln[1 − qx] over the period in ques-
tion. In other words, the IHR curve is a step function that jumps each year
to a new level η and stays there until the end of the year. The third column in
the table converts these numbers into instantaneous lapse rates η(s) by tak-
ing logarithms as mentioned previously. The fourth column computes the
integral portion

∫ t

0 η(s) ds, which is simply the sum of the individual lapse
rates from year 1 to year t; and the last column computes the conditional
probability of survival, which (using our previous notation) is Pr[L > t].

Of course, you can go directly from the second column to the last col-
umn by multiplying 1 minus the annual lapse rates until the relevant year;
the result would be exactly the same. My point and objective are to illus-
trate how one can merge the continuous and discrete frameworks together.

Finally, the expected holding period E[L], which can be viewed as the
analogue of the expected remaining lifetime, is the integral (sum) of the
nonlapse probability from year 0 to year 20. In this example, the expected
remaining holding period is equal to 9.72 years. Note that larger values for
the annual lapse rates would reduce the expected remaining holding period.

Here’s a problem to consider. People purchase life insurance and must
pay premiums on a regular basis. Assume they lapse (cease paying) their
premiums at a rate of

η(t) = 0.10 + 0.09

t + 1
.

The instantaneous force of mortality is Gompertz with parameters m =
82.3 and b = 11.4, so that

λ(x) = 1

11.4
exp

{
x − 82.3

11.4

}
.

What is the probability of dying while the insurance policy is still in force
(unlapsed)?

3.12 Modeling Joint Lifetimes

Table 3.10 provides (reasonable) survival probabilities at age 65. It uses the
Gompertz law of mortality under parameters m = 88.18 and b = 10.5 for
males and m = 92.63 and b = 8.78 for females. These numbers are opti-
mistic projections and come directly from equation (3.25) under x = 65.

Imagine a married couple, both aged 65, who are interested in computing
joint survival probabilities. What is the probability that they both survive
from the current age 65 to age 90?
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Table 3.10. Survival probabilitiesa

at age 65

Survive
to age Male Female

70 0.935 0.967
75 0.839 0.912
80 0.705 0.823
85 0.533 0.686
90 0.339 0.497
95 0.164 0.281

100 0.023 0.103

a Using “optimistic” mortality projections and
continuous law of mortality.

The answer can be obtained by using the simple calculation

(25p
male
65 ) × (25p

female
65 ) = 0.339 × 0.497 = 16.84%.

This assumes we are dealing with independent events. But are they? Some
researchers have found a “broken heart” syndrome whereby the death of
one’s spouse increases the mortality rate of the survivor.

Next, what is the probability that at least one of the couple survives from
the current age 65 to age 90? The answer is:

1 − (1 − (25p
male
65 )) × (1 − (25p

female
65 )) = 1 − (1 − 0.339) × (1 − 0.497)

= 66.75%.

Here, the probability is almost four times larger. The intuition is that the
only excluded event is the one in which both people die, which has only a
(1−0.339)(1−0.497) = 33.25% chance of occurring. Subtract this from 1
and you have the probability that either the male, female, or both survive.

Note that the probability of an x-year-old male and a y-year-old female
both surviving t more years can be written as

(tp
male
x )× (tp

female
y ) = exp

{
−
(∫ x+t

x

λmale(s) ds +
∫ y+t

y

λfemale(s) ds

)}
.

Now using the same change of variables used to derive (3.6), the integral
portion can be represented as

−
∫ t

0
(λmale(x + s) + λfemale(y + s)) ds, (3.33)

and the two IFM curves can be combined into one IFM curve:
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λcombined(s) = λmale(x + s) + λfemale(y + s). (3.34)

Finally, if both are the same age x = y and if the parameters for m and b

are the same, then the combined IFM is simply double the individual IFM.

3.13 Period vs. Cohort Tables

Up to this point in the discussion, I have treated the death rate qx and the
survival rates (tpx) as universal variables that depend only on a current age
x but not on a particular calendar year or birth year. Thus, for example, q65

is a general probability that a 65-year-old will die in the next year, which
can also be interpreted as that fraction of a group of 65-year-olds who will
not survive to see their 66th birthday. However, I have been silent on the
issue of when, exactly, this 65-year-old person (or group) was born. This
person could have been born in 1940, in which case q65 is the probability
he or she will die in 2005. Or this person could have been born in 1955, in
which case q65 is the probability of dying in 2020. In fact, it is quite feasi-
ble that q65 for the 1940 cohort will be higher than q65 for the 1955 cohort,
since the health of a typical 65-year-old is projected to improve over time
given advances in medicine, nutrition, and the like. According to a study by
Tillinghast (2004), life expectancy at birth for females in the United States
has increased by nearly 30 years for those born in the new millennium as
compared to those born in 1900.

The principal thrust of this section is that sometimes it is important to keep
track of an actual cohort (birth year) as opposed to a generic person of age,
say, 65. Thus, in this section I will add a superscript to remind the reader of
the exact group and cohort to which I refer. For instance, q1940

65 denotes the
death probability for a 65-year-old born in the year 1940, while q1955

65 de-
notes the death probability for the group born in 1955. Generally speaking,
qz

x will denote the age-x death probability for the z-year cohort. The same
notation will be applied to (tp

z
x), which denotes the probability that an x-

year-old who was born in the year z will survive t more year(s) to age x + t.

What this means is that—in order to compute accurately the probability
of survival for someone who was born in 1940 and is currently 65 years of
age—we must evaluate

(5p
1940
65 ) = (1 − q1940

65 )(1 − q1940
66 )(1 − q1940

67 )(1 − q1940
68 )(1 − q1940

69 )

when dealing with a discrete table of values.
Along the same lines, the (generic) instantaneous force of mortality will

also exhibit a cohort superscript z indicating the year of birth and will thus
be denoted by λz(x). The survival probability would then be represented as
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Table 3.11. Change in mortality patterns
over time—Female

Individual survival probabilities
(tp55)

x + t 1971 1983 1996

55 100.0% 100.0% 100.0%
60 97.6% 98.2% 98.5%
65 93.8% 95.6% 96.2%
70 88.9% 91.4% 92.6%
75 81.2% 84.9% 89.9%
80 68.9% 74.5% 77.5%
85 50.4% 58.6% 62.8%
90 28.1% 37.9% 42.7%
95 10.3% 18.1% 22.1%

100 2.6% 5.9% 8.2%

E[T55] 31.76 34.03 35.22

(tp
z
x) = exp

{
−
∫ t

0
λz(x + s) ds

}
.

Here is yet another way to think about the cohort effect. If you track a
large and diverse population of individuals at different ages during the next
year and keep track of the number of deaths, you should be able to obtain
a reasonably good estimate for q2005−x

x . You would count the number of
x-year-olds alive at the beginning of the year and divide this number into
the number of x-year-olds who survived to the end of the year; 1 minus this
ratio would provide a contemporaneous estimate of q2005−x

x .

After all, the 55-year-olds who died during the year 2005 would have
been born in the year 1950, so you would have an estimate for q1950

55 . The
75-year-olds who died during the year would have been born in the year
1930, so you would have an estimate for q1930

75 , et cetera. This process would
be generating a period mortality table as opposed to a cohort mortality table.
In fact, Tables 3.11 and 3.12 were created from the same kind of period mor-
tality tables of q1971−x

x , q1983−x
x , and q2000−x

x values for three baseline years.
Thus, to be precise, the (tpx) values are not representative of any particular
cohort. To compute true (tp

z
x) would require converting, for 0 ≤ x ≤ 120,

the q1971−x
x values to qz

x values by making some sort of assumption about
how qx changes over time.

This brings us to a discussion of how to model mortality improvements,
which is distinct from the reasons why qz1

x might differ from qz2
x , where
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Table 3.12. Change in mortality patterns
over time—Male

Individual survival probabilities
(tp55)

x + t 1971 1983 1996

55 100.0% 100.0% 100.0%
60 95.2% 96.6% 97.4%
65 88.6% 91.9% 93.7%
70 79.9% 84.8% 88.0%
75 68.2% 74.2% 79.1%
80 53.0% 59.6% 66.3%
85 35.3% 41.5% 49.6%
90 18.1% 23.4% 31.3%
95 5.6% 10.0% 15.4%

100 0.7% 2.89% 5.55%

E[T55] 27.49 29.70 31.93

z1 > z2 are two different cohorts. One easy way to link the two death rates
is by assuming that, for any given age, mortality improves (i.e., death rates
decline) at a constant rate denoted by the Greek letter xi, ξ ≥ 0, so that

qz1
x = qz2

x e−ξ(z1−z2). (3.35)

Hence, the greater the distance in time between the two cohorts, the greater
the mortality improvement. For example, if we arbitrarily assume that ξ =
0.02 and q1940

65 = 0.015 then, under the simple model specified in equation
(3.35), q1955

65 = 0.015e−0.02(15) ≈ 0.011; this is a reduction of approximately
four deaths per thousand exposed. Note that for simplicity I have used the
e−ξ(z1−z2) structure for projecting mortality, though I could have done the
same via (1 + ξ)(z1−z2) instead. In that case the improvement would be
stated with effective as opposed to continuous compounding. Most com-
monly used projection scales or factors are often expressed in annual terms.
This is obviously a question of taste as opposed to substance.

In any case, when you think about it, this model is rather simplistic in
that ξ is not assumed to be age dependent (yielding, e.g., the same rate of
improvement for 99-year-olds and 19-year-olds)—and that, in the limit, all
qz1

x values go to zero as z1 increases. A more sophisticated model would
not assume a constant ξ for all ages but instead would assume ξz

x , which
varies with x and z and is based on other demographic and environmental
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factors. We won’t be doing much of that in this book, but it is an important
area of focus for actuaries who study mortality.

In fact, one might go so far as to argue that, if we are currently in the
year 2005, then it is nearly impossible to predict qz

x values for any z cohort
born anywhere near 2005. This is why some researchers (see the references
listed in Section 3.14 for more information) have developed models to ran-
domly project qz1

x values using biostatistical methods. In the most general
terms, there is a substantial amount of research being conducted to under-
stand the behavior of the function ξz, which is how the z birth-year cohort’s
health differs from previous and future generations. The study of this topic
is also of great importance to insurance companies, since major underesti-
mates of mortality improvements can adversely affect profitability. I will
revisit this topic in Chapter 10 and provide an example of the implications
of such a misestimation.

Just to make sure this concept is clear, here is an example of how to con-
vert a period mortality table to a cohort mortality table. In order to do this,
we must have a rule for projecting mortality.

So, for the sake of argument, assume the baseline period table is for the
year 2000 and that it contains the following mortality rates:

q1935
65 = 0.0103, q1934

66 = 0.0114, q1933
67 = 0.0125,

q1932
68 = 0.0137, q1931

69 = 0.0151.

(By the way, these numbers are from the female RP2000 mortality table;
see Table 14.1.) Note that in each case the subscript x and superscript z

add up to a value of 2000, which is consistent with the structure of a pe-
riod table. These people—of different ages—are all alive in the year 2000
and will experience different (hazard) mortality rates in the next year de-
pending on their current age. The main question I would like to address is:
What is the probability that a person born in the year 1935 (who is 65 years
old in 2000) will survive to age 70?

Prior to our discussion about cohort versus period tables, the answer to
this question would have been simply to multiply 1 minus the qx-values for
x = 65, . . . , 69. However, now I must convert the qx-values to those that
are relevant for the 1935 cohort. Obviously, if I make the trivial assumption
that the projection factor ξ = 0 in equation (3.35) then the qz

x-values are
identical for all birth cohorts, so (for example) q1935

66 = q1936
66 and q1935

68 =
q1937

68 . In this case, the period table is treated as a cohort table and the rele-
vant survival probability is

(5p65) = (1 − 0.0103)(1 − 0.0114)(1 − 0.0125)(1 − 0.0137)(1 − 0.0151)

= 0.9385,
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where I have deliberately not used a superscript on the survival probability
(5p65) to remind the reader that we are not distinguishing between period
tables and cohort tables. However, if we make the projection assumption
that mortality will improve by a constant ξ = 0.01 each year for each suc-
cessive generation, then the cohort survival probability is

(5p
1935
65 ) = (1 − 0.0103)(1 − 0.0114e−0.01)(1 − 0.0125e−0.02)

× (1 − 0.0137e−0.03)(1 − 0.0151e−0.04)

= 0.9398

as opposed to the lower 0.9385, reflecting the “improvement” in mortality.
Of course, I could have performed the same calculation for other ages

and other birth years. Not to belabor the point, but a true cohort mortality
table is actually a matrix, not a vector, since we must keep track not only of
ages but also birth years. Once again, the numbers displayed in Tables 3.11
and 3.12 are based on period mortality tables—for the baseline years 1971,
1983, and 2000—that have been converted into survival probabilities from
age 65 assuming ξ = 0 improvement factors.

In sum, the take-away from this section is as follows. Although I will not
make mortality improvement adjustments throughout the chapters, when
using a mortality table in practice it is important to be crystal clear on
whether these numbers capture a particular z-birth cohort qz

x or are meant
to represent a period, in which case qC−x

x ; here C is the baseline calendar
year, and everyone dies at age 120 (0 ≤ x ≤ 120).

3.14 Further Reading

Obviously it is impossible for me to cover all the relevant and important as-
pects of actuarial modeling of mortality in one chapter. For those who want
to learn (much) more, or those who want to become actuaries, the master
reference is Actuarial Mathematics by Bowers et al. (1997), published by
the Society of Actuaries. That book is truly an encyclopedia of actuarial
valuation, a topic we shall see more of in Chapter 6 and Chapter 7. How-
ever, I warn you that the notation and symbols in Bowers can be daunting
and that certain sections are impenetrable to the layman (like myself ).

For more information about the Gompertz–Makeham law of mortality,
see Carriere (1992, 1994). For a discussion of whether people are able to es-
timate their own “subjective” mortality rates, see Hurd and McGarry (1995).
For an examination of general mortality tables and how they are revised over
time, see Johansen (1995); see also Johansson (1996) for an analysis, using
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the Gompertz–Makeham distribution, of the economic value of decreasing
hazard rates.

The GoMa model is widely used by economists, actuaries, and insurance
researchers to model mortality. A popular model for projecting and forecast-
ing mortality was developed by Lee and Carter (1992), and a related paper
by Olivieri (2001) examines the same issue from a continuous-time per-
spective. For a discussion of current estimates of longevity and of how long
people are expected to live in the future, see Olshansky, Carnes, and Cassel
(1990) as well as Olshansky and Carnes (1997). Finally, for more infor-
mation about the Factors Affecting Retirement Mortality (FARM) project,
please visit the Society of Actuaries Web site, 〈www.soa.org〉.

3.15 Notation

qx —probability of death within the given year at age x

(tpx)— conditional probability of an x-year-old surviving t more years
Tx —remaining lifetime random variable for an individual currently aged x

fx(t)—probability density function (PDF) of the R.V. Tx

Fx(t)— cumulative distribution function (CDF) of the R.V. Tx (note:F ′
x(t) =

fx(t))

λ(x + t)—instantaneous force of mortality
e−λt —the (tpx) under exponential law of mortality
m, b— Gompertz–Makeham parameters
exp{−λt + b(λ(x) − λ)(1− e t/b)}—the (tpx) under Gompertz–Makeham

law of mortality
�(a, c)—incomplete Gamma function with parameters a and c

η—general hazard or lapse rate when the PDF is h(t) and the CDF is H(t)

3.16 Problems

Problem 3.1. Provide a simplified expression for the Gompertz–Makeham
fx(t) and plot its shape in Excel from x = 0 to x = 110. Assume m =
82.3 and b = 11.4, as well as m = 75 and b = 11.4. Note the qualitative
differences.

Problem 3.2. Using the same m = 82.3 and b = 11.4 parameters, com-
pute the median value M [T65] and compare with the mean value E[T65].

Problem 3.3. Using the Gompertz law of mortality under parameters m =
88.18 and b = 10.5 for males and m = 92.63 and b = 8.78 for females,
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compute the probability that at least one member of a married couple cur-
rently aged 62 (female) and 67 (male) will survive to age 95.

3.17 Technical Note: Incomplete Gamma Function in Excel

Recall that to obtain the expected remaining lifetime of the Gompertz–
Makeham law of mortality, we required

�(a, c) :=
∫ ∞

c

e−tt (a−1) dt,

which is the incomplete Gamma function. This function is available in
Excel, with a slight modification, using the CDF of the Gamma random
variable G together with the standard Gamma function �(a) via the rela-
tionship

1 − Ga(c) =
∫ ∞

c

e−tt (a−1)

�(a)
dt,

where Ga(c) is the CDF of a Gamma density with parameters c and a (i.e.,
Ga(c) = Pr[G < c]).

This leads to:

�(a)(1 − Ga(c)) =
∫ ∞

c

e−tt (a−1) dt = �(a, c). (3.36)

In order to calculate �(a, c), the actual syntax in Excel would be

EXP(GAMMALN(a))*(1-GAMMADIST(c,a,1,TRUE)).

For example, the value of �(2, 3) ≈ 0.199 and �(3, 2) ≈ 1.353. These
numbers can also be obtained by computing �(2) = 1.0 and multiplying
by (1-GAMMADIST(3,2,1,TRUE)) = 0.199 to recover the first expression
�(2, 3).

In the event that −1 < a ≤ 0, which results in an undefined �(a) value,
we can perform an integration by parts to obtain∫

e−tt (a−1) dt = 1

a
t ae−t + 1

a

∫
e−tt a dt. (3.37)

This is equivalent to

�(a, c) = −cae−c

a
+ 1

a
�(a + 1, c). (3.38)
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In our context, one iteration should be enough to make the implicit Gamma
parameter positive. The syntax in Excel would then be

(EXP(GAMMALN(a+1))*(1-GAMMADIST(c,a+1,1,TRUE)))/a
-((cˆa)*EXP(-c))/a

Finally, in the event we need another “round”, we use the identity

�(a, c) = −cae−c

a
+ 1

a

(−c(a+1)e−c

a + 1
+ 1

a + 1
�(a + 2, c)

)
. (3.39)

In later chapters I will rely on these functions when the a parameter is
negative.

3.18 Appendix: Normal Distribution and Calculus Refresher

Assume that you are interested in evaluating the following integral:


(a, b | c) =
∫ c

−∞
1√

2πb2
exp

{
−1

2

(
x − a

b

)2}
dx, (3.40)

where a, b, c can represent any constant or even a complicated function as
long as it does not depend on the integrating variable x. From a graphi-
cal perspective, this expression should be recognized as the “area under a
curve” between −∞ and c for a normal distribution with a mean or ex-
pected value of a and a standard deviation of b. This also means that, as
c → ∞, the integral value 
(a, b | c) → 1 regardless of the precise values
of a or b.

The rules of calculus allow me to make any number of substitutions within
the integrand—as long as I make equivalent substitutions over the upper and
lower bounds of integration and the integrator—without affecting the value
of the integral 
(a, b | c). The reason I would want to make these changes
is to simplify or perhaps collapse the integrand into an expression that is
easier to work with or that might be available analytically.

For example, I can define a new “integrator” variable z = (x − a)/b,
which of course means that x = zb+a. This means that every x in the inte-
gral should be replaced with zb + a and that every dx in the integral should
be replaced with b × dz. This also affects the upper and lower bounds of
integration. Instead of c we now must write (c − a)/b and instead of −∞
we must write (−∞ − m)/b, which is the same order of infinity.

The process of changing variables in calculus always proceeds along the
same lines. You start with a new symbol in the original integral in equa-
tion (3.40) as the integrating variable, for example z, which is expressed
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in terms of the old integrating variable, x. The upper and lower bounds of
integration are changed according to the new function defined by z. The
function is inverted so that the original x is expressed in terms of the new
z, and then dx is expressed as a function of dz. Finally the substitution is
made for both x and dx, which leads to the new integral that involves only
the integrating variable z. This allows us to write


(a, b | c) =
∫ (c−a)/b

−∞
1√
2π

exp

{
−z2

2

}
dz, (3.41)

an expression that is much cleaner and easier to use. This is the area under
the standard normal curve from −∞ to (c−a)/b. Statisticians often refer to
the process of subtracting the mean and dividing by the standard deviation
as standardizing the random variable, but it is a simple change of variable
from calculus.

Notice how the b × dz was canceled by the b in the denominator of the
fraction. This cancellation would have happened regardless of how com-
plicated the expression b is, as long as it is not a function of x. Thus, for
example, the combination a = νt and b = σ

√
t would not preclude one

from making the exact same substitution, since the functions a and b do not
depend on the critical integrating variable x. In this case the upper bound
of integration would be (c − νt)/σ

√
t , . . . .
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Valuation Models of Deterministic Interest

4.1 Continuously Compounded Interest Rates?

Our models will mostly be developed in continuous time. This means that
money grows as a result of the force of interest in a continuous manner. To
maintain consistency, I will use the letter r to denote the current continuously
compounded (CC) rate of interest. The relationship between the nominal
CC rate r and the effective annual rate R = er − 1 is, via the exponential
operator (or its inverse), the natural logarithm. For example, if the effective
annual rate is 10% then the continuously compounded rate will be (a lower)
ln[1 + 0.10] = 9.531% per annum. This 0.5% gap between the rates (47
basis points, to be exact) is substantial when compounded over long periods
of time. Note that each basis point is one hundredth of a percentage point.
Caution is therefore warranted when using a generic interest rate in any cal-
culation or formula. Make sure you confirm the compounding period.

Tables 4.1 and 4.2 show the growth of one dollar under different com-
pounding frequencies and effective annual rates. Of course, the more fre-
quently we compound interest, the greater the sum of money available at the
end of the year. Notice that a 12% rate compounded continuously yields
a gain of 75 basis points (1.12750 vs. 1.12) over a 12% rate compounded
annually.

When working with the continuously compounded rate, mathematically
we are building on the relationship

lim
n→∞

(
1 + r

n

)n

= er. (4.1)

This can be formally proved by defining a new variable,

y :=
(

1 + r

n

)n

, (4.2)

64
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Table 4.1. Year-end value of $1 under
infrequent compounding

Rate Annual (n = 1) Quarterly (n = 4)

4%
(
1 + 0.04

1

)1 = 1.04
(
1 + 0.04

4

)4 = 1.04060

5%
(
1 + 0.05

1

)1 = 1.05
(
1 + 0.05

4

)4 = 1.05095

6%
(
1 + 0.06

1

)1 = 1.06
(
1 + 0.06

4

)4 = 1.06136

7%
(
1 + 0.07

1

)1 = 1.07
(
1 + 0.07

4

)4 = 1.07186

8%
(
1 + 0.08

1

)1 = 1.08
(
1 + 0.08

4

)4 = 1.08243

10%
(
1 + 0.10

1

)1 = 1.10
(
1 + 0.10

4

)4 = 1.10381

12%
(
1 + 0.12

1

)1 = 1.12
(
1 + 0.12

4

)4 = 1.12551

Table 4.2. Year-end value of $1 under
frequent compounding

Rate Daily (n = 365) Continuous (n = ∞)

4%
(
1 + 0.04

365

)365 = 1.04081 e0.04×1 = 1.04081

5%
(
1 + 0.05

365

)365 = 1.05127 e0.05×1 = 1.05127

6%
(
1 + 0.06

365

)365 = 1.06183 e0.06×1 = 1.06184

7%
(
1 + 0.07

365

)365 = 1.07250 e0.07×1 = 1.07251

8%
(
1 + 0.08

365

)365 = 1.08328 e0.08×1 = 1.08329

10%
(
1 + 0.10

365

)365 = 1.10516 e0.10×1 = 1.10517

12%
(
1 + 0.12

365

)365 = 1.12747 e0.12×1 = 1.12750

and then taking natural logarithms of both sides so that

ln[y] = n ln

[
1 + r

n

]
.

The result is

lim
n→∞ ln[y] = lim

n→∞
ln[1 + r/n]

1/n
.

We now invoke L’Hôpital’s rule from calculus, which allows us to com-
pute limits of fractions by taking derivatives of both the numerator and
denominator and then calculating the limit of the “derived” fraction. If we
take derivatives of the numerator and denominator, we are left with
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lim
n→∞

ln[1 + r/n]

1/n
= lim

n→∞
r

1 + r/n
= r,

which then leads to

lim
n→∞ ln[y] = r

and therefore

lim
n→∞

(
1 + r

n

)n

= er.

The point of this little bit of calculus is to thoroughly convince you of the
following.

• Compounding interest more frequently—once you get down to the daily
level—does not lead to “more money” in the limit. In fact, there is only
a 1-basis-point difference between compounding interest daily and com-
pounding interest continuously.

• The mathematical technique was predicated on being able to take the de-
rivative of ln[1 + r/n] and then limits to arrive at er. This could be a
problem when the main argument in the function is random, in which
case it becomes impossible to take formal derivatives.

4.2 Discount Factors

Using our terminology, the discounted value of a dollar to be received at
time t is

d(t) = e−rt. (4.3)

This d(t) will often be referred to as a discount factor, which can be envi-
sioned as an exchange rate between a dollar at time t and its value today.
With a discount factor (function) in our hands we don’t have to worry about
the precise interest rate r, and we can compute the present value of any cash
flow C simply by multiplying it by d(t).

For example, when r = 5% and t = 10 years we obtain a discount fac-
tor of d(10) = e−0.05×10 = 0.6065; but when r = 3% and t = 10 years, the
discount factor is a higher d(10) = e−0.03×10 = 0.7408. Stated differently,
a dollar in ten years is worth 60.65 cents today when the interest rate is 5%
but is worth 74.08 cents today when the interest rate is 3%.

Remember that there is an inverse relationship between the interest rate
and the discount factor. If r increases then d(t) decreases, and d(t) de-
creases also when t increases.
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Table 4.3. Years required to double or triple $1
invested at various interest rates

Rate Double (C = $2) Triple (C = $3)

4% 1
0.04 ln[2] = 17.3286 1

0.04 ln[3] = 27.4653

5% 1
0.05 ln[2] = 13.8629 1

0.05 ln[3] = 21.9722

6% 1
0.06 ln[2] = 11.5524 1

0.06 ln[3] = 18.3102

7% 1
0.07 ln[2] = 9.9021 1

0.07 ln[3] = 15.6944

8% 1
0.08 ln[2] = 8.6643 1

0.08 ln[3] = 13.7326

10% 1
0.10 ln[2] = 6.9314 1

0.10 ln[3] = 10.9861

12% 1
0.12 ln[2] = 5.7762 1

0.12 ln[3] = 9.1551

How long does a dollar have to be invested before it doubles, triples, and
quadruples in value, assuming it is invested at a rate of r (CC) per annum?
Well, if we are interested in a dollar growing into C then we must solve

erT = C ⇐⇒ T = 1

r
ln[C]. (4.4)

With continuous compounding the variable t is expressed in decimal form
(or as a fraction of one year), which means that if we want to obtain its
value in months then we must calculate 12t, for weeks we must calculate
52t, and so on. Notice, again, the inverse relationship between the interest
rate r and the time needed to grow to a fixed dollar sum of C.

Thus (and as shown in Table 4.3), at a 12% interest rate you must wait
about 5.78 years for your money to double; at 4%, the wait is about 17.33
years.

4.3 How Accurate Is the Rule of 72?

Practitioners often invoke something called the “rule of 72,” which claims
that you can divide 72 by the effective annual interest rate to yield an esti-
mate for the number of years it takes for your money to double. In order to
compare this popular rule with the results in Table 4.3, I must first convert
the 4% and 12%, which are continuously compounded rates, into e0.04 −1 =
0.0408 and e0.12 − 1 = 0.1274, which are effective rates.

Using the rule of 72, we get 72/4.08 = 17.647, which is a bit higher than
the correct 17.33 years, and 72/12.74 = 5.65, which is slightly lower than
the correct 5.78 years.
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Note that if we use the rule of 72 with a denominator that is continu-
ously compounded instead of effective, the error in this approximation can
be written as

[error in rule of 72] := 1

r

(
72

100
− ln[2]

)
= 0.02685

r
.

If the valuation rate is greater than 2.68% then the “approximation bias”
is less than one year, and if the valuation rate is less than 2.68% then this
bias is greater than one year. Under this implementation, the error declines
with r and is always positive, which means that the rule overestimates the
waiting time.

Interestingly enough, since 100 ln[2] ≈ 69.3, a more accurate rule would
have been the “rule of 69” for an interest rate that is continuously com-
pounded. In this case, the error between the correct result and approxima-
tion would be smaller.

4.4 Zero Bonds and Coupon Bonds

Imagine a bond that matures in T years and pays annual coupons of c times
the face value. Assume these coupons are paid every day in the amount of
c/365. What is this bond “worth” today when interest rates in the market
are at r? The present value of the cash flows paid to the holder of the bond
(per $1 of face value) can be stated as

[PV of bond] =
365T∑
i=1

c/365

(1 + R/365)i
+ 1

(1 + R/365)365T
.

However, if we assume these coupons are paid in continuous time instead
of daily—and this won’t make a big difference, as we saw earlier—then a
model value of this bond can be written as

V(c, r, T ) =
∫ T

0
ce−rs ds + e−rT. (4.5)

Thus, a $10,000 face-value bond, which pays annual coupons of 10000c,
would have a model value of 10000V(c, r, T ). Similarly, a $100,000 face-
value bond, which pays annual coupons of 100000c, would have a model
value of 100000V(c, r, T ).

Stare at this equation for a while. Do you see why it makes sense to in-
tegrate the discount factor d(s) = e−rs against the coupon yield c? If we
are modeling a portfolio of zero-coupon bonds—each of which is paying
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Figure 4.1

only the face value, 1dt, as it matures between time 0 and T—then c = 1
in the main equation. And if we are modeling only one zero-coupon bond
that pays $1 at time T, then c = 0.

In either event, after some simple calculus is applied to the valuation
equation (4.5), we obtain that the model value of a “generic” bond can be
written as

V(c, r, T ) = c

r
(1 − e−rT ) + e−rT. (4.6)

This may look familiar. As we saw in Chapter 2, the PV of consumption
at retirement is calculated in much the same way as the first term in equa-
tion (4.6), while the second term is simply the discount factor for the face
value of the bond to be paid at time T. Note that if c = r then V(r, r, T ) =
1. In words, when the valuation rate is precisely equal to the coupon yield
on the bond, it will have a “par” (equal to face) model value. When c > r,
the bond will have a model value of V(c, r, T ) > 1, and when c < r the
value of the bond will be V(c, r, T ) < 1; see Figure 4.1 for an illustration.

To make sure you understand the basics of bond valuation, think about
the following questions.

• How do changes in c, r, and T affect the bond pricing equation?
• What happens as T → ∞ and the bond is perpetual?
• Where, in the calculus, is the constant valuation rate used?
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Table 4.4. Valuation of 5-year bonds as a
fraction of face value

Valuation
rate (r) Value

4% V(0.05, 0.04, 5) = 1.0453
5% V(0.05, 0.05, 5) = 1.0000
6% V(0.05, 0.06, 5) = 0.9568

Note: Coupon yield c = 5%, maturity T = 5 years.

Table 4.5. Valuation of 10-year bonds as a
fraction of face value

Valuation
rate (r) Value

4% V(0.05, 0.04, 10) = 1.0824
5% V(0.05, 0.05, 10) = 1.0000
6% V(0.05, 0.0, 10) = 0.9248

Note: Coupon yield c = 5%, maturity T = 10 years.

Tables 4.4 and 4.5 provide values for generic bonds as functions of the
valuation rate r, the coupon yield c, and the maturity T. When we increase
the maturity from T = 5 years to T = 10 years, notice the impact on
the bond value. Remember also that these numbers are fractions of “face
value.” So, for example, a 5-year 5% bond is worth $9,568 when the face
value is $10,000 and the valuation rate is r = 6%.

The impact of a varying r, c, and T can also be demonstrated graphically.
Figure 4.2 shows that, if a set of bonds has coupon rates that are higher than
the valuation rate (i.e., they are premium bonds), then bonds with larger
coupons will, of course, have higher values than those with lower coupons;
but given two bonds with the same coupon, the bond with the longer matu-
rity will have a higher value. The opposite is true in a “discount” situation:
given two bonds with the same coupon rate, the bond with the shorter ma-
turity will be more valuable.

4.5 Arbitrage: Linking Value and Market Price

Note that I am careful to distinguish between the model value of the generic
bond, which is based on formulas and assumptions, and the market price
of the bond, which is an actual number at which investors can buy and sell
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Figure 4.2

the bond. In many cases the model value of a financial instrument can dif-
fer from the market price of the same instrument, and later in the analysis
we will discuss the reasons for such differences.

However, when the valuation rate is r and an investor can borrow as well
as lend money at this valuation rate, then the aforementioned model value
V(c, r, T ) must also be the market price of the bond. If not, there is an ar-
bitrage or opportunity for riskless profit. This imbalance cannot persist for
long—would you leave a $100 bill on the floor?—and eventually the mar-
ket price will converge to the model value.

If the market price of a bond were actually higher than its model value
as dictated by equation (4.6), then an arbitrageur would short sell the (over-
priced) bond and invest the proceeds at the valuation rate r in order to pay
off the coupons due along the way. The selling pressure (on the bond) would
drive the market price down toward its model value. Conversely, if the mar-
ket price of the bond were lower than dictated by the model value in (4.6),
then arbitrageurs would purchase the underpriced bond by borrowing the
required funds at the rate of r and slowly paying back the loan as the bond
paid coupons and finally matured. In this case, the cash flows received from
the bond contract would exceed the debt owed to the bank. The buying pres-
sure would eventually force the market price of the bond up to its model
value. Or it is also possible that the borrowing pressure would force the
market interest rate r up, and the model value would be forced down to the
market price.
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For example, if a T = 10-year maturity coupon bond pays an annual
coupon yield of c = 5% when interest rates in the market are at r = 6%,
then the model value of this bond is V(0.05, 0.06,10) = 92.48% of its face
value. Thus, if the face value of the bond is $10,000 and the annual coupon
of $500 is paid daily in amounts of 500/365 dollars per day, then the model
value of the bond is $9,248. The reason this bond has a value lower than
its face amount of $10,000 is because the 5% coupon rate is too low rela-
tive to the current interest rate in the market. Hence, to compensate for this
deficiency, the model value is only 92.48% of the face value.

Now imagine this bond actually existed and was trading in the market for
a price of $9,500, which is higher than the model value. If you could short
sell this relatively expensive bond for $9,500 and use the entire proceeds of
the short sale, you could immediately pocket $252 and use the remaining
$9,248 to invest at 6%. This would generate the required $500/365 each
day, and the bulk of the funds would provide exactly $10,000 to pay off the
bond at maturity. It’s easy to see why an opportunity like this can’t stick
around forever, so the bond price must eventually fall to the model value of
$9,248.

4.6 Term Structure of Interest Rates

In our earlier discussion we assumed that the CC interest rate r at which
money is growing over time is constant during the entire period of analysis.
In practice, the valuation rate can depend on the maturity time t. Therefore,
when using a time-dependent interest rate, I will use the notation r(t) to re-
mind the reader that the interest rate curve depends on the maturity. In this
case the discount factor would retain the same functional form:

d(t) = e−r(t)t, (4.7)

with the understanding that stating the valuation rate as simply r will imply
a constant or flat valuation curve.

For example, assume that the time-dependent continuously compounded
interest rate r(t) is

r(t) = a − b

t + 1
, t ≥ 0. (4.8)

This is just one of many ways of modeling the time-dependent rate. In this
case, when a = 5% and b = 2% we have r(10) = 0.04818, and when a =
6% and b = 2% we have r(10) = 0.05818. Note that, in this model, as
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Figure 4.3

T → ∞ the interest rate converges to a from below because the second
portion converges to zero. In this case the discount factor would be

d(t) = e−at+bt/(t+1).

Think about what this “term structure” of interest rates—or the relation-
ship between interest rates and various maturities—looks like graphically.
Figure 4.3 displays the valuation rate r(t) over 30 years for three values of
{a, b} in the equation just displayed. Observe the effect on the “big picture”
of changing b.

Note that r(t) being a function of time is separate from the fact that the
r(t) itself can change over time. That is, the curve might look one way
today, but tomorrow it could take on a different shape. I will not delve too
much into this issue right now, but keep this in mind as we move forward.

4.7 Bonds: Nonflat Term Structure

When the continuously compounded valuation rate r(t) is a function of
time, the fundamental bond valuation equation (4.6) must be written as

V(c, r(t), T ) = c

∫ T

0
e−r(s)s ds + e−r(T )T. (4.9)
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For example, if we assume that

r(t) = a − b

(
1

t + 1

)
,

then

V(c, r(t), T ) = c

∫ T

0
e−(a−b/(s+1))s ds + e−(a−b/(T +1))T.

Of course, there is never any guarantee that we can “solve” the integral and
arrive at a closed-form expression for the bond value, regardless of how
simple an interest rate curve r(t) we use.

4.8 Bonds: Nonconstant Coupons

If the coupon yield c(t) is also a function of time, then the fundamental
bond valuation equation (4.6) must be written as

V(c(t), r(t), T ) =
∫ T

0
c(s)e−r(s)s ds + e−r(T )T. (4.10)

For instance: if a 20-year bond with a face (or principal) value of $10,000
pays an annual coupon of $1,000 that declines by 7% each year, then it fol-
lows that, under a constant valuation rate of r = 10%, the model bond value
would be expressed as

V =
∫ 20

0
1000e−(0.07)se−(0.10)s ds + 10000e−(0.10)(20)

= $7,039.39. (4.11)

The first term in the integrand captures the declining coupon, and the second
term is the present value factor that brings all the coupons back to time 0.

More generally, a bond with a face value of F that pays a coupon of cF

that declines by λ each year would have a value of

V = cF

∫ T

0
e−(r+λ)s ds + Fe−rT

= cF

r + λ
(1 − e−(r+λ)T ) + Fe−rT. (4.12)

Note that, when the bond becomes a perpetuity (which means that T →
∞), the bond value will converge to a simple V = cF/(r + λ).

It might seem artificial and unrealistic to have a bond that pays coupons
in this way, but later we shall see a number of applications of this concept.
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4.9 Taylor’s Approximation

In this section I investigate the sensitivity or impact of the valuation rate r

on the generic bond equation V(c, t, T ). Specifically, I am interested in how
much the bond value will change when we increase or decrease the rate r

by a small amount �r.

Economic intuition dictates that if �r > 0 then the change in the value
of the bond will be negative and if �r < 0 then the change in the value
of the bond will be positive. And, if you remember your calculus, we can
approximate the change in the value of any continuous function by taking
derivatives of the given function and applying Taylor’s theorem. According
to the Taylor approximation,

V(c, r + �r, T ) − V(c, r, T )

≈ (�r)V ′(c, r, T ) + (�r)2

2
V ′′(c, r, T ), (4.13)

where V ′(c, r, T ) and V ′′(c, r, T ) denote (respectively) the first and second
derivative of the bond equation (4.6) relative to the valuation rate r. The
intuition for this relationship is that a small change in the rate r will trig-
ger a small change in the bond, where the relationship between these two
changes is determined by how quickly the bond function V(c, r, T ) moves
when plotted against r.

It is convenient to rewrite (4.13) by dividing both sides by the bond value
V(c, r, T ), which leads to

V(c, r + �r, T ) − V(c, r, T )

V(c, r, T )

≈ (�r)
V ′(c, r, T )

V(c, r, T )
+ (�r)2

2

V ′′(c, r, T )

V(c, r, T )
. (4.14)

In English, the relative change in the bond value (as a result of a move-
ment in the rate r) can be approximated by the sum of two quantities on the
right-hand side of (4.14). Finally, given the centrality of this approxima-
tion in a number of places throughout the material, I will use the notation
D(c, r, T ) as follows:

D(c, r, T ) = −∂V(c, r, T )/∂r

V(c, r, T )
; (4.15)

also,

K(c, r, T ) = ∂ 2V(c, r, T )/∂r 2

V(c, r, T )
. (4.16)
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In both definitions, the derivative with respect to the rate r is now stated
explicitly. Later I will explain why I have decided to define D(c, r, T ) as
“negative” the derivative, which might seem odd at first glance. Some read-
ers will recognize the expression D(c, r, T ) as the modified duration of the
bond and K(c, r, T ) as the (modified) convexity of the bond, assuming the
valuation rate is equal to the bond’s internal yield. By internal yield I mean
the value of r that leads to an expression for V(c, r, T ) that is equivalent to
the market price of the bond. Note that there are several different ways in
which duration is defined in the financial literature. Sometimes the deriv-
ative of −V(c, r, T ) with respect to r itself is called the duration; in other
places, −D(c, r, T ) times er is defined as duration. To avoid confusion, in
this book duration is as defined by equation (4.15).

These definitions and terms lead us from (4.14) to the abbreviated approx-
imation

[% change in bond value] ≈ −(�r)D + (�r)2

2
K. (4.17)

Observe also that nowhere in this approximation do we explicitly use the
functional form of the bond value itself. Indeed, even if the pricing equa-
tion is some complicated function of valuation rates, coupon yields, and
time horizons, the relationship (4.17) should still hold.

4.10 Explicit Values for Duration and Convexity

Recall equation (4.6), where the explicit definition of the bond value in the
generic case was

V(c, r, T ) = c

r
(1 − e−rT ) + e−rT ;

this is the result of integrating the coupon rate c against the discount func-
tion e−rs and then adding the discounted face value. Using this expression,
we can obtain explicit values for D and K by taking the appropriate partial
derivatives in (4.15) and (4.16). This leads to

D(c, r, T ) = −c(e−rT − 1 + rTe−rT ) − r 2Te−Tr

cr(1 − e−Tr ) + r 2e−Tr
(4.18)

and

K(c, r, T ) = c(2 − e−rT(2 + 2rT + r 2T 2)) + r 3T 2e−rT

cr 2(1 − e−Tr ) + r 3e−rT
. (4.19)
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Figure 4.4

Despite the messy-looking expressions for both D and K, a number of im-
portant insights can be obtained from “staring” at the equations long enough.
Figure 4.4 provides some graphical intuition for the relationship between
V, K, and D as a function of c, r, and T.

First, with regards to D(c, r, T )—which can be interpreted as the bond
value’s derivative scaled by the bond value’s price—notice that if the valu-
ation rate r is equal to the coupon yield c then (4.18) simplifies to

D(c, c, T ) = 1 − e−cT

c
,

which converges to T as c → 0.

Along the same lines, note that if c = 0 (which, recall, is a zero-coupon
bond) then the value of D simplifies to

D(0, r, T ) = T

independently of r, which happens to be the exact maturity of the zero-
coupon bond. This is why it is common to measure D in units of years.
Later I will derive a deeper connection between D and actual units of time.

Moving on to K(c, r, T )—the bond value’s second derivative scaled by
the bond value’s price—observe that when the coupon yield c is equal to
the valuation rate r, we obtain the much simpler
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K(c, c, T ) = 2(1 − Tce−cT − e−cT )

c2
.

Furthermore, when c = 0 and the bond is of the zero-coupon variety, the
value collapses to

K(0, r, T ) = T 2;
hence it is common to measure K in units of years squared.

4.11 Numerical Examples of Duration and Convexity

Let’s start with two bonds. Bond 1 has a face value of $10,000 paying a
continuous coupon yield of c = 11% and maturing in T = 17.20 years. The
current (valuation) rate in the market is assumed to be r = 7%, and the
bond value is therefore

10000V(0.11, 0.07,17.2) ≈ $14,000.

At the same time, another $10,000 face-value bond (bond 2), paying a
coupon of c = 10% and with maturity in T = 38.69 years, is also “worth”
$14,000 under the current r = 7% valuation rate because

10000V(0.10, 0.07, 38.69) ≈ $14,000.

Our second bond is worth the same as the first bond—even though it has a
lower (10% versus 11%) coupon yield—because it has a (much) longer ma-
turity. Both bonds are obviously worth much more than their $10,000 par
value as a result of the generous coupon yields (10% and 11%), which are
much higher than current market rates of r = 7%.

The D and K values of the two bonds are as follows. For bond 1, equa-
tion (4.18) leads to D(0.11, 0.07,17.2) = 9.1185 years and equation (4.19)
leads to K(0.11, 0.07,17.2) = 119.002 years squared. Note that the D value
is much lower than the maturity of T = 17.2 years and that the K value is
much lower than T 2 = 295.84 years squared.

The D and K values of bond 2 are D(0.10, 0.07, 38.69) = 12.8162 years
and K(0.10, 0.07, 38.69) = 283.010 units, respectively. Of course, the larger
values come from the longer maturity of bond 2. Interestingly, the 20 addi-
tional years of maturity of bond 2 adds less than four years to the D value.
In other words, the sensitivity of the bond value to changes in the rate r is
not that much greater for bond 2 than for bond 1.
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Now let us return to our approximation. Both bonds are “worth” $14,000.
Assume the valuation (or market) interest rate r = 7% changes from r =
7% to 7% + �r over a (very) short period of time, so that the maturities of
the two bonds are still 17.2 years and 28.69 years, respectively.

Using the Taylor D-and-K method—as presented in (4.17)—the change
in the value (or price) of the bond will be approximated by

V(c, r, T )

(
−(�r)D + (�r)2

2
K

)
. (4.20)

For example, if �r = 0.01, which is a 1% (or 100-basis-point) increase in
the valuation rate, then the value of bond 1 becomes

≈ 14000 + 14000

(
−(0.01)(9.1185) + (0.01)2

2
119.002

)
= $12,806.71; (4.21)

for bond 2, we get

≈ 14000 + 14000

(
−(0.01)(12.8162) + (0.01)2

2
283.010

)
= $12,403.84. (4.22)

The value of both bonds will fall when interest rates increase, but the im-
pact of this change on bond 2 will be greater than its impact on bond 1. In
fact, bond 2 will drop in value by $400 more as a result of the greater sen-
sitivity of D to changes in rates.

Note that by using the precise generic bond formula for the value of both
bonds under the new interest rate r = 8%, we obtain

10000V(0.11, 0.08,17.2) = $12,802.80 (4.23)

and

10000V(0.10, 0.08, 38.69) = $12,386.84, (4.24)

respectively. The message is clear. Taylor’s D-and-K approximation gives
us numbers that are within a few dollars of the true bond value. Table 4.6
provides a more extensive example of how well (or poorly) the approxi-
mation works when we compare to the correct bond value. In the second
column I have computed the new bond value using only the first derivative
D in Taylor’s approximation, and in the third column I have used both the
first and second derivatives.
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Table 4.6. Estimated vs. actual value of $10,000 bond
after change in valuation rates

Approximation usinga

�r D only D & K Exact value b

+2.5% $6,865.92 $7,657.22 $7,520.64
+1.0% $8,746.37 $8,872.98 $8,863.40
+0.5% $9,373.18 $9,404.83 $9,403.60
+0.1% $9,874.64 $9,875.90 $9,875.89

0.0% $10,000.00 $10,000.00 $10,000.00
−0.1% $10,125.36 $10,126.63 $10,126.64
−0.5% $10,626.82 $10,658.47 $10,659.79
−1.0% $11,253.63 $11,380.24 $11,391.17
−2.5% $13,134.08 $13,925.39 $14,115.33

a “D only” is first derivative; “D & K” is first and second derivative.
b 10000V(c, r + �r, T ).
Note: c = 7%, r = 7%, T = 30 years.

Notice that for relatively small (i.e., 10-basis-point) changes in the valu-
ation rate, the D-only and the D-and-K approximations produce numbers
that are remarkably close to the correct bond value under the new valuation
rate. However, as �r grows—either positively or negatively—the D-only
approximation can be off by hundreds of dollars and the D-and-K approx-
imation is biased by over $100.

Figure 4.5 graphically summarizes the characteristics of the two approxi-
mations. Note also that the D-only approximation always leads to a smaller
bond value than the correct answer, regardless of whether �r is large or
small, positive or negative. Adding the second derivative, which is the K

term, partially closes the gap or bias and brings the total D-and-K approx-
imation closer to the correct number. Even so, if �r > 0 then the Taylor
D-and-K method overestimates the new bond price, and if �r < 0 then
Taylor’s D-and-K method (still) underestimates the price.

4.12 Another Look at Duration and Convexity

Let us go back to first principles and carefully examine the definition of
Taylor’s D, using the integral representation of the generic bond value:

D(c, r, T ) = − ∂
∂r

(∫ T

0 ce−rs ds + e−rT
)

∫ T

0 ce−rs ds + e−rT
. (4.25)
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Figure 4.5

The numerator is (minus) the first derivative of the bond price with respect
to the valuation rate, and the denominator is the bond value itself. Remem-
ber that the derivative “operator” can be moved inside the integral and then
used on the integrand, so that the entire D(c, r, T ) can be rewritten as

D(c, r, T ) =
∫ T

0
s

(
ce−rs

V (c, r, T )

)
ds + T

(
e−rT

V(c, r, T )

)
. (4.26)

Stare at this expression for a while. We see that the D(c, r, T ) function can
also be identified as a type of weighted average. The duration of the bond
value is the weighted average of the time to payment, where the weights are
the share of the bond’s cash flow in present value terms.

This is why we call D(c, r, T ) the bond’s duration. Likewise, K(c, r, T )

is called the bond’s convexity. The word “convexity” comes from measur-
ing the curvature of a plot of the bond price as a function of the interest
rate.

4.13 Further Reading

There are tens if not hundreds of books and articles that have been writ-
ten in the last century that develop a formal model of bond pricing and
fixed-income products. Clearly it is impossible to do justice to the numer-
ous and respected authors who have written on this topic. However, if you
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are interested in reading and learning more about duration, convexity, and
sophisticated models of the yield curve—and if you are willing to toler-
ate some more advanced mathematics—then I would recommend you get
a copy of de La Grandville’s Bond Pricing and Portfolio Analysis (2001).
Alternatively, you can read Fabozzi’s Fixed Income Mathematics (1996).
Between these two books, you should have your theoretical bases covered.

4.14 Notation

V(c, r, T )—value of a generic coupon bond, which pays a coupon of c, ma-
tures after time T, and is valued using the discount rate r

D(c, r, T )— duration of the generic coupon bond
K(c, r, T )— convexity of the generic coupon bond

4.15 Problems

Problem 4.1. A perpetual bond with a face value of F = $100,000 pays
coupons of cF = $10,000 per year, but these coupons decline at a rate of
λ = 5% each year. The current valuation rate in the market is r = 7%, yet
the bond is trading for $96,000. Please describe in detail how you would
arbitrage this price, assuming you could borrow and lend at r = 7%.

Problem 4.2. Take derivatives of the basic bond value with respect to the
interest rate r, and confirm you recover the expressions for D and K.

Problem 4.3. Let cA and cB denote the coupons on a $100,000 face-value
bond that mature at time TA and TB , respectively. You are long two bonds
{A, B} and short a third bond {G} with coupon cG that matures at time
TG. The model value of bond {G} is equal to the sum of the bonds {A, B}.
Interest rates move from r to r + �r. Derive an expression for the change
in the model value of your position.
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Models of Risky Financial Investments

5.1 Recent Stock Market History

In this chapter I will introduce models for investments that are more risky
than the relatively safe fixed-income bonds introduced in the previous chap-
ter. My objective is to develop a limited set of formulas for computing the
probabilities of various investment outcomes over long-term horizons.

Table 5.1 starts us down this path by providing a 10-year history of the
stock market as proxied by the widely cited Standard & Poor’s index of
the 500 largest companies traded in the United States. I will label this
the SP500 index, or sometimes just “the index.” Although this index cap-
tures only 500 of more than 5,000 investable stocks and common shares in
the United States, these 500 are quite influential because they account for
roughly 60%–70% of the market capitalization (i.e., the market value of all
companies) in the country.

Of course, many other developed countries have their own stock market
and indices—and the financial models we develop can be applied to any one
of them—but I have selected the U.S. market because of its overwhelming
influence in the global economy.

For example, if at the open of trading in January 1995 you invested
$100 spread amongst these 500 companies—or if you purchased $100 of
an open-ended mutual fund or exchange-traded mutual fund that invested
in the SP500 index—then at the close of trading in December 1995 your
money would have grown to 100(1 + 0.3743) = 137.43 dollars. This
growth would have come from dividends (roughly two or three percent-
age points) but mostly from capital gains. If you then continued investing
in the SP500 during the year 1996, your $137.43 would have grown by
23.07% to 137.43(1+ 0.2307) = 169.14 dollars by the end of 1996. In fact,
at the end of the 10-year period from early January 1995 to late December

83
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Table 5.1. Nominal investment returns
over 10 years

Stocks Cash Inflation
Year (SP500) (T-bills) (CPI)

1995 37.43% 5.60% 2.54%
1996 23.07% 5.21% 3.32%
1997 33.36% 5.26% 1.92%
1998 28.58% 4.86% 1.61%
1999 21.04% 4.68% 2.68%
2000 −9.11% 5.89% 3.39%
2001 −11.88% 3.83% 1.55%
2002 −22.10% 1.65% 2.38%
2003 28.70% 1.02% 1.88%
2004 10.87% 1.20% 3.26%

Source: Ibbotson Associates.

2004, your original $100 would have grown to more than $312. The effective
compound annual growth rate (CAGR) was thus (3.125)1/10 −1 = 12.07%.

Converting this number to continuous compounding yields a growth rate of
ln[1.1207] = 11.40%. As in earlier chapters of the book, I will do my best
to use continuous compounding whenever possible.

A number of additional insights from Table 5.1 are worth pointing out.
First, if we take a simple arithmetic mean (average) of the ten numbers—
that is, we add them up and divide by ten—the result is a value of 14.00%,
which is about two percentage points higher than the CAGR. Later I will
return to this number and discuss its relevance and importance in forecast-
ing returns.

Note also that the last few years of the 1990s was an extraordinary and
historically unprecedented period in the stock market, both U.S. and global.
For five years in a row the market went up by more than 20% per year. It is
hard to believe this feat will ever be repeated, and the first few years of the
twenty-first century reminded investors about the other side of this coin.

Table 5.1 has two additional columns that display the investment returns
from holding cash as proxied by U.S. Treasury bills and the inflation rate
as measured by the Consumer Price Index. The “cash” series should be in-
terpreted in the same way as the “stocks” series. A sum of $100 invested in
early 1995 would have grown to $105.60 by the end of 1995, and so forth.
Note that cash is much less volatile than stocks because its returns never
exceeded 6% but never fell below zero. Cash performed better than stocks
in three of the ten years, and stocks outperformed cash in the seven other
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Table 5.2. Growth rates during different investment periods

Invested in
January of Value of $1 invested in SP500 index

1995 $1.000
1996 $1.374
1997 $1.691 $1.000
1998 $2.256 $1.334
1999 $2.900 $1.715 $1.000
2000 $3.510 $2.076 $1.210
2001 $3.191 $1.886 $1.100 $1.000
2002 $2.812 $1.662 $0.969 $0.881
2003 $2.190 $1.295 $0.755 $0.686 $1.000
2004 $2.819 $1.667 $0.972 $0.883 $1.287
2005 $3.125 $1.848 $1.078 $0.980 $1.427

Growth (CC) 11.40% 7.67% 1.25% −0.52% 17.78%

years. This pattern is not just an artifact of the last ten years. Indeed, over
the last 75 years for which reliable stock market data is available, stocks
have done better than cash, on average. Every once in a while, however,
stocks experience a “shock” in which bad returns can wipe out years of
gains. This is a brief snapshot of the relationship between risk and return
in the capital markets.

Table 5.2 provides a slightly different perspective on the risk aspects of
investing. It displays the evolution of $1 invested at the start of 1995, 1997,
1999, 2001, and 2003—assuming it was invested in the SP500 index.

For example, the 1995 dollar grew to $3.125 by the open of trading in
2005, which was more than triple the original investment. And as previ-
ously shown, the annual growth rate (continuously compounded) for the
10-year period was 11.40%.

Notice that the 1997 dollar experienced a growth rate of 7.67% during the
eight years in which it was exposed to the market, whereas the 2001 dol-
lar never quite recovered from the bear market and started 2005 at $0.98
for a negative four-year growth rate of −0.52%. Finally, the 2003 dollar
earned a growth rate of 17.78% over the two-year period of 2003 and 2004.
Observe how the growth rate depends on when you “get in” as well as the
ending period, of course.

Now, back to the previous table, the last column in Table 5.1 displays the
U.S. inflation rate during the same 10-year period, as proxied by the Con-
sumer Price Index. Over this 10-year period, inflation eroded purchasing
power by no more than 3.5% in any given year. These numbers are tame
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Table 5.3. After-inflation (real)
returns over 10 years

Stocks Cash
Year (SP500) (T-bills)

1995 34.03% 2.98%
1996 19.12% 1.83%
1997 30.85% 3.28%
1998 26.54% 3.20%
1999 17.88% 1.95%
2000 −12.09% 2.42%
2001 −13.23% 2.25%
2002 −23.91% −0.71%
2003 26.33% −0.84%
2004 8.37% 0.49%

compared to the inflation rates of the 1970s and early 1980s. Usually infla-
tion is lower than the T-bill return, although 2002 and 2003 were exceptions
to this rule.

In fact, Table 5.1 can be converted from “nominal” pre-inflation num-
bers to “real” after-inflation numbers by dividing 1 plus the investment
return by 1 plus the inflation rate and then subtracting 1; mathematically,
(1 + R)/(1 + π) − 1. The intuition for the division—versus subtracting
inflation from the return—is the same logic as for compounding interest.
Table 5.3 displays the converted numbers.

One of the most fundamental beliefs in financial economics—some even
consider it the religion’s dogma—is that we never know what next year’s,
next month’s, or even next week’s investment return will be. It is random,
uncertain, and stochastic. All we can do is try to estimate the odds or the
probability distribution.

5.2 Arithmetic Average Return versus
Geometric Average Return

Given that we don’t know what the future will bring, let’s start simple and
imagine that next year will yield one of three outcomes: {10%, 35%, −15%}.
Furthermore, assume that the outcome R = 10% has a 1/2 chance, that R =
35% has a 1/4 chance, and that R = −15% has a 1/4 chance. You could
generate (or simulate) these outcomes by tossing a fair coin. If it falls heads,
register a +10% gain. If it falls tails, toss the coin again and then, depending
on whether it falls heads or tails the second time, register a +35% or −15%,
respectively. What is the average or expected outcome for next year?
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Table 5.4. Geometric mean returns

Probability of
listed outcome

Geometric
1/2 1/4 1/4 mean

10% 42% −15% 10.00%
10% 35% −15% 8.55%
10% 40% −20% 7.89%
10% 45% −25% 7.10%
10% 50% −30% 6.17%
10% 70% −51% 0.00%

The arithmetic mean or average of the three possible returns is:

1
2 (+10%) + 1

4 (+35%) + 1
4 (−15%) = 10.0%. (5.1)

What does this number actually mean? One way of looking at the arithmetic
average is to say that if you kept tossing the coin a large number of times and
kept a record of the frequency of each outcome you saw, then the arithmetic
average, calculated as in (5.1), would equal a number that is close to 10.0%.
In fact, the longer you perform this experiment, the closer your result would
approach 10.0%. So states the law of large numbers. Hence, the arithmetic
average of these possible returns would also equal the expected return.

Mathematically, if R1 and R2 are independent random variables then the
expected value of the investment return can be expressed in the following
two ways:

E[(1 + R1)(1 + R2)] = E[1 + R2 ] × E[1 + R2 ].

Furthermore, if E[R1] = E[R2 ] then we are allowed to make the following
statement:

E[(1 + R1)(1 + R2)(1 + R3) · · · (1 + Rn)] = En[1 + R1]. (5.2)

In contrast, the geometric mean is:

(1 + 0.10)(1/2)(1 + 0.35)(1/4)(1 − 0.15)(1/4) − 1 = 8.55%. (5.3)

Table 5.4 displays the geometric mean of a number of related “gamble” or
investment opportunities.

Another way to think of the geometric mean is as a midpoint between
losses and gains that are multiplicative rather than additive. Note that,
if you lose 10% in the stock market in any given year, then you must earn
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1/(0.9)−1 = 11.1% the next year just to break even. The product (0.9)(1.111)
is exactly 100%, and you are back where you started.

Keep in mind this distinction between the arithmetic and geometric aver-
age throughout the chapters.

5.3 A Long-Term Model for Risk

I am now ready to present the model we will use to describe the long-term
evolution of indices or investment portfolios for (most of ) the remainder of
the analysis. We start with an initial investment of S0 = 100, for example,
and after T years this capital amount grows to a random value:

ST = S0e
g̃T, (5.4)

where g̃ denotes the annualized growth rate of the portfolio during the T-
year period. That is, the time-scaled log-price ratio is ln[St/S0 ]/T = g̃.

Thus, for example, after T = 10 years the random growth rate might be a re-
alized 8.5% yet after T = 20 years be only 7.0%. In this case, the portfolio
or index might grow from S0 = 100 to S10 = 100e(0.085)(10) = 233.96 after
10 years and to S20 = 100e(0.07)(20) = 405.52 after 20 years. This, of course,
is just one possible realization of the growth-rate path of g̃ during the next
20 years. Another possible realization is that g̃ = 10% for the first 10 years
and g̃ = −5% for the entire 20 years. In this (unfortunate) case, the port-
folio grows from S0 = 100 to S10 = 100e(0.10)(10) = 271.83 after 10 years
but then plummets to 100e(−0.05)(20) = 36.788 by the end of the 20 years.

Once again, g̃ is a random variable whose evolution is unknown in ad-
vance. Compare it to the risk-free interest rate r in the previous chapter.
Both are multiplied by t and then placed in the exponent of e to “grow” the
initial investment over time; however, whereas r is known, g̃ is stochastic.
In theory, it can range anywhere from −∞ to +∞, although either extreme
is far from likely.

There is, of course, a multitude of statistical distributions that we could
select to describe the annualized growth rate g̃, and you might be surprised
to learn that there are many different distributions that have been proposed
for g̃ over the last century of scholarly writing, during which thousands of
research papers have been written on this topic. Forecasting the evolution of
g̃ over time is something of a holy grail in the field of financial economics.
Although I could probably write an entire book on models and calibration
of g̃, I will take the easy path and assume that g̃ satisfies the most ubiqui-
tous of all statistical quantities: the normal distribution. I will assume that
g̃ is normally distributed with an expected value of ν (Greek letter nu) and
a variance of σ 2/T, or standard deviation of σ/

√
T for T the horizon over
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Figure 5.1

which we are forecasting investment returns. Later I will justify why I have
placed a “time horizon” variable T in the denominator of the variance, but
for now think of it as a reduction in the uncertainty of the growth rate over
time. Note that, by the laws of probability, the expected value of the cu-
mulative growth g̃T is E[g̃T ] = νT and the variance of g̃T is Var[g̃T ] =
(σ 2/T )T 2 = σ 2T. To summarize more formally, I will assume that

g̃ ∼ N(ν, σ 2/T ) (5.5)

and therefore g̃T ∼ N(νT, σ 2T ).

For example, I might say that over the next year the (annualized) growth
rate of the SP500 index is expected to be E[g̃] = 7% with a variance of
Var[g̃] = (0.20)2 or a standard deviation of SD[g̃] = 0.20 = 20%. Under
these assumptions, during the next 10 years the annualized growth rate is
still E[g̃] = 7% but with a variance of Var[g̃] = (0.20)2/10 = 0.004 units
and a standard deviation of 0.20/

√
10 = 6.32%. By our “normality” as-

sumption this implies that, two thirds of the time, the annualized return will
fall between 0.07 − 0.063 = 0.7% and 0.07 + 0.063 = 13.3%. Likewise,
during the next 25 years, the annualized growth rate is still expected to be
E[g̃] = 7% and the standard deviation is SD[g̃] = 0.20/5 = 4%. Along
the same lines, two thirds of the time the annualized return will fall between
0.07 − 0.04 = 3% and 0.07 + 0.04 = 11%.

Figure 5.1provides a graphical illustration of the probability density func-
tion (PDF) curves of g̃ for the various values of T. Now the role of T in the
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Table 5.5. Probability of losing money in a diversified portfolio

ν σ T = 1 T = 5 T = 10 T = 20 T = 30

12% 20% 0.274 0.090 0.029 0.004 0.001
12% 10% 0.115 0.004 0.000 0.000 0.000

7% 20% 0.363 0.217 0.134 0.059 0.028
7% 10% 0.242 0.059 0.013 0.001 0.000
5% 20% 0.401 0.288 0.215 0.132 0.085
5% 10% 0.309 0.132 0.057 0.013 0.003

denominator becomes apparent. As T increases, the dispersion around the
7% declines in proportion to 1/

√
T , which is equivalent to saying that, as

the term over which you hold an investment increases, so do your chances
of earning a growth rate that is closer to the expected value.

Table 5.5 provides some additional insight into the time-dependent struc-
ture of g̃. It answers the question: What is the probability that you will lose
money over a T-year horizon?—assuming various parameter combinations
of ν and σ that drive the growth rate. Recall that losing money means that the
annualized growth rate was negative. Thus we are effectively computing the
probability that a normally distributed random variable, with a mean value ν

and a standard deviation of σ/
√

T , is less than (or equal to) zero. In the lan-
guage of Excel, we are using the function NORMDIST(0,nu,sigma/sqrt(T),
TRUE) with different values of ν, σ, and T.

For instance, if the expected annualized growth rate is 12% and the stan-
dard deviation of this growth rate over one year is 20%, then the proba-
bility of losing money over a one-year investment period is 0.274, which
is roughly a 27% chance. However, over a 20-year period the probability
drops to 0.004, which is less than a 1% chance. This is a dramatic reduc-
tion in the probability of loss as the time horizon increases. Yet, when the
expected annualized growth rate is reduced to 5% with the same 20% stan-
dard deviation parameter, the probability of loss over one year is close to
40% and over 20 years is 13%. This should make intuitive sense. Also, we
are careful not to make the overaggressive claim that financial risk is declin-
ing with the time horizon—even though all of the numbers in the table are
decreasing as T gets larger—mainly because we have ignored the magni-
tude of the shortfall itself. In other words, people care about more than just
the chances of losing money, they want to know how much they can lose,
how bad it can get. This is where (and why) standard deviation is another
important measure of risk. It helps us measure the magnitude in addition
to just the probability.
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5.4 Introducing Brownian Motion

The quantity g̃t, which can be treated as a total return expressed using contin-
uous compounding, is extremely important in its own right. The product of
the (random) growth rate and time—which reduces to ln[St/S0 ], using our
first definition—often has its own notation and description amongst finan-
cial specialists. I will adopt their convention and define a new expression,

B
(ν,σ)
t := g̃t ∼ N(νt, σ 2 t). (5.6)

The object B
(ν,σ)
t is normally distributed with an expected value of νt and

a standard deviation of σ
√

t . I will abbreviate this object by Bt when ν =
0 and σ = 1, instead of using B

(0,1)
t .

It might appear unnecessarily cumbersome to introduce yet another set
of symbols and objects to describe investment returns. But Bt—which has
its own name, Brownian motion—is of interest not only to finance and in-
vestment specialists. The term Bt is part of a large family of mathematical
objects called continuous-time stochastic processes, which are fundamental
in the areas of physics and biology as well as classical probability theory.

Formally, Bt models standard Brownian motion (SBM) if the following
statements are all true:

1. Pr[B0 = 0] = 1;
2. Pr[Bt varies continuously with t] = 1; and
3. the increments �iB := Bti −Bti−1 are independent—and have normal

(Gaussian) distributions with mean E[�iB] = 0 and with variance
Var[�iB] = �it := ti − ti−1—when 0 ≤ t0 < t1 < · · · < tn.

The Gaussian assumption (discussed in Section 3.18) implies the following
probability statements:

Pr[a ≤ Bt ≤ b] =
∫ b

a

1√
2πt

e−z2/2t dz;
E[f(Bt , Bt+s︸︷︷︸

Bt+�B

)]

=
∫ ∞

−∞

∫ ∞

−∞
f(u, u + v)

1√
2πt

e−u2/2t 1√
2πs

e−v2/2s dv du.

Figure 5.2 provides one possible realization of the standard Brownian
motion Bt over the next 40 years. To create a sample path, remember that
B0 = 0, B1 = N(0,1) · √

�t , and Bti = Bti−1 + N(0,1) · √
�it , where �it

(the change in time) is expressed as a fraction of a year.
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Figure 5.2

Though all the plotted paths start at a value of zero, some wander up
while others wander down. The expected value E[Bt | B0 = 0] = 0 and
the standard deviation SD[Bt | B0 = 0] = √

�t. Figure 5.2 might give the
impression of describing a market that moved upward for 25 years and then
declined for the next 15, but in fact these numbers are completely random.
There was no trend, no momentum, and no direction. Figure 5.2 is just one
of infinitely many paths possible. Each data point should be interpreted as
the total return earned after t years. Figure 5.3 shows another one of many
possible paths. In this case the standard Brownian motion spent most of its
time in negative territory and recovered only at the very end.

The standard Brownian motion process Bt can be used to construct the
more complex B

(ν,σ)
t , which is a nonstandard Brownian motion with vary-

ing values of ν and σ, via the linear relationship defined by

B
(ν,σ)
t = σBt + νt. (5.7)

At first it might seem odd, but think about this for a while. You start with
a regular Brownian motion Bt , which will move up and down randomly,
and you multiply by a constant σ. If this constant σ < 1 then it will shrink
the path (value), and if this constant σ > 1 then it will increase the path
(value). But the expected value of this “mapped” process σBt is still zero;
it is only stretching and compressing, not shifting the actual path. That is
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Figure 5.3

where ν times t comes in. It takes the mapped process and adds a drift term
to the σBt .

Finally, whereas standard and nonstandard Brownian motion may govern
the growth of the investment, the price of the asset is governed by geomet-
ric Brownian motion (GBM), the workhorse of financial economic theory.
We’ll see why it’s worthy of this title when we can eventually write down
its stochastic differential equation. For now, remember that GBM has the
form

St = S0e
νt+σBt,

where Bt is a standard Brownian motion, S0 the initial value (i.e., the value
of St when t = 0), σ > 0 the volatility, and ν the expected growth rate.
Note that St is lognormally distributed: that is, ln St = ln S0 + νt + σBt

is normally distributed. Figure 5.4 demonstrates how the path can vary de-
pending on whether you are working with the standard Bt , nonstandard Bt ,
or geometric Bt .

Here is yet another eclectic way to think about the behavior and path of
Brownian motion over time. Assume that time is measured in units of years
and that you are now standing in the middle of your living room or back
yard with a measuring stick in your hand. Now, imagine that every �t =

1
525600 year units—which is exactly one minute—you toss a fair coin. If it
comes up heads, you move

√
�t = 1/

√
525600 ≈ 1/725 kilometer to the
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Figure 5.4

north of your current position; if it falls on tails, you move 1/725 kilometer
to the south. In this thought experiment, every minute you move slightly
more than a meter, to either the north or the south. Consider your move-
ment over time, which I will index and label using the (new) symbol Zi,
where Z0 = 0. Here is one possible sequence (or realization) of the sto-
chastic process Z:

Z0 = 0, Z�t = √
�t , Z2�t = 0,

Z3�t = −√
�t , Z4�t = −2

√
�t , Z5�t = −√

�t.

In this particular experiment, you got heads, tails, tails, tails, and then a
final heads to end up in a position of −√

�t after five coin tosses.
Where will you be after N coin tosses? Well, the expected value in any

given toss can be formally computed as 1
2

(+ 1
725

) + 1
2

(− 1
725

) = 0, and
thus in N tosses you can expect to be in the exact same position as you
started. What about the variance or standard deviation of this estimate?
Here is where it gets interesting, since formally the variance per toss will be
1
2

(+ 1
725

)2 + 1
2

(− 1
725

)2 = 1
525600 . By construction, the variance (of the esti-

mate) of where you will be after one time step is exactly the time increment
�t. The variance after N tosses will be N�t. And finally, the variance after
one year—which is N = 525600 coin tosses—will be exactly 1 kilometer.
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After two years, which is 2 × 525600 coin tosses, the variance will be two
kilometers. You expect to stay exactly where you are on average, but the
uncertainty (as measured by the variance) increases by one kilometer per
year. Does this look familiar? We have just constructed a crude approxima-
tion of a Brownian motion. Sure, a mathematician would still have to prove
that the distribution of the uncertainty is indeed normal (i.e. Gaussian) or
close to normal, but the central limit theorem (CLT) assures us that this will
be the case.

More generally, if our coin toss moves us by 1/
√

N units every �t =
1/N years and if we let N → ∞ (which implies that �t → 0), then we
have constructed a Brownian motion. This is why it is often common to see
the statement that

�B ≈ ±√
�t , (5.8)

where �B denotes the change in the value of a Brownian motion during a
time increment �t. The (wild) oscillations of the Brownian motion almost
cancel each other out—which is why you can expect to go nowhere with
time—but the uncertainty adds up and you can expect to wander quite far.

Here is another way to think about the relationship in (5.8). If you divide
both sides by

√
�t (which is not exactly kosher when �t → 0, but bear

with me anyway) then you can think of the ratio �B/�t as a rate of change
or instantaneous derivative. But the right-hand side is random, since it can
be either positive or negative depending on the outcome of the coin toss.
Thus, one consequence that arises is the nondifferentiability of the Brown-
ian motion. Stated more formally:

dBt

dt
≈ �B

�t
≈ ±1√

�t
→ ±∞ as �t → 0. (5.9)

In contrast to a deterministic function of time, the derivative of the Brown-
ian motion simply does not exist. It’s not large or infinite, it is just not
defined. Intuitively, the Brownian motion is moving too much over a short
period of time for there to be a smooth rate of change. It is positive and
negative infinity at the same time.

Going back to our thought experiment and the �t coin toss, another im-
portant characteristic of the Brownian motion is its infinite variation. Imag-
ine that, instead of moving up (north) or down (south) depending on the
outcome of the coin toss, you always moved north. In other words, you al-
ways took the absolute value of the outcome

∣∣±√
�t
∣∣ = �t. In this case,

you would quickly (and obviously) find yourself moving north. The sum of
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the Brownian motion increments will continue to grow as the time intervals
become smaller, which mathematically can be stated as:∑

|�B| ≈ N
√

�t , where N · �t = 1

= 1√
�t

→ ∞ as �t → 0. (5.10)

This may at first seem like an esoteric mathematical property. But in fact,
when you compare this situation to a smooth function, you will see the im-
pact of uncertainty. Generally, when you add up the absolute value of the
increments of a smooth function—no matter how small the increments—the
summation adds up to a finite quantity. Think about breaking up the function
f(x) = x 2 into small pieces based on �x. If you add the |f(xi)−f(xi−1)|
values together for x = 1, . . . , N, the summation will converge. Not so when
the function oscillates wildly the way Brownian motion does.

Finally, there is an important limiting property of Brownian motion Bt

that has some investment implications and is therefore worth discussing.
What happens when time gets very large and t → ∞? How will the Bt be-
have? We have already discussed its mean and variance, but how fast will
it move toward a (possible) large value? The answer is as follows:

lim
t→∞

Bt

t
→ 0. (5.11)

The limiting value of the ratio of the standard Brownian motion to time is
zero. In other words, time itself “moves faster” than a Brownian motion.
In investment terms, think of the left-hand side of (5.11) as the annualized
growth rate of an investment g̃, but where the expected value of the growth
rate is zero. As time increases, the realized growth rate converges to the
expected growth rate, which is zero.

Along the same lines, recall the definition and discussion of the non-
standard Brownian motion B

(ν,σ)
t , which was constructed from the standard

Brownian motion Bt scaled by σ before adding νt. We have:

lim
t→∞ g̃ = B

(ν,σ)
t

t
= ν + σ

Bt

t
→ ν. (5.12)

The intuition is the same. In this case, the realized growth rate converges to
ν, which is the expected growth rate. Stated differently, the probability ap-
proaches 100% that the annualized return from investing in an asset whose
value follows a geometric Brownian motion will be very close to the geo-
metric mean.



5.5 Index Averages and Index Medians 97

5.5 Index Averages and Index Medians

At this point you should have a decent idea of how the fundamental ob-
ject Bt behaves over time. In this section we delve into the behavior of eBt,
which represents the evolution of the index (or portfolio) value itself. Re-
member the various stages in our definition:

St = S0e
g̃t := S0e

B
(ν,σ)
t = S0e

νt+σBt. (5.13)

The last two equalities come from the construction of the Brownian mo-
tion. When σ = 0, the index or portfolio will grow at a fixed rate of ν with
zero uncertainty or randomness.

I am now interested in some of the probabilistic properties of St . The
median value of the index at time t is the simple and intuitive

M [St ] = S0M [eνt+σBt ] = S0e
νt.

Thus, 50% of the time St will be above S0e
νt and 50% of the time St will

be below S0e
vt. As time t → ∞, the median value of the index or portfolio

grows without bound provided that ν > 0. If ν = 0 then the median value
of St = S0 for all values of t, since there is no growth.

You can verify that the median value for St is indeed S0e
νt by going

through the following steps. First, given that St is lognormally distributed,
note that the general probability

Pr[St ≤ u] = Pr[ln[S0 ] + νt + σBt ≤ ln[u]]

= Pr

[
Bt√

t
≤ ln[u/S0 ] − νt

σ
√

t

]
. (5.14)

By construction and definition of the standard Brownian motion, the term
Bt/

√
t is normally distributed with an expected value of 0 and a standard

deviation of 1. This leads to

Pr[St ≤ u] =
∫ (ln[u/S0 ]−νt)/σ

√
t

−∞

exp
{− 1

2z2
}

√
2π

dz, (5.15)

where the integrand should be recognized as the basic Gaussian (or normal)
probability density function. Thus, if we make the substitution u = S0e

νt

then the upper bound of integration collapses to zero, which by symmetry
of the normal distribution around zero leads to an integral value of Pr[St <

S0e
νt ] = 1/2 and hence this value of u is the median value.
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In contrast, to obtain the expected value E[St ] I will rely on the follow-
ing general statement about how to compute expectations of functions. In
equation (5.16), Ft represents the information or knowledge that you have
available at time t. The idea is that if the present state is known then the rest
of the past is irrelevant:

E[h(St+s) | Ft ] = E[h(St+s) | St ]. (5.16)

For example,

E[h(Bt+s) | Ft ] = E[h(Bt + �B) | Ft ]

=
∫ ∞

−∞
h(Bt + z)

1√
2πs

e−z2/2s dz.

In the case of St = S0e
νt+σBt we have

E[h(St+s) | Ft ] = E[h(S0e
ν(t+s)+σBt+s ) | Ft ]

= E[h(S0e
νt+σBteνs+σ�B) | Ft ]

=
∫ ∞

−∞
h(Ste

νs+σz)
1√
2πs

e−z2/2s dz.

The expected value E[St ] must be computed by integrating:

E[St ] =
∫ +∞

−∞
S0(e

νt+σ
√

tz)
exp
{− 1

2z2
}

√
2π

dz

= S0 exp
{(

ν + 1
2σ 2
)
t
}
. (5.17)

The first portion of the integrand contains the exponentiation, which is
then multiplied by the normal density. At this point you might wonder why
and how the exponent has suddenly “grown” a factor of 1

2σ 2 within the νt.

This is a legitimate question that is tied to the difference between the geo-
metric mean and the arithmetic mean: the ν + 1

2σ 2 denotes the arithmetic
mean whereas the ν denotes the geometric mean. The difference between
the two is equal to half of volatility squared.

5.6 The Probability of Regret

We can now derive an easy-to-use expression for the probability that an
index or portfolio satisfying the exponential Brownian motion model will
earn less than a risk-free interest rate r. I have labeled this the “probability
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Figure 5.5

of regret” because an investor will regret not having invested in the safe
asset when the earned growth rate g̃ is less than the risk-free rate r.

Based on the same logic used earlier to compute median and mean val-
ues, we have

Pr[St ≤ S0e
rt ] = Pr

[
Bt√

t
≤ −

(
ν − r

σ

)√
t

]

= ϕ

(
−
(

ν − r

σ

)√
t

)
, (5.18)

where ϕ(z) denotes the CDF of the standard normal distribution. The prob-
ability of regret (PoR) can be obtained by integrating the area under the
standard normal curve from −∞ to r−ν

σ

√
t . Note that when r < ν, which

would be expected in practice, the probability would be less than 50%.
When r = ν the probability is exactly 50%, and when r > ν the probability
is greater than 50%. Observe that, as t → ∞, the probability goes either
to 0 (if the risk-free rate is less than the expected growth rate) or to 1 (if the
risk-free rate is greater than the expected growth rate). The standard devia-
tion parameter σ, sometimes known as volatility, has the opposite effect as
it approaches infinity.

Figure 5.5 plots the probability of regret as a function of time t for dif-
ferent values of the risk premium (ν − r). For example, if t = 10 years,
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ν − r = 6%, and σ = 20%, then the probability that the (risky) index S10

is worth less than S0e
r10 is 17.1%. Note that this probability value does not

depend on the exact value of either ν or r itself but rather on the difference
between the two, or the spread.

5.7 Focusing on the Rate of Change

We are now in a position to investigate the rate of change of the index or
portfolio over time.

Recall that a first-order ordinary differential equation (ODE) has the form{ dz

dt
= f(t, z),

z(0) = z0.

For instance, in the case of exponential growth or decay, the ODE allows
us to arrive at Zt from Z0:

dz

dt
= kz has the solution z(t) = z0e

kt.

In contrast, in order to obtain stochastic differential equations we must
take an ODE and then add random noise. But because dBt/dt = ±∞, as
we saw in (5.9), the expression

dSt

dt
= µ(t, St) + σ(t, St)

dBt

dt

makes no sense as written. Note that we are using µ and σ as functions,
not as constants.

Mathematicians developed the notion of a stochastic integral and later
used it to show convergence of solutions to the difference equation

�St = µ(t, St)�t + σ(t, St)�Bt . (5.19)

In the limit, equation (5.19) gives meaning to the stochastic differential
equation (SDE):

dSt = µ(t, St)dt + σ(t, St)dBt ,

or
dSt

St

= µdt + σdBt . (5.20)

The solution is a diffusion process. It should be thought of as a standard
Brownian motion but with position-dependent drift and volatility:
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�Si

Si

=
(

ν + 1

2
σ 2

)
�t + σ�Bi. (5.21)

The expression
(
ν + 1

2σ 2
)

is central to a number of formulas in finance,
which is why it is common to see this expression defined as follows:

µ = ν + 1

2
σ 2 ⇐⇒ ν = µ − 1

2
σ 2. (5.22)

The parameter µ is often called the (continuously compounded) arithmetic
mean and ν the (CC) geometric mean. Recall once again that the arithmetic
mean is larger than the geometric mean by a factor of 1

2σ 2. I will move be-
tween the two notations, using µ and ν depending on need and context.

5.8 How to Simulate a Diffusion Process

In theory, there are two possible ways to simulate a collection of sample
paths or a diffusion process. The first method is to solve the stochastic
differential equation and then represent the process in closed form as an
explicit function of pure Bt values. Thus, for example, if you can gener-
ate sample paths for Bt—by generating random numbers that are normally
distributed—then you can also generate sample paths of B2

t , eBt, 2Bt , or any
other explicit function of Bt . However, in most cases the diffusion process
cannot be explicitly solved and written as a function of Bt . As a result, we
must usually create sample paths by generating small changes for the value
of the process. Here is how this is done.

Consider the general diffusion process satisfying the stochastic differen-
tial equation

dSt = µ(t, St)dt + σ(t, St)dBt

on the interval 0 ≤ t ≤ T. We can discretize time so that

0 = t(0) < t(1) < t(2) < t(3) < · · · < t(N ) = T.

An Euler approximation is a stochastic process, denoted by Yt , that satisfies
the iterative system

Yj+1 = Yj + µ(t(j), Yj )(t(j + 1) − t(j)) + σ(t(j), Yj )(Bt(j+1) − Bt(j))

for j = 0, . . . , N − 1 with initial value Y0 = X0. Furthermore, if we let
t(j) = jτ where τ = T/N, then

E[Bt(j+1) − Bt(j)] = 0
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Table 5.6. SDE simulation of GBM using the Euler method

Period
j + 1 Time N(0,1) �Bt σ × Yj × �Bt µ × Yj × �t Yj+1

1 0.004 −0.3002 −0.0190 −0.3798 0.0400 99.6602
2 0.008 −1.2777 −0.0808 −1.6107 0.0399 98.0894
3 0.012 0.2443 0.0154 0.3031 0.0392 98.4317
4 0.016 1.2765 0.0807 1.5893 0.0394 100.0604
5 0.020 1.1984 0.0758 1.5167 0.0400 101.6172
6 0.024 1.7331 0.1096 2.2277 0.0406 103.8855
7 0.028 −2.1836 −0.1381 −2.8694 0.0416 101.0577
8 0.032 −0.2342 −0.0148 −0.2994 0.0404 100.7988

Note: Y0 = $100, µ = 10%, σ = 20%, �t = 0.004 years.

and

E[(Bt(j+1) − Bt(j))
2] = τ ;

we can simulate the underlying diffusion using standard techniques.
Table 5.6 presents an example of the diffusion process simulation using

the Euler approximation. The table shows simulated end-of-period asset
values for eight periods.

5.9 Asset Allocation and Portfolio Construction

In this section I will provide some guidance on how to analyze a portfolio
of securities or asset classes whose individual dynamics obey the models
described so far. Our objectives are to examine the combined time dynam-
ics of portfolio diversification and to investigate the impact of holding more
investments versus holding them for longer periods of time.

I start with a collection of n securities and let S i
t denote the price of the

ith security at time t. The evolution of each individual S i
t is modeled by the

stochastic differential equation from Section 5.7, which can be rewritten as

dS i
t = µiS

i
t dt + σiS

i
t dB

i
t , (5.23)

where Bi
t is now a vector of standard Brownian motions and where, with-

out loss of generality, I scale S i
0 = 1 for all securities i ≤ n. The parameters

{µi, σi} denote the instantaneous drift rate (mean) and diffusion coefficient
(volatility) of the ith security. The correlation coefficient is then denoted by
d〈Bi , Bj 〉 = ρij dt, with the understanding that ρij = ρji and ρii = ρjj = 1
for all i, j ≤ n.
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We may use (5.22) to rewrite equation (5.23) as

S i
t = exp

{(
µi − 1

2σ 2
i

)
t + σiB

i
t

} = exp{(νi)t + σiB
i
t }, (5.24)

with expectation E[S i
t | S i

0 = 1] = eµi t and standard deviation SD[S i
t |

S i
0 = 1] = exp{µit}

√
exp{σ 2

i t} − 1. Once again, the log-price is normally
distributed with mean E[ln[S i

t ]] | S i
0 = 1] = (µi − 1

2σ 2
i

)
t and standard de-

viation SD[ln[S i
t ]] | S i

0 = 1] = σi

√
t .

An investor can construct a diversified portfolio by partitioning an ini-
tial wealth of W0 = w amongst the n available securities in proportions αi.

Furthermore, I assume that the investor continuously rebalances the port-
folio in order to maintain a dollar value of αiWt in the ith security at all times.

By simple construction, the portfolio process Wt will obey a stochastic
differential equation denoted by

dWt =
n∑

i=1

αiWt

(
dS i

t

S i
t

)

=
n∑

i=1

αiµiWt dt +
n∑

i=1

αiσiWt dB
i
t . (5.25)

Under this representation, the aggregate portfolio process Wt is driven by
n correlated standard Brownian motion factors Bi

t , where i = 1, . . . , n.

However, equation (5.25) can be simplified by combining the n distinct
factors into one independent source of risk.

Toward this end, we can define a new portfolio drift coefficient as

µp(n) =
n∑

i=1

αiµi. (5.26)

Also, we can simplify the Brownian components in (5.25) by defining an
aggregate portfolio standard deviation of volatility via

n∑
i=1

αiσidB
i
t =

⎡
⎣
√√√√ n∑

i=1

n∑
j=1

αiσiρijσjαj

⎤
⎦dBt

=
⎡
⎢⎣
√√√√√

n∑
k=1

α2
k σ

2
k +

n∑
i=1

n∑
j=1
i =j

αiσiρijσjαj

⎤
⎥⎦dBt

= σp(n)dBt . (5.27)
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The new combined (source-of-risk) term dBt is a standard one-dimensional
Brownian motion. The new σp(n) is the portfolio volatility, which is an ex-
plicit function of the size (space dimension) n of the portfolio as well as an
implicit function of the volatility and correlation structure and the individ-
ual security weights.

The resulting SDE obeyed by the (total wealth) portfolio can be repre-
sented by

dWt = µp(n)Wt dt + σp(n)Wt dBt , W0 = 1. (5.28)

Akin to the case for individual securities, the explicit solution to the sto-
chastic differential equation (5.28) is

Wt = exp
{(

µp(n) − 1
2σ 2

p (n)
)
t + σp(n)Bt

}
, (5.29)

where we now use the definition

νp(n) := µp(n) − 1
2σ 2

p (n). (5.30)

What does all this “buy” me?—I now have the expected growth rate needed
to compute the relevant probabilities.

5.10 Space–Time Diversification

We can now put two ideas together. If a portfolio consisting of n securities
is held for a period of t years, then the probability of regret is defined as

PoR(n, t) := Pr[Wt ≤ ert ] = Pr[ln[Wt ] ≤ rt], (5.31)

which is the probability of doing worse than the interest rate r. By the def-
inition of Wt from (5.29), we arrive at

PoR(n, t) = Pr

[
Bt√

t
≤ −

(
νp(n) − r

σp(n)

)√
t

]

= ϕ

(
−
(

νp(n) − r

σp(n)

)√
t

)
, (5.32)

which is identical in form to (5.18) in Section 5.6.
To obtain more precise results we now assume that αi = 1/n, which

means that the initial wealth W0 = w is portioned and invested equally
amongst the n securities and is maintained in those proportions during the
entire time [0, t]. Furthermore, assume that all securities in the portfolio
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have the same drift rate µ, the same volatility σ, and a uniform correlation
structure denoted by ρ. In other words, the covariance matrix � for the n

securities can be represented as

� :=

⎛
⎜⎜⎜⎜⎜⎝

σ 2 · · · ρσ 2

σ 2 · · · ρσ 2

σ 2 · · · ρσ 2

· · · · · · · · · . . .
...

ρσ 2 ρσ 2 ρσ 2 · · · σ 2

⎞
⎟⎟⎟⎟⎟⎠. (5.33)

This structure may seem odd at first. However, my objective is to exam-
ine the effect on PoR(n, t) of adding more securities (space) and holding
them for longer periods (time). In any event, by (5.27) the portfolio vari-
ance, which we denote explicitly by σ 2

p (n | σ, ρ), collapses to

σ 2
p (n | σ, ρ) =

n∑
k=1

(
1

n

)2

σ 2 +
n∑

i=1

n∑
j=1
i =j

(
1

n

)2

ρσ 2

= n
σ 2

n2
+ (n2 − n)ρ

σ 2

n2

= σ 2

n
+
(

1 − 1

n

)
ρσ 2 = σ 2

(
1

n
(1 − ρ) + ρ

)
. (5.34)

Hence the portfolio volatility, which is the diffusion coefficient of the wealth
process Wt , is

σp(n | σ, ρ) = σ

√
ρ + 1 − ρ

n
. (5.35)

As one expects intuitively, the derivative of the portfolio volatility σp(n |
σ, ρ), with respect to the space variable n, is:

∂σp(n | σ, ρ)

∂n
= σ(ρ − 1)

2n2
√

ρ + (1 − ρ)/n

= σ 2(ρ − 1)

2n2σp(n | σ, ρ)
< 0 ∀ρ < 1, (5.36)

which implies the obvious conclusion that a portfolio with a greater number
of securities reduces volatility.
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Along the same lines, we have that

∂σp(n | σ, ρ)

∂ρ
= σ(n − 1)

2n
√

ρ + (1 − ρ)/n

= σ 2(n − 1)

2nσp(n | σ, ρ)
> 0 ∀n > 1, (5.37)

which implies that, ceteris paribus, a larger correlation coefficient leads to
a larger portfolio volatility and a corresponding increase in the shortfall
PoR(n, t). Finally, it should be obvious from equation (5.35) that the de-
rivative of σp(n | σ, ρ) with respect to σ is positive.

As a result of the square root in equation (5.35), we are forced to accept
that

ρ + 1 − ρ

n
≥ 0 �⇒ ρ ≥ 1

1 − n
. (5.38)

A relatively large collection of securities can have a constant correlation
structure between them as long as ρ ≥ 1/(1−n). Thus, for example, if n =
2 (a portfolio of two securities) then the correlation coefficient must be at
least ρ ≥ −1 and thus any structure is acceptable. If n = 3 then ρ ≥ −0.5,
and if n = 10 then ρ ≥ −0.111. In the limit, when n → ∞, we obtain that
ρ ≥ 0 as the lower bound for the correlation structure, which is our suffi-
cient condition.

In the same vein, when n → ∞ we have that σp(n | σ, ρ) → σ
√

ρ ; this
implies that the portfolio volatility converges to a constant value, which will
be zero only when ρ = 0. The limiting value of σp(∞ | σ, ρ) is the so-called
market volatility. Stated in terms of modern portfolio theory, when ρ > 0
we have a nondiversifiable market factor. And, after a certain point, addi-
tional space diversification provides no further value in reducing portfolio
volatility or, by extension, equity shortfall risk. Thus, when n → ∞, the
portfolio volatility will approach the market volatility, which in our context
will be σ

√
ρ. This fact is consistent with standard textbook illustrations of

the portfolio variance approaching—and converging to—the market vari-
ance as the number of securities increases.

Finally, the probability of regret, per equation (5.31), will be

PoR(n, t | r, µ, σ, ρ) = ϕ

(
r − µ + 1

2σ 2(ρ + (1 − ρ)/n)

σ
√

ρ + (1 − ρ)/n

√
t

)
, (5.39)

where the explicit variables r, µ, σ, ρ are introduced to denote the homoge-
nous case of constant parameters and equal portfolio weights.
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Figure 5.6

Observe that if ρ = 0 then the denominator on the right-hand side of
(5.39) will go to zero as n → ∞. Thus, in the presence of completely inde-
pendent securities, the volatility and the equity shortfall risk can be driven
to zero with a large enough portfolio provided that r < µ. Of course,
in practice the financial risk can never be entirely “squeezed” out of the
system, and there is always a chance of falling short of the risk-free rate.
This is analogous to (identifying a market factor and) stating that ρ > 0.

Furthermore, the PoR will decrease as the term of the portfolio increases if
the drift effect offsets the volatility (which increases with time)—that is, if
r − µ > 1

2σ 2(ρ + (1 − ρ)/n).

Figure 5.6 shows the impact of space and time by displaying the PoR
curve assuming an expected growth rate of ν = 10%, volatility of σ =
25%, a risk-free (personal benchmark) rate of r = 6%, and a correlation
coefficient of ρ = 15% between individual returns.

Clearly, the longer the individual holds the portfolio (assuming r − µ >
1
2σ 2(ρ + (1 − ρ)/n)) and the greater the number of securities in the port-
folio, the lower is the probability of regret. In sum, I hope to have illustrated
how the tools of continuous-time finance can be used to compute the rele-
vant probabilities.

5.11 Further Reading

As in previous chapters, I have only scratched the surface of models for fi-
nancial markets and risky investments. Of course, all these models began
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with Markowitz (1959), which is the first and most important reference for
this chapter. For the mathematically inclined reader I would recommend
Baxter and Rennie (1998) for a deeper analysis of these models with ap-
plications to derivative security pricing. On the empirical side—for those
who want to learn much more about how to calibrate and estimate parame-
ters for the various models—I recommend the book by Campbell, Lo, and
MacKinlay (1997). For a more recent analysis of the difference between
geometric and arithmetic means with regard to their proper estimation and
use in financial economics, see Jacquier, Kane, and Marcus (2003).

Bodie (1995) has an interesting and controversial critique of the notion
that “time” reduces investment risk. Boyle (1976) was one of the first to
model investment returns as random variables within the context of pensions
and insurance. Browne (1999) further develops the concept of shortfall risk
and probability of loss. Campbell and colleagues (Campbell et al. 2001;
Campbell and Viciera 2002) provide a number of models for asset alloca-
tion within the context of individual investors and the human life cycle. Levy
and Duchin (2004) conduct an extensive investigation of historical equity
and bond returns, comparing the suitability of various statistical models.
Leibowitz and Kogelman (1991) pursue the idea of shortfall risk within
a portfolio context, and Rubinstein (1991) derives the portfolio dynamics
under lognormal security returns.

The final part of this chapter—which introduces the concept of space–
time diversification—draws heavily from Milevsky (2002), where a large
number of additional examples are provided in addition to a more in-depth
analysis of the effect that the individual variables have on the shortfall prob-
ability. Finally, thanks to IbbotsonAssociates (2005) for compiling and pro-
viding the historical return data.

5.12 Notation

g̃—annualized growth rate random variable with expected value ν

B
(ν,σ)
t —a stochastic process with an expected value of νt and a standard
deviation of σ

√
t , used in this book to model the fluctuation of risky

investments

5.13 Problems

Problem 5.1. Assume that the annualized growth rate g̃ of your invest-
ments satisfies a normal distribution (as discussed in this chapter) with an
expected value of ν = 7% and a standard deviation of σ = 20%. What is
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the probability that you will triple your money after 5 years of investing?
After 10 years?

Problem 5.2. Build a simple computer simulation in Excel that will gen-
erate five different sample paths for a standard Brownian motion Bt over a
20-year period. Use a time increment of �t = 1

52 years (i.e., each simu-
lated change is one week) and plot these sample paths against each other.
Assume that ν = 10% and σ = 20%, and use these five paths to manufac-
ture sample paths for B

(ν,σ)
t . Then use these values to generate five sample

paths for g̃ (which is defined, you will recall, by B
(ν,σ)
t /t).

Problem 5.3. Use νi = {10%,15%,12%} and σi = {15%, 35%, 20%} to
construct the portfolio νp(3) with volatility σp(3) when the correlation be-
tween all securities is ρ = +20%. What is the probability of regret from
holding this portfolio after 20 years? (Assume that r = 5% is the threshold
for regret.)



six

Models of Pension Life Annuities

6.1 Motivation and Agenda

An insurance company or pension fund promises to pay you $1 for the rest
of your life, no matter how long you live. Or they promise to pay you and
your spouse $1 for as long as at least one of you is still alive.

How can they promise something like that? How much is this promise
worth today? How much was this worth yesterday, and how much will it
be worth tomorrow? These are the topics of this chapter, which brings to-
gether all the ideas that were introduced and motivated in previous chapters.
We are finally ready to discuss pensions.

6.2 Market Prices of Pension Annuities

Table 6.1 displays the actual prices (quotes) of pension or life annuities
for individuals at various ages. These quotes are based on a $100,000 pre-
mium or deposit that is paid at the time of purchase with funds from a tax-
sheltered savings plan. I have displayed the payouts based on the average
of the “best” U.S. companies quoting in early January 2005.

The $100,000 premium entitles annuitants to receive monthly income for
the rest of their lives. In some cases, they are entitled to the guarantee that
if they die “early” then their spouse or family receives some payments. For
example, a 65-year-old male will receive $655 per month for the rest of his
life if he selects a pension annuity with no guarantee (or “certain”) period;
should the annuitant die one year (or even one month) after buying the an-
nuity, his heirs receive nothing. On the other hand, if this 65-year-old male
uses his $100,000 premium to purchase a life annuity with a 10-year cer-
tain period then the monthly payments will be only $630 (instead of $655)
per month. This is because the contract stipulates that, if the annuitant dies

110
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Table 6.1. Monthly income from $100,000 premium
single-life pension annuity

Age 50 Age 65 Age 70 Age 80
Period
certain M F M F M F M F

0-year $514 $492 $655 $605 $747 $677 $1073 $961
10-year $509 $490 $630 $592 $694 $649 $841 $812
20-year $498 $484 $569 $555 $591 $583 $585 $585

Notes: M = male, F = female. Income starts one month after purchase.
Source: CANNEX, January 2005.

within 10 years, the beneficiary will receive $630 until a total of 10 years
(or 120 months) of payments have been made. So, for example, if the annu-
itant dies after 4 years (48 months) of payments—that is, at the start of age
69—then the beneficiary will be paid an additional 6 years (72 months) of
$630 dollars. Stated differently, in the worst-case scenario, the annuitant
together with the beneficiary are assured they will get at least $630×120 =
$75,600 back from the insurance company in exchange for the $100,000
annuity premium. This is why the monthly payment is lower than the zero-
year certain payment of $655.

A number of additional qualitative insights are worth noting. Obviously
there is an age effect. The older the annuitant at the time of purchase, the
larger are the monthly payments. This, of course, is because the expected
(or median) remaining lifetime is lower and hence the $100,000 must be
returned over a shorter period of time.

Also, at any given starting age, females always receive less per month
(for the same $100,000 premium) than males. This is because females live
longer on average and hence the company will be making more payments.
Note that the gender gap is $514 − $492 = $22 at age 50, when the guar-
anteed period is zero, but a much larger $1,073 − $961 = $112 at age 80.
Furthermore, this gender premium increases as a percentage of the male’s
monthly income from $22/$514 = 4.2% at age 50 to $112/$1,073 = 10.4%
at age 80. At age 60, the gender premium is 7.6% and at age 70 it is 9.4%. Fi-
nally, the gender effect is slightly reduced as the certain period is increased,
since a portion of the payment is no longer life contingent and hence is in-
dependent of whether the annuitant is a male or a female. For example,
note that an 80-year-old male and female each get only $585 per month if
they both want a 20-year period certain. The odds of either of them living
to 100 is quite slim, so one can think of this particular pension annuity as
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Table 6.2. A quick comparison with the bond market

Approximate
Coupon maturity Price of Yield to

yield (years) bond ($) maturity (%)

3 1
8 2 99.78 3.24

3 5
8 5 99.72 3.68

4 1
4 10 100.88 4.14

7 1
2 20 136.69 4.64

5 3
8 30 111.56 4.61

Source: Wall Street Journal, January 2005.

Table 6.3. Monthly income from $100,000
premium joint life pension annuity

Age of male and female
Period
certain 50 65 70 80

0-year $465 $545 $597 $791
10-year $465 $544 $594 $753
20-year $465 $533 $565 $601

Note: Income starts immediately after purchase.
Source: CANNEX, January 2005.

a generic bond with a minuscule amount of longevity insurance. For the
interested reader, Table 6.2 compares the actual yields of bonds with matu-
rities comparable to the periods guaranteed by annuities.

There are many possible variations on the pension annuity theme. One
popular one is for the annuitant to specify that, upon death, a surviving
spouse will continue to receive income for as long as the spouse lives. This
is known as a joint life or a joint and survivor (J&S) annuity. In this case
the underlying random lifetime variable consists of the maximum of the
two lives. This type of guarantee is different from a period certain because
it is contingent on the life of the surviving spouse and not on some fixed
horizon, such as 10 or 20 years.

Table 6.3 shows the payouts of various J&S annuities. For instance: if
two 65-year-olds (here, one male and one female) purchase a $100,000 joint
life pension annuity without a guaranteed period then the monthly income
will be $545, which is lower than either the $655 or the $605 that a male
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Figure 6.1. Source: CANNEX and The IFID Centre (Canadian data).

or a female could have obtained individually (cf. Table 6.1). The reason for
this should be clear. In the single-life case, all payments cease once the an-
nuitant dies. But with the joint life pension annuity, both annuitants must
die before payments cease and so, to compensate, the monthly payments
must be lower.

Some companies allow you to purchase the right to a stream of income
that is adjusted for inflation using the Consumer Price Index (CPI) as a
basis. In this case, each year your payments would be either linked to the
index, which tracks inflation, or increased by a fixed cost-of-living adjust-
ment (COLA) rate. To compensate the company for offering this inflation
protection, the initial monthly payment would be lower than it would be
had you not selected this feature. True inflation-linked annuities are quite
rare, and few consumers purchase them.

Note also that not all insurance companies quote the same rates. Some
companies are notoriously stingy and promise 5%–10% less in annual in-
come as compared to the competition. Other firms are quite generous and
pay 5%–10% more than the average company. Why the variation? One
hypothesis concerns the company’s credit rating, and Figure 6.1 provides
evidence. The figure illustrates the relationship between credit (agency)
rating and the average payouts offered on annuities in Canada. Notice that
companies with lower credit ratings tend to have higher (average) annuity
payouts and vice versa.
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Although it is not clear if the same effect exists in U.S. or other markets,
strong anecdotal evidence suggests that consumers are willing to trade off
and thus receive less retirement income in exchange for a stronger guaran-
tee that the income will actually be provided (i.e., that the company stands
little risk of default).

6.3 Valuation of Pension Annuities: General

Let’s say that the insurance company commits to pay the annuitant $1 per
year for the rest of the annuitant’s life. Assuming an effective valuation rate
of R per annum, the stochastic present value of a pension annuity (SPV-PA),
which I will denote as ax , is

ax =
D∑

i=1

1

(1 + R)i
, (6.1)

where D is the random (integer) number of years until death. The integral
version of this expression for payments that are made in continuous time is

ax =
∫ Tx

0
e−rt dt =

∫ ∞

0
e−rt1{Tx≥t} dt, (6.2)

where Tx is the remaining lifetime random variable defined in Chapter 3
and the “indicator function” 1{Tx≥t} takes on the value of 1 when Tx ≥ t and
0 when Tx < t. I stress that ax is a random variable.

Now imagine that an insurance company sells hundreds and thousands
of these pension annuity contracts to different people—all of whom are age
x, for example. Some of these people will live a very long time, and so
the insurance company will have to pay out quite a lot over the course of
their lives. Other customers will not live as long and the payments will be
much less. On average, though, the insurance company will be paying out
an amount that can be computed by taking expectations of equation (6.1).
In fact, the more policies they sell, the smaller the variance around this
number.

The expected value of this random variable is often called the immediate
pension annuity factor (IPAF):

āx = E

[ ∫ Tx

0
e−rt dt

]
=
∫ ∞

0
e−rt( tpx) dt

=
∫ ∞

0
exp

{
−
(

rt +
∫ t

0
λ(x + s) ds

)}
dt, (6.3)
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where the word “immediate” comes from the fact that payments start imme-
diately upon paying the premium āx (pronounced “ey bar ex”). Note that
the annuity factor āx can also be thought of as a variation of the exchange
rate between savings and consumption, introduced in Chapter 2. However,
now the “savings” are made in one lump sum and “consumption” occurs
until a random time Tx. Later I will introduce a deferred PAF, whose pay-
ments don’t begin until after some years have elapsed.

The expectation in (6.3) can be converted to a survival probability curve
since E[1{Tx≥t}] = (tpx). The second equality comes from the definition of
the survival probability, which was also introduced in Chapter 3.

6.4 Valuation of Pension Annuities: Exponential

If Tx is exponentially distributed, which (as you may recall from Chapter 3)
implies that (tpx) = e−λt, then the annuity factor from equation (6.3) col-
lapses to

āx =
∫ ∞

0
e−(r+λ)t dt = 1

r + λ
. (6.4)

For example, when r = 5% and λ = 5%, the annuity factor is 1/(0.05 +
0.05) = $10.0 per dollar of lifetime income. If r = 4% and λ = 6% then
the annuity factor is (still) $10, and the same is true if λ = 4% and r = 6%.

Observe how only the sum of r and λ matters and not the individual com-
ponents. The interest rate r and the instantaneous force of mortality (IFM)
λ have the exact same effect on the annuity factor: they both discount the
future to the present, but one adjusts for the value of money while the other
adjusts for the value of mortality. Even though (6.4) holds only under ex-
ponential mortality, the tight connection between r and the general λ(x)

curve will appear again many times.

6.5 The Wrong Way to Value Pension Annuities

A common mistake is to value pension annuities by arguing that income
will be received “on average” throughout the expected remaining lifetime
(ERL), which in our notation is E[Tx]. This incorrect approach then “adds
up” the discounted value of income for the ERL and uses this as the annuity
factor. To understand why this is wrong (or, at best, a biased approxima-
tion), think of the remaining lifetime random variable under an exponential
distribution. In this case, the discounted value of income until the end of
the ERL is
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∫ 1/λ

0
e−rt dt = e−r/λ

−r
+ 1

r
= 1

r
(1 − e−r/λ). (6.5)

Approximating the exponential term by e−r/λ ≈ 1 − r/λ leaves us with an
approximate integral value of 1/λ, which is larger than the correct annuity
factor of 1/(r + λ).

For example: if r = 5% and λ = 4%, which leads to an expected re-
maining lifetime of 25 years, then by (6.4) the correct annuity factor is
1/0.09 = $11.111 per dollar of lifetime income. However, under the incor-
rect formula (6.5), the annuity factor would be $14.27, which is higher by
more than $3 per dollar of lifetime income. Stated differently, a fixed pre-
mium of $100,000 converted into a pension annuity should provide, under
exponential mortality, an annual income of $100,000/11.11 = $9,000, not
$100,000/14.27 ≈ $7,000. Using the erroneous method will lead to less an-
nual income. In fact, this error will persist regardless of the particular law
of mortality that is used for valuation purposes.

Another common misconception is to multiply the correct $9,000 annual
income by the life expectancy of 25 years and thus claim that the annuitant
“gets back” $9,000×25 = $225,000 on average, which is more than double
the original premium. This is misleading because the time value of money
has been ignored, and it also clearly illustrates the importance of using the
entire survival curve (tpx) as opposed to just the expected remaining life-
time E[Tx].

On a slightly more technical level, we conclude our discussion here by
stating that ∫ E[Tx ]

0
e−rt dt > E

[ ∫ Tx

0
e−rt dt

]
, (6.6)

which is a general way of arguing that the incorrect annuity factor on the left-
hand side is always greater than the correct annuity factor on the right-hand
side. This fact is also a corollary of Jensen’s inequality in the mathematical
literature.

6.6 Valuation of Pension Annuities: Gompertz–Makeham

Recall from Section 3.9 that, under the Gompertz–Makeham (GoMa) law
of mortality, the IFM obeys the relationship

λ(x) = λ + 1

b
exp

{
x − m

b

}
. (6.7)
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The survival probability was shown to be

(tpx) = exp{−λt + b(λ(x) − λ)(1 − e t/b)}. (6.8)

Consequently, by (6.3) the annuity factor under GoMa can be expressed as

āx = eb(λ(x)−λ)

∫ ∞

0
e−(λ+r)t−b(λ(x)−λ)e t/b

dt. (6.9)

We now substitute using the change of variable s = e t/b and ds = dte t/b/b,
so that ds/s = dt/b and s b = e t, which leaves us with

āx = beb(λ(x)−λ)

∫ ∞

1
s−(λ+r)b−1e−b(λ(x)−λ)s ds. (6.10)

Finally, we use a second change of variable and let w = b(λ(x) − λ)s, so
that dw = b(λ(x) − λ)ds; therefore,

āx = b(bλ(x) − λ)(λ+r)b+1

b(λ(x) − λ)
eb(λ(x)−λ)

∫ ∞

b(λx−λ)

w−(λ+r)b−1e−w dw

= b(bλ(x) − bλ)(λ+r)beb(λ(x)−λ)�(−(λ + r)b, b(λ(x) − λ)). (6.11)

Recall from Chapter 3 that �(·, ·) denotes the incomplete Gamma (IG)
function, defined as

�(a, c) =
∫ ∞

c

e−tt (a−1) dt.

This finally leads to the main expression:

āx = b�
(−(λ + r)b, exp

{
x−m

b

})
exp
{
(m − x)(λ + r) − exp

{
x−m

b

}} . (6.12)

The last part of our story is recognizing that (bλ(x)−bλ)(λ+r)b can be sim-
plified to e(x−m)(λ+r) by using the original definition of the IFM λ(x) in
equation (6.7).

These derivations may seem overwhelming at first, so here are some nu-
merical examples to help develop an intuition for the formulas. Assume in
these examples that λ = 0, m = 86.34, and b = 9.5 for the GoMa law (these
were the best-fitting parameters to the unisex RP2000 mortality table ana-
lyzed in Chapter 3). Under a valuation rate of r = 4%, the annuity factor for
ages x = 65, 75, and 85 are ā65 = 12.454, ā75 = 8.718, and ā85 = 5.234.
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Table 6.4. IPAF āx: Price of lifetime
$1 annual income

Interest rate r
Starting at
age x of 4% 6% 8%

55 $15.822 $12.700 $10.480
65 $12.454 $10.474 $8.963
75 $8.718 $7.696 $6.857
85 $5.234 $4.832 $4.480

Note: GoMa mortality with m = 86.34 and b = 9.5.

The intuition should be clear. The older the annuitant at the point of “an-
nuitization,” the lower is the value of each dollar of lifetime income. These
numbers can obviously be scaled up. A pension annuity that pays $650
per month—which is $7,800 per year—has a value of (12.454)(7800) =
$97,141 at age 65. This number is not far from the $100,000 premium of
Table 6.1 that entitled a 65-year-old male annuitant to $655 for life. The
reason the two premiums are not exactly equal is likely due to different
interest rates, mortality estimates, and commissions embedded within the
quoted annuity price. We will return to this issue later.

If we increase the GoMa parameter from λ = 0 to λ = 0.01 while main-
taining the same values as before of m, b, and r, then the annuity factors are
reduced to ā65 = 11.394, ā75 = 8.181, and ā85 = 5.026. The actuarial rea-
son for this is that a positive λ parameter increases the instantaneous force of
mortality and thus projects shorter life spans. This means the insurance com-
pany pays less, which reduces the annuity factor at all annuitization ages.

Table 6.4 provides a bird’s-eye view. As the table shows, the same qual-
itative results follow when we increase the interest rate r from 4% to 6%
while maintaining λ = 0, m = 86.34, and b = 9.5. In this case we have
ā65 = 10.474, ā75 = 7.696, and ā85 = 4.832. This is identical to the im-
pact of higher interest rates on the value of a (mortality-free) fixed-income
bond.

Finally, if instead of using a GoMa value of m = 86.34 we increase the
modal value to m = 90 while retaining the dispersion parameter b = 9.5,
then the annuity factors increase to ā65 = 13.753, ā75 = 10.094, and ā85 =
6.434. The higher values are obviously due to the longer life span. Under
these parameters, the value of a pension annuity that pays $650 per month
is (13.753)(7800) = $107,273 at age 65, which is higher than the $100,000
premium of Table 6.1.
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With these numerical examples out of the way, let us push the algebra one
step further. If we substitute λ = 0, the annuity factor in equation (6.12)
can be simplified to

āx = b�(−rb, bλ(x))

e(m−x)r−bλ(x)
.

This is the pure Gompertz (no Makeham) case. In fact, if we let r = 0 as
well, then the equation for the annuity factor collapses to an even simpler

āx = E[Tx] = b�(0, bλ(x))

ebλ(x)
,

which oddly enough is the expected remaining lifetime under the Gompertz
law of mortality. Why is this so? Well, examining (6.3) reveals the seeds
of this identity. Indeed, go ahead and plug in a value of r = 0 in equation
(6.3); you will obtain the definition of the ERL, which is E[Tx].

For example, under the same m = 86.34 and b = 9.5, computing the an-
nuity factor under a 0% interest rate yields ā45 = 36.445 years at age 45,
ā55 = 27.189 at age 55, and ā65 = 18.714 at age 65. In sum, then, implicit
in the annuity factor āx is an interest rate r as well as the GoMa parameters
λ, m, b.

6.7 How Is the Annuity’s Income Taxed?

When you purchase a life annuity and then receive periodic income from the
policy, there are certain tax consequences that you must be aware of. First,
it is important to distinguish between annuities that are purchased as part of
a pension plan—for example, within tax-sheltered savings accounts—and
annuities that are purchased outside of a pension plan. The general rule is
that, if the funds used to purchase the annuity have not yet been taxed, then
all income from the annuity is taxed as ordinary interest (i.e., salary) in-
come. On the other hand, if the annuity was purchased with after-tax funds,
then the periodic income you receive will be a blended mix of interest and
returned principal. A portion of this income will be taxable and a portion
will be tax free. It is therefore common to hear the term exclusion ratio (or
excluded amount) to denote the fraction of income that is not included in
taxable income and the term inclusion ratio (or taxable amount) to denote
the balance. Here is a numerical example.

You have $100,000 inside a personal pension plan—such as an IRA or
401(k) account in the United States—and have decided to use these funds to
purchase a life annuity, which pays 100000/ā65 = $8,000 per year for life.
Since you have used tax-sheltered funds to purchase the life annuity, the
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entire $8,000 per year is considered to be ordinary interest income and is
added to your other income when determining the amount of income taxes
you must pay. If you are in the (highest) 50% marginal tax bracket, then
you will be left with $4,000 after tax.

If the same $100,000 were placed outside of a tax shelter (or nonquali-
fied pension plan), then a portion of the annual $8,000 income would be
excluded from income taxes and the remainder would be taxable as ordi-
nary interest income.

The mathematics is as follows. The taxable fraction, once the life annu-
ity is purchased at age x, is defined by

ρx = 1 − āx

E[T tax
x ]

, (6.13)

where E[T tax
x ] denotes the expected remaining years of payments (i.e. life-

time) as specified by mortality tables used by the tax authorities, which are
not necessarily the same tables used by the insurance company to price the
pension annuity factor āx . To make this absolutely clear, E[T tax

x ] and E[Tx]
can differ. In fact, under most tax jurisdictions the value of E[T tax

x ] is less
than E[Tx], which means that the tax code assumes people will be living
(and receiving payments) for less time than they actually do. This differ-
ence in mortality assumptions results in fewer taxes being paid than if a
higher E[T tax

x ] had been assumed.
Note that, once determined at the time of purchase, the taxable portion

ρx will remain the same until time E[T tax
x ]. After that, some tax jurisdic-

tions (such as the United States) will force the entire payment to be taxable.
In other jurisdictions (such as Canada), the payments will still be partially
tax free and ρx will determine the fraction that is taxable.

Here is the intuition for equation (6.13). First of all, by definition of the
life annuity factor, it should be that āx < E[T tax

x ]. If this inequality is sat-
isfied, then the positive ratio āx/E[T tax

x ] < 1 and therefore ρx < 1. In
fact, the smaller is the value of āx , the greater is the taxable portion, ceteris
paribus. If you are paying less for the same $1 of lifetime income, then the
same dollar should be taxed more heavily. In the limit, if you paid abso-
lutely nothing for the life annuity and so āx was very close to 0 (because
interest rates were very high), then the taxable portion ρx would be close
to 1 and almost the entire $1 of periodic income would be taxable.

Table 6.5 provides some numerical examples of the impact of tax au-
thorities using a different (old) mortality table for determining the taxable
portion as well as the relative impact of age on the taxable portion. Ob-
serve that here the outdated mortality assumptions are reflected in a lower
Gompertz parameter mtax.
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Table 6.5. Taxable portion of income flow from $1-for-life
annuity purchased with non–tax-sheltered funds

Purchase E[Tx] E[T tax
x ] Taxable

age (x) (years) Cost āx (years) portion ρx

60 22.82 $11.671 17.66 33.9%
65 18.71 $10.474 13.98 25.1%
70 14.93 $9.133 10.72 14.8%
75 11.55 $7.696 7.93 2.95%

Notes: GoMa mortality with mtax = 80, m = 86.34, b = 9.5, and
r = 6%. Taxable portion ρx = 1 − āx/E[T tax

x ].

For example, if you purchase a life annuity (with regular, nonqualified
funds) at age 60, then Table 6.5 shows that 33.9% of the income you re-
ceive would be taxable while the remaining 66.1% would be considered a
return of principal and hence tax free. This 33.9% would be taxable for the
next 17.66 years—that is, until you’ve reached (approximately) age 78. At
this point, 100% of the payment would be considered taxable under the U.S.
tax code, which assumes that your entire principal has been received and
so what you are now getting is pure interest. However, each country has
its own rules for annuity income taxation. In Canada, for instance, taxing
only the 33.9% would continue until death. I will return to this topic in the
next chapter, where I explain the tax arbitrage opportunity that arises as a
result of annuity taxation methods.

6.8 Deferred Annuities: Variation on a Theme

Imagine a situation in which you purchase a pension annuity at age x, but the
contract stipulates that it does not start providing income until age x + u >

x. Furthermore, if you don’t actually survive to age x + u, you receive
nothing. Clearly, the value of this deferred annuity factor should be much
less than āx , since the annuity is not paying you any income during the next
u years. Likewise, the value should also be less than āx+u, since (i) there is a
chance you will not survive to age x +u and (ii) the insurance company has
access to your premium during this time. In fact, when you combine these
two elements, you are left with a deferred pension annuity factor (DPAF):

uāx := āx+u(upx)e
−ru. (6.14)

I will omit the u subscript whenever u = 0 and the annuity factor is of the
immediate type, so 0 āx := āx .
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Let’s go over each piece of equation (6.14) separately. The first part of
the right-hand side is the immediate pension annuity factor at the income-
starting age of x +u. This, of course, must be discounted for the time value
of money e−ru and for mortality (upx), which corresponds to the proba-
bility that the x-year-old will actually survive u years to receive income.
Think back to the fundamentals of insurance. If a fraction of the group will
not live to age x + u, then the insurance “collective” can charge less than
āx+u by a factor of (upx).

Some might benefit from an alternative view in which DPAF is defined
via

uāx =
∫ ∞

u

exp

{
−
(

rt +
∫ t

0
λ(x + s) ds

)}
dt, (6.15)

which differs from the IPAF definition in equation (6.3) by virtue of the u

(instead of 0) in the lower bound of integration. Indeed, the payments start
at time u, or age x + u, so the “summation” of benefits must start at u as
well.

Under the GoMa law of mortality, the equation for the DPAF presented
in (6.15) can again be solved in terms of the incomplete Gamma function,
leading to

uāx = b�
(−(λ + r)b, exp

{
x−m+u

b

})
exp
{
(m − x)(λ + r) − exp

{
x−m

b

}} . (6.16)

Here is a detailed numerical example. Assume the same GoMa parameters
of λ = 0, m = 86.34, and b = 9.5 as well as the valuation rate of r = 4%.

The expected remaining lifetime for an x = 45-year-old is E[T45] = 36.46
years, which also means that the expected age at death is 81.46 years. The
probability that an x = 45-year-old survives 20 more years to age x = 65
is (20p45) = 0.911 or a 91.1% chance. The TVM factor for 20 years under
r = 4% is e−0.04(20) = 0.449, which is slightly less than fifty cents on the
dollar. The immediate PAF at age x = 65 is ā65 = 12.454 per dollar of
lifetime income. Finally, multiply these three numbers together to arrive at
an age-45 “value” of 20 ā45 ≈ (0.911)(0.449)(12.454) ≈ $5.10 per dollar
of lifetime income, starting at age 65.

Thus, a 45-year-old who wants a pension that commences in 20 years—
and is willing to forfeit all claims to the pension if they die prior to age
65—will have to pay approximately 5.1 times the desired annual income
under a 4% valuation rate. Stated differently, if interest rates in the market
were precisely 4% and if these deferred pension annuities were fairly priced,
then a 45-year-old could purchase a retirement pension for this price. The
younger the age at which the deferred pension annuity is purchased or the
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Table 6.6. DPAF uā45: Price of lifetime
$1 annual income for 45-year-old

Interest rate r
Income

starting at . . . 4% 6% 8%

Age 55, u = 10 $10.354 $6.804 $4.597
Age 65, u = 20 $5.099 $2.875 $1.649
Age 75, u = 30 $1.964 $0.951 $0.465
Age 85, u = 40 $0.449 $0.186 $0.077

Note: GoMa mortality with m = 86.34 and b = 9.5.

older the age at which the pension annuity commences payment, the lower
is the DPAF.

Table 6.6 provides additional examples. Contrast and compare the num-
bers in this table to those in Table 6.4. At any given starting age, the value
of the pension annuity is much lower in the deferred case than in the imme-
diate case.

One last point worth noting in both equations (6.16) and (6.12) is that the
terms λ and r always appear together as a sum. They are never separate in
the annuity factors. In other words, they are interchangeable. We can value
the DPAF or IPAF with a valuation rate of r = 0 and a λ = 5% or we can
value these factors using r = 5% and λ = 0%, but in both cases we will
obtain the same result. In some sense this is why I have not bothered to
include λ = 0 examples in the numerical section, since it is always possi-
ble to increase the valuation rate r by the required amount. Of course, this
is exactly what we found in the case of an exponential model for remain-
ing lifetime, where the IPAF was the inverse of the sum of λ + r. We shall
return to this idea later in the analysis.

6.9 Period Certain versus Term Certain

Recall from Chapter 4 on modeling fixed-income bonds that the value of
a bond paying a coupon of c × [bond face value] dollars per annum until
maturity could be valued by using the equation

V(c, r, T ) = c

r
(1 − e−rT ) + e−rT (6.17)

per dollar of face value. Now we compare the fixed-income bond to a
period-certain annuity, which promises to provide income only for a pre-
determined period of time and ends thereafter. When we value these latter
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Table 6.7. Value V(r, T ) of term certain annuity factor
vs. immediate pension annuity factor

Interest rate r
Length T

of term 4% 6% 8%

10 years $8.242 $7.520 $6.883
20 years $13.767 $11.647 $9.976
30 years $17.470 $13.912 $11.366

IPAF ā65 $12.454 $10.474 $8.963

products we need not adjust for mortality in any way and, in fact, can use a
variation of the generic bond valuation equation (6.17). We thus define the
term certain annuity factor (TCAF),

V(r, T ) := V(1, r, T ) − e−rT,

which in essence is the value of a coupon bond paying one dollar per year
between time 0 and T but paying no face value at the end (hence the sub-
traction of e−rT from the bond’s value).

Table 6.7 provides examples of how the TCAF varies with the length of
the term T and the valuation rate, regardless of the starting age. Contrast
these term certain annuity factors to the immediate pension annuity factors
in the bottom row. A 65-year-old who wanted to purchase a life annuity
that makes annual $1 payments for the rest of his life would have to pay
$10.47, assuming a valuation rate of 6%. However, if he wanted guaran-
teed payments of $1 made to himself or his beneficiary for a period of only
10 years then he would pay $7.52 under the same valuation rate (or $11.65
for 20 years of annual $1 payments).

Putting two concepts together, the value of an immediate pension annuity
that guarantees payments for u years and makes life-contingent payments
for all years beyond age x + u is defined as

V(r, u) + (uāx).

Another type of pension annuity is one in which the payments continue
for as long as the annuitant is still alive but cease at some fixed date (after
τ years). So, for example, you might purchase a pension annuity at age 50
that pays $1 per year as long as you are still alive but not past age 89. This
is not exactly an annuity that pays for life. But neither is it a term certain
annuity, since you must survive in order to receive payments. The notation
we will use for this pension annuity factor is āx :τ , which is formally defined
as follows:
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āx :τ =
∫ τ

0
exp

{
−
(

rt +
∫ t

0
λ(x + s) ds

)}
dt. (6.18)

Note the similarity to equation (6.3), which defined the IPAF; now, how-
ever, the upper bound of integration stops at τ. Also, compare and contrast
(6.18) with the DPAF uāx of equation (6.15), where the upper bound went
to infinity but the lower bound was u. In that case the annuity starts at time
u, but in this case it ends at time τ. Effectively, the temporary annuity factor
āx :τ is simply the difference between the IPAF and the DPAF at age x.

6.10 Valuation of Joint and Survivor Pension Annuities

Up until now our discussion has centered on āx , the value or cost of a pen-
sion that is issued to a single life at age x. When this person dies, payments
cease. In practice, however, it is quite common for pension annuities to be
issued to couples or “joint lives” under which payments continue for as long
as at least one member of the couple survives. Thus, for example, a male
retiree who is 65—and whose female spouse is 59 years of age—might be
entitled to a pension that pays $30,000 per year to the couple for as long as
either one of them is still alive. In this section I will address how to value
and price these kinds of joint life pension annuities.

Now it would obviously be a mistake for the insurance company or pen-
sion fund to value this annuity assuming that the younger annuitant will
outlive the older annuitant, so all that matters from an actuarial standpoint
is the younger life. After all, there is a chance that a 65-year-old male will
outlive a 59-year-old female. The correct way to value the joint life annu-
ity, which pays $1 for as long as one member of the couple is still alive, is as
follows. As before, let x denote the age of annuitant 1 and y the age of annu-
itant 2, and let (tpx) and (tpy) denote their respective survival probabilities.
Recall from Chapter 3 that if we use the basic rules of probability—and as-
sume both deaths are independent of each other—then the probability that
the insurance company or pension fund is still making payments of $1 in t

years (i.e., that at least one of the couple is still alive) will be

(tpx,y) = 1 − (1 − (tpx))(1 − (tpy))

= 1 − (1 − (tpy) − (tpx) + (tpx)(tpy))

= (tpx) + (tpy) − (tpx)(tpy). (6.19)

In sum, you add the individual survival probabilities and then subtract
the product of those same numbers. For instance: if (20p59) = 0.8 and
(20p65) = 0.7, then the probability that at least one of them is still alive and
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receiving payments in 20 years is (0.8)+ (0.7)− (0.8)(0.7) = 0.94, which
is obviously much higher than either’s individual odds of surviving for 20
years.

What this means is that we have a shortcut for valuing and pricing joint
life pension annuities—provided that the pension annuity continues paying
exactly the same amount as long as at least one annuitant is still alive. This
is known as a 100% joint and survivor pension annuity. Our x, y subscript
notation will be used to define the generic pension annuity factor as

āx,y :=
∫ ∞

0
e−rs(spx,y) ds

=
∫ ∞

0
e−rs(spx) ds +

∫ ∞

0
e−rs(spy) ds

−
∫ ∞

0
e−rs(spx)(spy) ds, (6.20)

which follows directly from the decomposition in (6.19). The joint life an-
nuity factor issued to a couple (x, y) is equal to the sum of the two individual
annuity factors at age x and age y, minus a hypothetical annuity factor is-
sued to a life whose survival probability equals the product of their two
independent survival curves. This last component of equation (6.20) might
seem awkward and cumbersome to work with, but in some cases it boils
down to an equally simple expression.

For example, assume for both lives an exponential remaining lifetime
under which (tpx) = e−tλx and (tpy) = e−tλy, where λx and λy denote the
constant IFM for annuitant x and for annuitant y, respectively. In this case,
the product (tpx)(tpy) = e−t(λx+λy) and hence—by the properties of the
annuity factor under exponential mortality and by the derivation in (6.20)—
we arrive at

āx,y = 1

λx + r
+ 1

λy + r
− 1

λx + λy + r
. (6.21)

This is the sum of the two annuity factors minus a hypothetical annuity
factor, where the instantaneous force of mortality is the sum of the two in-
dependent forces of mortality. For example, under an r = 5% valuation
rate, if the younger (female) λx = 1/30 and the older (male) λy = 1/20,
then 1/(1/30 + 0.05) = 12.0 for the age-x factor and 1/(1/20 + 0.05) =
10.0 for the age-y factor and 1/(1/20+1/30+0.05) = 7.5 for the combined
factor. Thus āx,y = 12 + 10 − 7.5 = 14.5, a value that is obviously higher
than either of the individual āx or āy factors, so the guaranteed monthly
payments are lower than they would be in the case of a single life. This is
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the observation we made in Table 6.3. As you can see, dealing with 100%
J&S pension annuities under exponential mortality is quite simple.

Yet even under a GoMa law of mortality, where the survival probability
takes on the more complicated form

(tpx) = exp{−λt + (e(x−m)/b)(1 − e t/b)}, (6.22)

we can still obtain relatively easy formulas. Recall, for example, that as-
suming λ = 0, m = 80, and b = 10 implies that there is a (20p65) = 24%
chance that a 65-year-old (male) will survive for 20 more years. In contrast,
when m = 90 and b = 10, there is a (20p59) = 75% chance that a 59-year-
old (female) will survive for 20 more years. Obviously, the female has a
much better chance than the male of being alive in 20 years to receive the
pension income. In this case, the relevant “both survive” probability will be:

(tpx,y) = exp{−(λ1 + λ2)t + (e(x−m1)/b1)(1 − e t/b1)

+ (e(y−m2 )/b1)(1 − e t/b2)}, (6.23)

where λ1, m1, b1 are the GoMa parameters for the first life and λ2 , m2 , b2

are those for the second life. Equation (6.23) is just the product of equation
(6.22) under the relevant parameters. This latter expression is then placed
into equation (6.20) in the last integral. The calculus needed to integrate
the expression might be messy, but it is doable.

In fact, a closely related case is the situation in which the pension annu-
ity is issued to a couple but now the income ceases as soon as either of the
annuitants dies. This is the opposite of the 100% J&S case and of course
would result in a much lower annuity factor. In this case, the relevant prob-
ability that the insurance company will still be making payments in t years
is the probability that both are still alive, which is exactly the (tpy)(tpx)

we used in equations (6.20) and (6.23). Thus, under exponential mortality,
for an x-year-old and a y-year-old to purchase a 0% J&S pension annu-
ity, which pays nothing after the first death, the cost is $7.50 per dollar of
lifetime income when λx = 1/30, λy = 1/20, and r = 5%.

Finally, in between these two extremes (of income termination vs. 100%
continuation after the first death) is the case in which an income reduc-
tion occurs upon the first death. For example, a 75% J&S pension annuity
would pay $1 until the first death and then $0.75 upon the death of annui-
tant 1 until annuitant 2 dies. This is quite common for pensions, where the
income is reduced by K (which may equal 25%, 40%, or even 50%) upon
the first death. In this case, the K% J&S annuity factor must be calculated
explicitly as follows:
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āx,y

=
∫ ∞

0
e−rs[(spx)(spy) + (spx)(1 − (spy))K + (1 − (spx))(spy)K] ds

=
∫ ∞

0
e−rs(spx) ds +

∫ ∞

0
e−rs(spy) ds

+ (1 − 2K)

∫ ∞

0
e−rs(spx)(spy) ds. (6.24)

Notice the similarity between this equation and (6.20); they differ only in
the third and final integral. The intuition for the bracketed expression in
(6.24) is as follows. The first product term (spx)(spy) denotes the full $1
payment that is made to the couple as long as they are both alive. The sec-
ond term (spx)(1 − (spy))K denotes the partial $K payment that is made
if the younger (female) annuitant of age x at issue survives but the older
(male) annuitant of age y at issue does not survive. Finally, the third term
(1− (spx))(spy)K denotes the partial $K payment that is made if the older
(male) annuitant survives the younger (female) annuitant.

To further convince yourself that equation (6.24) is correct, assume that
K = 100%; then we are back to the original 100% J&S case presented in
equation (6.20). In this case, the relevant bracketed portion of the integrand
in equation (6.24) collapses to (spx)(spy) + (spx) + (spy) − 2(spx)(spy),
which is precisely (spx) + (spy) − (spx)(spy) and the relevant integrand
for (6.20). This should be even more obvious from the second line of the
same equation.

Finally, equation (6.24) is general enough to cover the situation in which
the continuation payment made to the survivor upon the first death depends
on who dies first. For example, if the male dies earlier then the payment
might be reduced to Kf %, but if the female dies earlier then the payment
might be reduced to Km%. Then, instead of K we would use Kf and Km

(as appropriate) in equation (6.24).

6.11 Duration of a Pension Annuity

Akin to the concept of duration (and convexity) in the case of generic fixed-
income bonds is the same idea defined within the context of annuity factors.
The duration D of the annuity factor is the (negative) derivative with respect
to the valuation rate r, scaled by the annuity factor āx itself. The formal and
explicit definition of the annuity factor duration is
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Table 6.8 Duration value D (in years) of
immediate pension annuity factor

Interest rate r
Starting at
age x of 4% 6% 8%

55 11.76 10.26 8.99
65 9.13 8.21 7.39
75 6.49 5.99 5.55
85 4.10 3.88 3.68

Note: GoMa mortality with m = 86.34 and b = 9.5.

D(x, u, r, λ, m, b) :=
− ∂

∂r
āx

āx

. (6.25)

I use the same symbol D for duration that was used also for generic fixed-
income bonds but with the understanding that the additional terms (x, u, r,
λ, m, b) will clarify the context in which the duration is calculated. When
mortality obeys a simple exponential distribution, the duration parameter
can be easily computed as

D(x, 0, r, λ, m, b) = 1

r + λ
. (6.26)

Oddly enough, in the case of exponential mortality this duration param-
eter D is equal to the annuity factor āx itself! Thus, a small change in rates
�r will change the annuity factor by −�r × āx . For example, if the valu-
ation rate increased by 1% then the original annuity factor āx = $10 would
change by $10×(−1%×$10) = −$1, resulting in a new annuity factor of $9.

More generally, under a GoMa law of mortality, the calculus doesn’t
work out as nicely and the expression for D(x, τ, r, λ, m, b) is, well, a mess.
Fortunately, we are able to obtain some (numerical) values by taking deriva-
tives symbolically, using mathematical software, and evaluating the results;
see Table 6.8.

For example: assuming GoMa mortality at age 55, the annuity factor
under an interest rate of r = 4% is $15.82 per dollar of lifetime income. The
GoMa duration number of11.76 years shown in the table is lower than the an-
nuity factor (in contrast to the case of exponential mortality). If the valuation
rate increases from r = 4% to r = 4.5%, then the duration approximation
states that the annuity factor will decline by (0.005)(11.7597) = 5.879%



130 Models of Pension Life Annuities

from a value of $15.82 to a value of $14.89 per dollar of annual lifetime in-
come. How good is this approximation? Well, by (6.12) the correct value
of the annuity factor under an r = 4.5% valuation rate is ā55 = 14.93 per
dollar of annual lifetime income. It should come as no surprise that the du-
ration approximation overestimates the extent to which the annuity factor
declines when the valuation rate increases. As we saw, this is the nature of
the duration (first-derivative) approximation to any valuation function.

Along the same lines, we can compute the duration of a deferred pension
annuity factor and compare it with the duration of an immediate pension an-
nuity factor purchased at the same age. For instance, under the same GoMa
parameters as before, the duration of an IPAF at age x = 55 under an r =
5% valuation rate is D = 10.98 years. Interestingly enough, the duration of
a DPAF at the same age y = 55 and valuation rate r = 5%—but deferred
for τ = 10 years until a starting age of x = 65—is D = 18.65 years. Why?
The answer lies in the payment structure. Recall that duration is a weighted
average or a “center of gravity” for a series of payments. When the annu-
ity is deferred by τ years, the income is pushed off into the future and so
the duration is increased as well. Don’t confuse the value of the annuity
factor itself—which is much lower for a DPAF than for an IPAF—with the
duration, which already includes a scaling element to adjust for price.

What about convexity? You can go through an even messier exercise to
compute the second derivative of the annuity factor,

K(x, u, r, λ, m, b) :=
∂ 2

∂r 2
āx

āx

;

this equation can be handled symbolically in several computer languages.
An example of a convexity value is K = 195.497 when x = 55, r = 5%,
and the GoMa parameters are λ = 0, m = 86.34, and b = 9.5. But when
x = 45 and τ = 10 under the same valuation rate of r = 5%, the convexity
value is K = 515.11. The numbers are different but the pattern is the same
as before. Longer deferral periods increase both the duration and the con-
vexity of the annuity factor. Table 6.9 provides a summary of duration and
convexity values for annuities with various deferral periods.

6.12 Variable vs. Fixed Pension Annuities

Pension annuities can be paid out in “units” as opposed to dollars. In such
a case, the pension annuity is often labeled an immediate variable annuity



6.12 Variable vs. Fixed Pension Annuities 131

Table 6.9. Pension annuity factor at age x = 50
when r = 5%

Deferral Value Duration Convexity
period uā50 D K

0 years $15.229 12.058 years 237.23
10 years $7.477 19.839 years 453.15
20 years $3.087 27.439 years 787.19
30 years $0.895 35.073 years 1246.84

Note: GoMa mortality with m = 86.34 and b = 9.5.

(IVA) as opposed to an immediate fixed annuity (IFA). Note that imme-
diate variable annuities are distinct from and should not be confused with
deferred variable annuities, which are tax-deferred accumulation policies
that allow the investor to allocate funds to risky or variable investment funds.
I will return to the topic of deferred variable annuities in Chapter 11.

To better understand the mechanics of an immediate variable annuity—
and as a precursor to our technical discussion about risk and return charac-
teristics—here is a helpful way to visualize the product. Imagine a payout
annuity that is paid in shares instead of cash. Essentially, each month dur-
ing retirement, instead of getting a check for $1,000 you get 10 shares of
XYZ Corporation, regardless of what these shares are actually worth.

Of course, no one can eat shares of XYZ Corp. or buy food with those
shares, so the insurance company provides you the added service (at no risk)
of converting these shares to cash—based on their value at the time of pay-
ment. Thus, if the shares happened to appreciate during that month, you
would receive a higher annuity payout than for the previous month; if the
shares depreciated, you would get less. This is the essence of an immediate
variable annuity.

Obviously, when one initially purchases the IVA, the insurance company
offering the product will take the premium paid in and immediately invest
the funds in shares of XYZ Corp. As a result, the insurance company is in-
different to the movement of XYZ shares—in other words, it does not care
if their value goes up or down—since it de facto makes payments to you
in XYZ Corp. shares. Sure, the periodic income of the IVA is in cash, but
they are just converting those shares to cash on the day they send you the
check. The insurance company is certainly not in the business of speculat-
ing on the stock of XYZ Corp. They completely hedge this exposure by
setting up actuarial reserves that are held in XYZ shares.
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Now, let us consider this transaction from the point of view of the in-
surance company. What happens if people start living much longer than
expected? Will the insurance company run out of XYZ shares?

As with an immediate fixed annuity, the insurance company is required to
make those share-based payments to all survivors as long as they are alive.
So, a prudent company will make sure to continuously monitor the reserves
that are being held and ensure they have enough money set aside to make
good on these obligations. This is the main function of the insurance com-
pany. They evaluate mortality risk, price it, and hedge against it.

What happens if the XYZ Corp. tanks? Each month, the annuitant re-
ceives the value of XYZ shares. If the share price continues to decline each
month then the annuitant will receive less and less. But, as long as the XYZ
Corp. doesn’t hit zero, the annuitant will get something at the end of each
month. They can never technically run out of money.

Of course, linking your payout annuity to one particular company is ridic-
ulously risky. Common sense dictates that we invest prudently by holding
a diversified portfolio or collection of stocks and bonds. In practice, IVAs
are actually linked to well-diversified funds or broad-based market indices.

So, instead of the XYZ Corp., imagine an equity-based fund whose net
asset value (NAV) is currently $1 per unit. The unit fluctuates each day. In
any given day, week, month, or year the price can increase or decrease rel-
ative to the previous period. Instead of receiving fixed annuity payments
or fixed payments in shares, you get fixed payments in “fund units.” Every
month, the insurance company promises to send you the value of 50 fund
units. The insurance company converts these fund units into cash using the
NAV.

Is this annuity fixed or floating? Well, as Einstein pointed out in his the-
ory of relativity, it all depends on your frame of reference. If you take my
analogy to the extreme, all payout annuities are fixed. They are fixed in an
asset of reference and converted to the cash value.

Here is the mathematics. An investment of W premium dollars into an
immediate variable annuity will entitle the annuitants to a lifelong payment
of W/āx units per year—where the NAV is normalized to a value of $1—as
opposed to dollars per year. As before,

āx :=
∫ ∞

0
e−ht( tpx) dt, (6.27)

but in this case the valuation rate r has been replaced with the rather arbi-
trary h. You will see why in a moment, but for now simply note that this is
often called the assumed interest rate (AIR) in the insurance lexicon.
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Each payment unit entitles the individual to a variable (i.e. random) pay-
ment that depends on the performance of the chosen underlying asset (typ-
ically, an equity fund) with respect to the AIR h. If the return on the under-
lying asset in any one period is less than the AIR h, the variable payment
will decrease. If, on the other hand, the return on the asset is greater than
the AIR h, the variable payment will increase. Formally, if the price dy-
namics of the underlying asset are governed by a Brownian motion, then
the immediate variable annuity’s dollar income at time t will be

W

āx

e(ν−h)t+σBt, (6.28)

where Bt , ν, σ are as defined in Chapter 5. For example, in the case of ex-
ponential mortality, āx = 1/(λ + h) and the income flow becomes

(λ + h)We(ν−h)t+σBt. (6.29)

The expression for this variable annuity income may seem obscure at
first, but a comparison to the income from a fixed immediate annuity is
quite illustrative. For example, if the AIR h is equal to the valuation rate
(i.e., h = r), then the individual is entitled to an initial (λ + r)W units. If
the chosen underlying asset were a risk-free asset then ν − h = 0 and σ =
0, and so each unit would pay off $1 per year. Therefore, the total income
would be exactly the same as in the fixed immediate annuity case: (λ+ r)W

per year for life.
The higher the assumed interest rate h, the greater is the value of (λ+h)W.

In other words, more units are acquired. This may be more desirable for
retirees with higher needs in early retirement. However, this is not a free
lunch, since the growth of the return process will be lower and hence the
payment from each unit (initial NAV times e(ν−h)t+σBt ) will be reduced with
time. Alternatively, others may want their payments to increase at a greater
rate over time (perhaps to keep up with inflation); in this case, a lower AIR
would be selected. In practice, all values of h are actuarially equivalent.

In the event of Gompertz–Makeham mortality, the annual income flow
per initial premium W becomes

W
exp
{
(m − x)(λ + h) − exp

{
x−m

b

}}
b�
(−(λ + h)b, exp

{
x−m

b

}) exp{(ν − h)t + σBt}. (6.30)

One way to view the AIR is as capturing the amount of future market re-
turns that you are taking, or pricing, in advance. Table 6.10 illustrates this
concept employing our usual GoMa parameters. If you are 65 years old and
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Table 6.10. Annuity payout at age x = 65 ($100,000 premium)

Number
AIR Initial of units −20% 0% +20%

0% $445 45 $356 $445 $534
3% $609 61 $469 $591 $713
6% $796 80 $589 $748 $907

Note: λ = 0, m = 86.34, b = 9.5; NAV = $10.

choose a 0% AIR (which can be approximated with a very small rate for
the purposes of (6.30)), your initial payment will be approximately $445.
If we assume that the initial NAV of the chosen fund is $10 per unit, then
you are entitled to $445/$10 = 44.5 fund units. If the market subsequently
increases by 20% then the value of your units and your total payment will
also increase by exactly 20%, to $534. This is because you have “taken”
or “advanced” none (0%) of the portfolio’s future return. However, if you
select a 6% AIR, resulting in a larger initial payment of $796, and if the
market subsequently increases by 20%, then you would get to keep only
about 14% of this increase because you already took 6% in advance. Your
actual payment will increase only to $907. Of course, this is still better than
$445 or even $534 for that matter—which is what you would have received
in the 0% AIR case—but over time the advantage will erode, since a higher
h slows down the return growth process by decreasing the fund’s expected
growth rate ν. Figure 6.2 illustrates this reversal of the relationship between
payouts under different AIRs over time.

6.13 Further Reading

Like the earlier chapter on mortality models, the valuation of pension (life)
annuities is fairly standard for actuaries and insurance “quants.” Once again,
the master reference is Actuarial Mathematics (Bowers et al. 1997). In ad-
dition, there are a number of interesting papers that are relevant to or extend
some of the ideas raised in this chapter. Beekman and Fuelling (1990) ex-
tended the computation of a pension annuity factor—which is the expecta-
tion of the stochastic present value of a pension annuity—to a scenario in
which the valuation rate r is itself random. (I will return to this in a later
chapter.) Duncan (1952) and Biggs (1969) were the first to formulate the
actuarial mathematics of a variable payout annuity that provides income in
units of a fund as opposed to units of currency. The first company to adopt
this innovation was the U.S.-based pension fund TIAA-CREF to provide
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Figure 6.2

pensions for high-school teachers and university professors, and it has since
been modified and used by many companies. Feldstein and Ranguelova
(2001) use variable payout (income) annuities as part of a proposal to re-
form Social Security in the United States. Brown and colleagues (1999)
examine the “fairness and efficiency” of actual annuity prices and compare
their money’s worth relative to bonds and other fixed-income products.
They build on the methodology developed in Friedman and Warshawsky
(1990) and Warshawsky (1998). The effect of adverse selection on annu-
ity prices is examined by Finkelstein and Poterba (2002), and the impact
of transaction costs is described by Sinha (1986). These papers—and many
subsequent ones that have used the same ideas—are a nice example of how
traditional economists use and implement some of the actuarial models I
have developed in this chapter.

Along the same lines, for a brief economic history of annuities see Poterba
(1997). To understand the impact of unisex pricing on the demand for an-
nuities, see Carlson and Lord (1986). From an actuarial perspective, Frees,
Carriere, and Valdez (1996) make clever use of annuity purchase data pro-
vided by a large insurance company to estimate the magnitude of the “broken
heart” syndrome, based on a GoMa law of mortality. This syndrome is used
to describe the higher mortality rates that are often associated with the death
of a spouse. Mereu (1962) is the first paper to explicitly derive a pension an-
nuity factor under GoMa mortality. Vanneste, Goovaerts, and Labie (1994)
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started a series of papers that attempt to classify and compute the entire
distribution—as opposed to just the expected value alone—of the stochas-
tic present value of a pension annuity under a variety of interest rate and
mortality dynamics.

6.14 Notation

(uāx :τ )—pension annuity factor at age x, where u denotes the deferral pe-
riod and τ denotes the term of temporary coverage

(āx,y)—joint and survivor annuity factor
V(r, u)—term certain annuity factor

6.15 Problems

Problem 6.1. Using the annuity income numbers displayed in Table 6.1,
locate the “best fitting” GoMa parameters λ, m, b and embedded valuation
rate r that minimize the distance between the pension annuity value and the
pension annuity price. Use a portion of the prices if this appears to be too
complicated.

Problem 6.2. Verify (via integration) the formula for the DPAF uāx :τ under
the Gompertz–Makeham law of mortality, from first principles as laid out
in equation (6.2).

Problem 6.3. Assuming λ = 0, m = 86.34, and b = 9.5, compute the
(correct) IPAF at age 55, 65, and 75 under an r = 4% and r = 6% valu-
ation rate. Compare this number to the incorrect value using the (biased)
life expectancy method.

Problem 6.4. In Problem 6.3, assume a model of exponential remaining
lifetime Pr[Tx ≥ t] = e−λt and compute the “implied IFM value” that
equates the IPAF at ages 55, 65, and 75. In other words, find a number such
that āx = 1/(r + λ). How does the ERL compare under the two mortality
assumptions?

Problem 6.5. Assuming λ = 0, m = 86.34, and b = 9.5 as GoMa param-
eters, compute the value and (somehow) the duration of a deferred pension
annuity purchased at age 62, under a valuation rate of r = 5.5%, that pays
$10,000 per year for life starting at age 72. Also, compute the value and
duration for a $C-per-year lifetime immediate pension annuity that is pur-
chased at age 72 under the same r = 5.5% valuation rate. What value of
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C allows a long position in the deferred annuity to exactly offset a short
position in the immediate annuity for small changes in the valuation rate?

Problem 6.6. Derive an expression for the IPAF āx assuming that the in-
stantaneous force of mortality satisfies the following equation:

λ(x) =
{ 1

b
e(x−m)/b if x < 95,

1
b
e(95−m)/b if x ≥ 95.

(6.31)

This is a Gompertz–Makeham law of mortality that “flattens out” and be-
comes constant at age 95. There is some biological evidence that this better
reflects human aging toward the end of the life cycle. Using m = 86.34
and b = 9.5, compare the value of ā65 under a standard GoMa model to
the value under (6.31), using a valuation rate of r = 5%. Is the annuity fac-
tor higher or lower? Please provide an intuitive explanation. By how much
does the flattening affect the annuity factor? What if the pension annuity is
valued at age x = 75?
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Models of Life Insurance

7.1 A Free (Last) Supper?

A few years ago, a clever friend of mine borrowed $100,000 from the bank
at a fixed interest rate of 5% per year. He promised to pay the loan back
when he (eventually) died. The bank was willing to lend him the money
under these conditions because he used part of the $100,000 to purchase a
life insurance policy with a death benefit of $100,000, with the bank listed
as the beneficiary. Apparently, this transaction still left him with enough
money to purchase an immediate pension annuity that would cover his peri-
odic interest payments of $5,000 each year and then some. In other words,
even after buying the life insurance policy and the annuity, he still had some
money left over. This sounds like a free lunch to me. In this chapter I will
discuss the characteristics and valuation of various types of life insurance
policies and investigate whether this transaction is possible.

7.2 Market Prices of Life Insurance

Life insurance is the mirror image of pension annuities and is the subject
and focus of this chapter. The word “life” insurance is a misnomer, since
this type of insurance pays off only upon death. But then “death insurance”
is a much tougher sell even for marketing specialists.

Table 7.1 provides a sample of actual life insurance quotes. It displays
the fixed annual premiums that males and females would have to pay at var-
ious ages in order to obtain $100,000 of life insurance coverage that would
pay off at death. These numbers are averages of the best (i.e. lowest) 3–5
U.S. insurance company quotes in the early part of 2005.

The term of the insurance policy is the amount of time during which the
coverage is in effect. For example, if you purchase a 10-year term insurance

138
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Table 7.1. U.S. monthly premiums for a $100,000 death benefit

Age 30 Age 50 Age 70
Term of

insurance M F M F M F

5 years $12.71 $11.53 $19.65 $15.30 $105.65 $59.27
10 years $8.21 $7.68 $17.95 $14.57 $102.51 $55.96
20 years $11.01 $9.68 $27.56 $21.19 $207.54 $128.07
30 years $15.47 $12.88 $46.23 $33.15 $307.33 $259.50

Term-to-100a $33.51 $27.27 $103.60 $81.51 $373.83 $299.07

a Canadian data, “regular health,” nonsmoker.
Source: Compulife, “preferred health” applicant, nonsmoker.

policy then you will pay premiums (each month) for 10 years, and if you die
anytime during the 10 years your beneficiary will receive $100,000. If you
die one instant after the ten years are over, they get nothing. In Table 7.1, the
only insurance that truly covers you for life is “term-to-100,” which covers
you to age100. Although this type of insurance is not available in the United
States, the “no-lapse universal life” policy can serve as an alternative.

Many obvious—and some not so obvious—observations emerge from
Table 7.1. For any given term, a male of any age must pay a higher monthly
premium than a female for the same coverage. Of course, the differences
in mortality account for this observation. Next, both males and females (of
any age) pay more for 30 years of coverage than they would pay for 20-
or 10-year term life insurance. However, what may appear counterintuitive
is that a 5-year policy is actually more expensive than a 10-year and some-
times even a 20-year policy. This irregularity is likely due to a combination
of several factors. First, the lack of insurer competition may be resulting
in higher premiums for 5-year policies, since consumers tend to be more
interested in longer-term insurance. Second, the insurer may be trying to
amortize all of the costs associated with offering this policy over a shorter
period of time. See also Section 7.15, which explores an additional factor
that contributes to the price differences.

7.3 The Impact of Health Status

The insurance prices you pay actually depend on something we have not
stressed before: your health status. Table 7.2 illustrates the impact of health
on the premium a 50-year-old would pay. For example, a 50-year-old male
who is in exceptional health would pay only $23.85 per month for a 20-year
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Table 7.2. U.S. monthly premiums for a $100,000 death benefit—
50-year-old nonsmoker

Health status

Average Above average Excellent Exceptional
Term

(years) M F M F M F M F

5 $27.61 $20.68 $25.16 $17.49 $19.65 $15.30 $15.37 $12.11
10 $23.54 $18.38 $22.64 $17.94 $17.95 $14.57 $14.86 $12.48
20 $38.69 $28.65 $35.30 $26.73 $27.56 $21.19 $23.85 $17.90

Source: Compulife, 〈www.term4sale.com〉.

policy whose death benefit is $100,000. In contrast, a 50-year-old male in
only average health would have to pay $38.69 for the same contractual
terms. As you can see, the 62% markup is quite a substantial incentive to
prove you are in exceptional health (if you are) when purchasing life in-
surance. In the lingo of our mortality laws, the IFM curve λ(x) for a very
healthy individual is “lower” than the IFM curve for a less healthy indi-
vidual. Without abusing the notation too much, you can imagine a whole
family of IFM curves λ(x, i), where the index i = 1, . . . , n captures the
health of the individual at age x.

With regard to health status, it is important to recognize the adverse se-
lection that may occur as a result of information asymmetries between the
insurance applicant and the insurance company. That is, the applicant may
be affected by or predisposed to a health condition yet may withhold this in-
formation from the insurer. As a result this applicant will be undercharged
for the actual level of risk undertaken by the insurer. In fact, potential
evidence of adverse selection was revealed in the Tillinghast Older Age
Mortality Study (Tillinghast 2004), which stated that the number of deaths
resulting from cancer was higher during the early years of life insurance
policy terms than during the later years.

I will return to the cost of changing health in Chapter 10, but for now it is
important to note the substantial impact of health on insurance premiums,
which is something we did not experience (and is quite rare) for pension
annuities.

7.4 How Much Life Insurance Do You Need?

There are two approaches to determining how much life insurance a person
requires. The first approach—the income approach—looks at how much
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money you can expect to earn over the course of your working life; this is
your human capital, which can be viewed as an asset that you possess as
a result of your natural and acquired skills and abilities. Then, you sub-
tract taxes (since the death benefit is not taxable), subtract the expenses you
would have incurred had you been alive, and set that as the amount of in-
surance you require.

The second approach is the expense approach. As its name suggests, this
method looks at the expenses that your family will incur over the course of
their lives. You then buy insurance to cover those expenses rather than to
replace your income. As you can imagine, there will be a wide variation be-
tween the amounts of insurance you think you need if you use the (family)
expense method as opposed to the income approach. And the larger your
income, the larger this gap will be.

Thus, for example, if you make $100,000 per year and expect this number
to remain fairly constant in real terms (after inflation) for the rest of your
life, then the income approach might lead to about $1,000,000 in life in-
surance coverage, which arguably could be the present (discounted) value
of your wages at some interest rate (akin to our life-cycle calculations in
Chapter 2). The expense approach would compute the costs of family liv-
ing expenses, such as food and education, which might only be $500,000.
In this case, any number between $500,000 and $1,000,000 would be ac-
ceptable as a life insurance policy.

This brings me to another important concept of insurance. Although the
pricing of insurance is a rigorous and scientific discipline, determining the
amount of insurance coverage that you require is not. Many people mis-
takenly believe that you can never have too much insurance. I disagree. I
think that there is an upper bound (the income approach) and a lower bound
(the expense approach), and anything in between is fair game. Further, re-
gardless of whether you take the income or the expense approach, your
insurance needs will change over time. Obviously, families’ expenses will
decline substantially as their children grow up and leave the nest. Likewise,
the discounted value of wages and other income will decline with time. So
there is really no justification for buying more and more life insurance as
you age.

I therefore find it quite puzzling that the size of one’s life insurance pol-
icy has become a status symbol in the corporate world. Executives in their
60s boast of life insurance policies worth $10 million to which their spouses
and/or beneficiaries would be entitled. This strikes me as a waste of insur-
ance premiums—and I would advise sleeping with one eye open! They may
be very important and knowledgeable executives with lifelong experience
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and wisdom, but the present value of their salaries is nowhere near $10 mil-
lion and the present value of their families’ expenses is even lower. In the
absence of other (non–human capital) reasons, to which I shall return mo-
mentarily, there is no need to have more life insurance as you age.

Insurance is not a good investment on a pre-tax basis because the expected
discounted value of the benefits you receive is lower than the premiums you
pay; otherwise the insurance company would never make a profit. Yet it is
a good hedge because the uncertainty in the insurance payout is negatively
correlated with your human capital.

7.5 Other Kinds of Life Insurance

In general, there are two basic (and quite different) categories of life insur-
ance: temporary and permanent.

Temporary life insurance, also known as term life, is a no-frills way of
insuring yourself for a specific period of time—for example, one, five, or
ten years. This is the type of insurance for which we listed quotes in Table
7.1. When the temporary life insurance can be automatically renewed every
year at increasing rates, it is called annual renewable term (ART) insur-
ance; when the premiums are constant for a longer term, it is referred to
as level premium term insurance. In the latter case, as I explained earlier,
your monthly premiums are guaranteed for the term of the insurance, and
the insurance coverage ends at the end of the term.

The important characteristics of a term policy are its temporary nature and
its lack of a savings component. This might seem an odd comment at first,
since insurance should have nothing to do with savings. But you will see
in a moment that permanent life insurance does have a savings component.

Temporary coverage, of course, is great for temporary needs. For ex-
ample, it may be advisable for young couples, with considerable human
capital to protect, who have just purchased a house and financed it with a
large mortgage, have dependents, and so forth. They may have term life
insurance of perhaps 8–10 times their annual salaries. Some financial advi-
sors believe that, as these individuals age, this factor can be reduced to 6–8
times their annual salaries, and then perhaps even to 4–6 times—but never
less. Of course, renewing the term insurance will cost more as you age be-
cause the probability of dying increases. In fact, in order to ensure they can
continue to buy temporary coverage at all, some purchase term insurance
with a guaranteed renewable clause. This means that, even if their health
deteriorates, when the original period is over they can purchase a replace-
ment policy (for the same or lower amount of coverage) without having to
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undergo a medical examination, which the insurance company usually re-
quires in order to reduce adverse selection.

So much for temporary insurance coverage. What is permanent cover-
age? This type of coverage is usually referred to as whole life, universal life,
or level life insurance. There are various types and flavors of permanent
coverage, but the main idea is that your monthly or quarterly insurance pre-
miums also contain a savings component. So, if you pay $100 per month,
perhaps $60 goes toward the insurance premiums while the remaining $40
goes to a side savings fund and grows on a tax-deferred basis.

Why the savings? With (short) term insurance, the cost of buying a new
policy would increase each year because the probability of dying increases
as you age. Remember, as shown in Table 7.1, insurance is more expensive
at older ages. In fact, by the time you are 80 the premiums are prohibitively
expensive—assuming you can find a seller. Level or permanent insurance
is a system whereby you overpay in the early years in order to subsidize
the later years. Although the premiums are also fixed for a level life insur-
ance policy (as its name suggests), level insurance premiums are higher than
term premiums for the first part of your life whereas term premiums exceed
level premiums later on. This is where the savings come in. Since you are
overpaying in the early years, the excess over the pure premiums is being
invested in a side fund. In fact, this tax-deferred savings component is what
often gives rise to non–human capital reasons for purchasing insurance. For
example, the tax shelter provides an efficient method of accumulating sav-
ings to finance the tax bill on your appreciated physical assets that your
estate may face upon your death.

In some cases, you can actually control where those excess premiums are
invested. For example, you may be able to choose to invest in insurance
company mutual funds or bonds. As you age, some of the savings will be
depleted to make up for the fact that your annual level premiums are lower
than what they should be. With these so-called variable policies, you can
withdraw (or cash in) the excess savings at any time, so you have access to
an emergency fund in times of need.

In sum, were it not for income taxes and the possibility that your insura-
bility might change over time, buying life insurance would be a simple deci-
sion. Everybody would be advised to “buy term and invest the difference.”

7.6 Value of Life Insurance: Net Single Premium

We start by computing the net single premium (NSP), which is the amount
that must be paid in one lump sum to acquire the insurance protection. In
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Section 7.12 I present results for the net periodic premium (NPP), which is
the name given when the insurance premiums are paid in installments.

Conceptually, here is the main idea behind the pricing of life insurance.
Say the valuation rate is r = 5% and the insured person dies at time T = 10
years; then the discounted value of the death benefit at time 0 is e−(0.05)10 =
$0.606 per dollar of face value. Stated differently, if a $1 death benefit were
desired then an initial premium of 0.606 dollars invested at a rate of r =
5% would grow to $1 at the time of death, which would be enough to pay
the death benefit to the beneficiary. If, on the other hand, the insured person
dies at time T = 20 years, then the discounted value of the death benefit is
a much lower e−(0.05)20 = $0.368 per dollar of face value. In this case, an
initial premium of 0.368 dollars is sufficient.

One does not require a large leap of faith to generalize this statement by
saying that, when the remaining lifetime random variable is Tx , the stochas-
tic discounted value of a $1 death benefit at a valuation rate r is

Ax = e−rTx. (7.1)

Intuitively, the realized discounted value will be very low—and hence a
small premium would have been sufficient ex post—if the realized value of
Tx is large. On the other hand, if the realized value of Tx is very small, then
the ex post discounted value of the death benefit would be much higher,
since the money did not have enough time to compound and grow.

The stochastic discounted value Ax is the life insurance counterpart to
the stochastic discounted value ax for the pension annuity. Recall that ax

was defined by the integral relationship

ax =
∫ Tx

0
e−rt dt. (7.2)

At first glance, the stochastic discounted value of the life insurance benefit
in equation (7.1) is “simpler” than (7.2) since there is no integral or sum-
mation sign to compute for life insurance. However, any euphoria will be
short-lived because the process of evaluating the expectation of Ax , which
is unavoidable for an unbiased actuarial premium, involves a fair dose of
calculus.

Indeed, in a manner parallel to our definition by āx = E[ax] of the pen-
sion annuity factor, we define the NSP as

Āx = E[e−rTx ] =
∫ ∞

0
e−rtfx(t) dt, (7.3)
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where fx(t) denotes the probability density function (PDF) of the remaining
lifetime random variable Tx. The intuition is as follows. Starting from the
perspective of the current age (x), we must add up all possible discounted
values e−rt as weighted by fx(t), the probability of death at that instant.
The sum (integral) of these discounted values is the net single premium.
Stated differently: If the insurance company receives the fair actuarial pre-
mium Āx for life insurance coverage at age x, then the discounted value of
their expected profit is E[Ax − Āx] = 0.

Readers with some background in mathematical analysis might recog-
nize the expression in (7.3) as the Laplace transform or moment generating
function (MGF) of the random variable Tx. The relevance of this insight
is that, if one has the Laplace transform or MGF of the remaining lifetime
random variable, then the net single insurance premium can be obtained
simply by plugging in the valuation rate r.

7.7 Valuing Life Insurance Using Pension Annuities

As I warned previously, computing Āx requires that we perform some more
calculus. The method of integration by parts, which is at the heart of calcu-
lus, leads to a helpful shortcut for valuing the NSP for life insurance. Recall
the basic relationship

d

dt
(u(t)v(t)) = u(t)dv(t) + v(t)du(t)

⇐⇒
∫

u(t) dv(t) = u(t)v(t) −
∫

v(t) du(t), (7.4)

where both u(t) and v(t) are general functions of t and where du(t), dv(t)

denote derivatives with respect to t. This is the product rule: Take deriva-
tives with respect to one term u(t) and then with respect to the other term
v(t); then add them together.

With this insight we can use equation (7.3) and substitute u(t) = e−rt

and dv(t) = fx(t) dt in the integrand. In this case, du(t) = −re−rt and
v(t) = Fx(t) owing to the relationship between the PDF and CDF (cumula-
tive distribution function) of the remaining lifetime random variable. This
leads us to the general relationship∫

e−rtfx(t) dt = e−rtFx(t) −
∫

Fx(t)(−re−rt ) dt. (7.5)
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The integral we are interested in evaluating can be transformed into an in-
tegral involving the CDF Fx(t) and the simple discount factor e−rt. Then
the right-hand side of (7.5) can be written as

e−rtFx(t) − r

(∫
(1 − Fx(t))e

−rt dt −
∫

e−rt dt

)
(7.6)

by artificially adding and then subtracting the extra integral term
∫

e−rt dt.

We then recognize (tpx) = (1 − Fx(t)) in the integrand of the first integral
as the conditional survival probability. In the end, this leaves us with:∫

e−rtfx(t) dt = e−rtFx(t) − r

(∫
(tpx)e

−rt dt −
∫

e−rt dt

)
. (7.7)

When evaluated from the lower bound of t = 0 to the upper bound of t =
∞, this leads to a very recognizable expression:

Āx :=
∫ ∞

0
e−rtfx(t) dt = 1 − rāx. (7.8)

Equation (7.8) is quite remarkable and extremely useful. The NSP for the
life insurance policy is equal to 1 minus the immediate pension annuity fac-
tor multiplied by the valuation rate r.

Thus, for example, if you already have a formula or expression for āx and
you need a value for Āx , you need only multiply by r and subtract from 1.
This is true regardless of the specific law of mortality λ(x), the age x, or the
valuation rate r. As you can imagine, I will “milk” this relationship many
times in the analysis. We will use this trick to obtain explicit expressions for
Āx using the work done in Chapter 6 to obtain āx . In addition, this short-
cut is applicable to deferred (or delayed) insurance—which I have yet to
introduce—as well as to computing the duration and convexity of Āx.

Note that āx < 1/r regardless of the actual mortality law as long as there
is some chance of dying prior to infinity. Equations (7.9) and (7.10) demon-
strate why. The value of a bond that pays an annual coupon of $1perpetually
can be stated as

V(1, r, ∞) =
∫ ∞

0
e−rt dt = 1

r
. (7.9)

Contrast this with the value of a pension annuity paying $1 per year:

āx = E

[ ∫ Tx

0
e−rt dt

]
. (7.10)
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The integration from 0 to ∞ in (7.9) will clearly outweigh the integra-
tion from 0 to Tx in equation (7.10); hence the former integral’s value is
greater, implying that āx < 1/r. It is only in the limit with zero mortality
that the annuity factor converges to 1/r. Now look back at equation (7.8).
Since āx < 1/r, it follows that rāx < 1 and so 1 − rāx > 0. The life in-
surance net single premium should (obviously) be greater than zero. In the
limit, however, when the person is very young and the instantaneous force
of mortality curve λ(x) is very low, the expression rāx ≈ 1 and the NSP
will be close to zero. The inverse relationship between Āx and āx should
be intuitive as well. The more you have to pay for life insurance, the less
you should have to pay for a pension annuity (and vice versa).

7.8 Arbitrage Relationship

There is yet another way to arrive at the expression in (7.8). Let’s return
to the story that opened this chapter (but reducing the amounts for clarity).
My friend borrowed $100 from a bank at an interest rate of r. This loan was
structured as interest only, so that each year the borrower had to pay 100r in
interest payments (100rdt in continuous time). The loan principal was due
and payable when the borrower dies. To cover this risk, he was forced to
purchase a life insurance policy—with the bank as beneficiary—and had to
pay 100Āx for this coverage. He then purchased a life annuity to cover the
interest payments of 100rdt, which should have cost 100rāx (as you may
recall from Chapter 6). The remainder after paying for life insurance and
pension annuity was:

100 − 100Āx − 100rāx. (7.11)

You should convince yourself that, at least on a pre-tax basis, this should
equal zero (or less); otherwise, there is a clear arbitrage opportunity avail-
able for riskless profit. In fact, it is possible to take this one step further and,
by appealing to competitive markets, force the inequality into an equality
between the two sides.

Thus, arbitrage opportunities that arise from varying assumptions of mor-
tality and returns among the companies selling insurance and those selling
annuities will not last long. And even though misalignments in pricing can
exist when a poor credit rating forces an insurer to lower its premiums, any
potential profit would not qualify as an arbitrage opportunity because of the
implicit default risk.
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Indeed, by dividing all terms by 100 and then isolating the NSP, this also
implies the fundamental relationship between the NSP and the annuity fac-
tor: Āx = 1 − rāx. Another way of expressing this relationship is

Āx

āx

= 1

āx

− r. (7.12)

The ratio Āx/āx has its own special meaning and interpretation, to which
we will return later.

7.9 Tax Arbitrage Relationship

While on the subject of arbitrage, I wish to discuss a situation in which an
arbitrage opportunity would actually be available. As mentioned in Chap-
ter 6, in some sense the taxation of annuity income is quite lenient (even in
the United States). In fact, in Canada it is possible to purchase for W0 dol-
lars a life annuity that pays W0/āx for life and then use part of the periodic
proceeds to purchase (for W0Āx/āx) a life insurance policy and still have
enough left over on an after-tax basis to earn more than what the money
would earn in the bank. This is called a “mortality swap” and is effectively
a tax arbitrage opportunity.

Using the language of mathematics, we have

W0

āx

− τ tax(ρx)
W0

āx

− W0
Āx

āx

> W0r(1 − τ tax), (7.13)

where

ρx = 1 − āx

E[T tax
x ]

.

Hence (7.13) can be simplified to

1

āx

− τ tax

(
1 − āx

E[T tax
x ]

)(
1

āx

)
− Āx

āx

> r(1 − τ tax), (7.14)

which means that you get more from the combination of annuity and insur-
ance than from investing in a risk-free bond paying an after-tax interest rate
of r(1 − τ tax), where τ tax denotes the marginal tax rate of the annuitant.

One might wonder how this opportunity can persist, and the answer likely
lies in the lobbying efforts by seniors and insurance companies for continua-
tion of the more favorable tax treatment accorded to annuity income during
retirement. So, although certain restrictions do apply when making the
transaction, this tax quirk lives on.
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7.10 Value of Life Insurance: Exponential Mortality

Under exponential mortality, where the IFM curve λ(x) = λ, the NSP
becomes

Āx = 1 − r

r + λ
= λ

r + λ
. (7.15)

For example: when the life expectancy is 1/λ = 20 and the valuation rate
is r = 5%, the net single premium is equal to Āx = 0.05/0.10 = 0.5 per
$1 of life insurance protection. If the valuation rate doubles to r = 10%,
the NSP becomes Āx = 0.05/0.15 = 0.333 per $1 of life insurance protec-
tion. As you would expect, increasing the valuation rate r tends to reduce
the NSP and increasing the IFM λ will increase the NSP.

7.11 Value of Life Insurance: GoMa Mortality

Under the GoMa law of mortality, the value of Āx can be expressed as

Āx = 1 − rb�
(−(λ + r)b, exp

{
x−m

b

})
exp
{
(m − x)(λ + r) − exp

{
x−m

b

}} , (7.16)

where I have merely used the relationship Āx = 1 − rāx and then plugged
in the relevant pension annuity factor from Chapter 6.

For example, using our favorite m = 86.34, b = 9.5, and λ = 0 GoMa
parameters from that chapter, the NSP under an r = 6% valuation rate is
Ā35 = $0.0846 at age 35, Ā45 = $0.1445 at age 45, and Ā65 = $0.3715
at age 65. Each of these premiums will buy $1 of life insurance protection.
Thus, for a death benefit of $100,000, a 35-, 45-, and 65-year-old would
pay $8,460, $14,449, and $37,155, respectively. Quite obviously, at younger
ages where λ(x) is small the life insurance cost is minimal, and at advanced
ages where λ(x) is higher the cost is higher as well. As a means of compar-
ison, the pension annuity factor at the same ages and valuation rates would
be ā35 = 15.257, ā45 = 14.259, and ā65 = 10.474 per dollar of lifetime an-
nual income. Table 7.3 summarizes the NSP values for various ages and
interest rates under these same mortality parameters.

Of course, none of the numbers in Table 7.3 are comparable to the “real
world” numbers in Table 7.1 or Table 7.2, where quotes were based on
monthly premiums, because Āx corresponds to a net single premium paid
in advance. So how does one go about pricing insurance that is paid by
installments?



150 Models of Life Insurance

Table 7.3. Net single premiuma for $100,000
of life insurance protection

Interest rate r
Initiated
at age x 4% 6% 8%

35 $17,892 $8,460 $4,376
45 $25,916 $14,449 $8,616
55 $36,711 $23,800 $16,161
65 $50,185 $37,155 $28,298

a NSP = $100,000 × Āx .
Note: GoMa mortality with m = 86.34 and b = 9.5.

7.12 Life Insurance Paid by Installments

When determining what annuity payment an individual is entitled to, we
divide the initial lump-sum payment by the appropriate annuity factor in
order to spread the premium over the remaining lifetime, taking into ac-
count mortality and interest. Similarly, when the insurance is paid over
time as opposed to all at once, the premium must be amortized or spread
over the life of the insured. In the event of coverage that lasts a lifetime, the
Āx must be converted into a net periodic premium,

NPP := Āx

āx

. (7.17)

Remember that Āx/āx = 1/āx − r, so the NPP can be computed by taking
the inverse of the pension annuity factor and then subtracting the valuation
rate. In the case of exponential mortality this collapses to NPP = λ, which
(oddly enough) does not depend on the valuation rate; it is purely a func-
tion of the instantaneous force of mortality. In the case of GoMa mortality,
the NPP expression can again be computed quite easily. Table 7.4 provides
a picture of how the net periodic premiums change with initial age and val-
uation rate under GoMa mortality.

We are now in a better position to compare numbers with Table 7.1. How-
ever, we first digress with some further remarks about term life insurance.

7.13 NSP: Delayed and Term Insurance

Up to this point in our discussion of pricing life insurance, I have focused
on the valuation of life insurance policies that provide coverage immedi-
ately upon payment of the initial lump sum. However, in some cases the
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Table 7.4. Net periodic premiuma for $100,000
of life insurance protection

Interest rate r
Initiated
at age x 4% 6% 8%

35 $871.63 $554.51 $366.10
45 $1,399.27 $1,013.32 $754.27
55 $2,320.21 $1,874.00 $1,542.10
65 $4,029.72 $3,547.26 $3,157.28

a NPP = $100,000 × (Āx/āx).
Note: GoMa mortality with m = 86.34 and b = 9.5.

life insurance is paid for now even though coverage doesn’t start for another
u years. The pricing equation for this variation of life insurance is

(uĀx) :=
∫ ∞

u

e−rtfx(t) dt. (7.18)

In the case of term life insurance, coverage starts immediately but is valid
for only a predetermined period of time. In this case, equation (7.19) is
appropriate:

Āx :τ :=
∫ τ

0
e−rtfx(t) dt. (7.19)

These two definitions parallel the expressions for the familiar annuity
factors:

(uāx) :=
∫ ∞

u

e−rt(1 − Fx(t)) dt; (7.20)

āx :τ :=
∫ τ

0
e−rt(1 − Fx(t)) dt. (7.21)

The NPP for temporary insurance can be computed by Āx :τ/āx :τ for rea-
sons that should be intuitive.

7.14 Variations on Life Insurance

I will now present an example in which the general formula for the net sin-
gle premium is∫ τ

u

e−rtfx(t) dt = (e−rτFx(τ ) − e−ruFx(u))

− r

(∫ τ

u

( tpx)e
−rt dt −

∫ τ

u

e−rt dt

)
. (7.22)
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This is identical to equation (7.7) except it takes into account the period of
u years during which no coverage takes place. The expression can also be
written using formal notation as

(uĀx :τ ) = (e−rτFx(τ ) − e−ruFx(u)) − r(uāx :τ ) − (e−rτ − e−ru). (7.23)

Equation (7.23) can be used to compute a wide variety of temporary and
permanent life insurance policy values. Recall that, in the case of GoMa
mortality, the CDF function Fx(t) = 1 − exp{−λt + e(x−m)/b(1 − e t/b)},
which collapses to Fx(0) = 0 when t = 0 and where Fx(∞) → 1 as
t → ∞.

Thus, in order to obtain the NSP for a 10-year term life insurance policy
at age x = 45, we must perform the following calculations. First, recall
that

ā45:10 = ā45 − (10 ā45), (7.24)

which means that a 10-year temporary pension annuity is equal to an im-
mediate pension annuity minus a 10-year deferred pension annuity. When
m = 86.34, b = 9.5, λ = 0, and the valuation rate is r = 5%, this works
out to ā45 = 16.16 and (10 ā45) = 8.36, so ā45:10 = 7.80 per dollar of yearly
income. It is important to remember that $7.80 is the value of a pension
annuity for an x = 45-year-old that pays income for 10 years (provided
the insured is still alive). At the end of the 10 years, payments stop. The
$7.80 value can be compared to the value of a 10-year term certain annu-
ity with no life-contingent component under an r = 5% interest rate. The
discounted value of this generic annuity would be

7.869 =
∫ 10

0
e−0.05t dt := V(0.05,10),

which is slightly higher than $7.80 owing to the (small) probability that the
45-year-old will die prior to age 55.

Continuing on our quest to compute the value of a 10-year term life in-
surance policy that pays $100,000 upon death, we have

Ā45:10 = (e−(0.05)10F45(10) − e−(0.05)0F45(0)) − (0.05)(7.8)

− (e−(0.05)(10) − 1)

= 0.017873

and so the NSP for a $100,000 policy is $1,787 up front. Finally, if we amor-
tize this over 10 years by dividing by the ā45:10 annuity factor, the result is
$1,787/7.8 = $229 per year for 10 years.
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Table 7.5. Model results: $100,000 life insurance—
Monthly premiums for 50-year-old by health status

Health status (m-values)
Term

(years) m = 86.34 m = 96.34 m = 100

5 $24.84 $8.67 $5.90
10 $32.07 $11.22 $7.63
20 $52.14 $18.49 $12.61

Note: b = 9.5, r = 6%.

Now you can finally and directly compare our model results with the
numbers in Table 7.1. But first, since the table is dealing with “preferred
health” applicants, it makes more sense to use a higher value of m for GoMa
mortality. I will therefore choose m = 96.34 (instead of our usual 86.34),
which is an additional ten years of (average) life, but the dispersion value
of b = 9.5 will remain unchanged. When x = 70 and r = 5%, the value of
(Ā45:10/ā45:10) times $100,000 is $1,105 per year, which is $92 per month
for a 10-year term policy. When x = 50, the values are $136 per year
and $11.30 per month. As we observed when pricing life annuities, our
model results differ from the quoted numbers in Table 7.1. The numbers
are slightly higher, which is most likely due to commissions and company
profits. Table 7.5 provides summary values.

A number of intuitive results emerge from Table 7.5. First, it is easy to
create a robust mix of monthly life insurance premiums simply by moving
the GoMa value of m up or down by a few years. Adding an additional 15
years to m can reduce the life insurance premium by 70%. Healthy indi-
viduals should and do pay much less for insurance. Note that I have not
distinguished between males and females in Table 7.5. Indeed, from a mod-
eling perspective the only difference between the two genders is a value of
m and perhaps a small value of b. Finally, note that a longer term for the
insurance policy (denoted by τ in the equations) will also result in higher
premiums.

Observe, however, that I have not managed to precisely replicate the rela-
tionship between term length and premiums for the market quotes displayed
in Table 7.2. The market quotes for 5-year terms were (counterintuitively)
higher than for 10- or 20-year terms. At the time I attributed this to “other”
costs such as fees and commissions that must be amortized over a shorter
period of time, as well as to a lack of competition. But part of the story in-
volves lapsation and the fact that some people “abandon” their insurance
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prior to its term ending. If the insurance company can rely on this fact in
advance, this effectively lowers the insurance cost for everyone.

7.15 What If You Stop Paying Premiums?

When paying for life insurance via the installment method of Āx/āx per
year, the only way to make absolutely sure that your beneficiaries will re-
ceive the death benefit is by continuing to pay your insurance premiums
until the last possible moment. Under a generic term insurance contract,
if you stop making those payments for any reason at all and your policy
lapses, your beneficiaries will lose all claims to the death benefit. Unfortu-
nately, many consumers lapse their policy and give up on making payments
long before the term is over. This behavioral fact is so persistent and pre-
dictable that insurance companies actually rely on it when pricing their term
insurance policies. If they know that a fraction of the group will lapse their
insurance coverage, the company can charge the group less overall. Im-
plicitly, some of the people dying will not receive any benefits, since they
will have discontinued their policies prior to death. This might sound odd
at first, so here is a model to help understand the pricing and valuation
implications.

Allow me to return to our classic expression for the net single premium
Āx. Imagine that some fraction of the group of policy holders “do not qual-
ify” to receive the death benefit of $1. I will model the rate at which indi-
viduals leave the insured group by using a hazard rate denoted η(t), with
the usual proviso that Hx(t) denotes the CDF and hx(t) the PDF of the re-
maining “unlapsed time” random variable L, so that Hx(t) := Pr[L ≤ t].
In this case, the lapse-adjusted NSP would be

(uĀ
η
x :τ ) :=

∫ τ

u

e−rtfx(t)(1 − Hx(t)) dt

= (uĀx :τ ) −
∫ ∞

0
e−rtfx(t)Hx(t) dt, (7.25)

where (with my sincere apologies) the new superscript η on the Āx indi-
cates that we are working with a lapse curve η(t). The intuition for equation
(7.25) is straightforward. The only way the insurance policy will pay the
death benefit at time t is if the insured is unlapsed. The probability of being
unlapsed is 1 − Hx(t), which is akin to the probability of being “undead.”
Therefore, the only difference between the integrand in equation (7.25) and
the conventional and expected e−rtfx(t) is the additional term 1− Hx(t). It
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should come as no surprise that (uĀ
η
x :τ ) ≤ (uĀx :τ ), since a fraction of the

people paying the (adjusted) NSP will not be collecting their death benefit.
These “deserters” effectively subsidize the premiums for everyone else. Of
course, if the insurance premium were paid up front then there would be no
lapse to talk about, since the entire amount has already been paid. This is
also the case if the insurance policy is purchased as a part of a more com-
plicated structure such as the mortality swap discussed in Section 7.9. This
is why it might be more appropriate to think of 1− Hx(t) as the probability
of being “a member of the group” to qualify for the death benefit at time t.

Later, once I convert the calculations to a periodic premium, we can legiti-
mately use L as an “unlapsed time” random variable. Another point worth
mentioning is that I am using the subscript x on the CDF Hx(t) and the
PDF hx(t) in order to remind the reader that one’s propensity to leave the
insured group might depend on biological age as well as the time elapsed
since the original policy was acquired.

Now we must hand over the mathematics to the rules of calculus and
integration by parts. The final expression for (uĀ

η
x :τ ) will depend on the

precise structure of the Hx(t) function. The easiest possible case is when
the unlapsed time random variable has a constant instantaneous hazard rate
η, which leads to the CDF of Hx(t) = 1 − e−ηt and a modified NSP of

(uĀ
η
x :τ ) :=

∫ τ

u

e−(r+η)tfx(t) dt. (7.26)

In this case the lapse rate η can be absorbed or added into the valuation
rate r, and the valuation formula for (say) GoMa mortality can be used with
r + η instead of just r. The process of converting the NSP into a periodic
annual premium would proceed along the same lines. I define the modified
pension annuity factor as

(uā
η
x :τ ) :=

∫ τ

u

e−rt(1 − Fx(t))(1 − Hx(t)) dt

=
∫ τ

u

e−rt exp

{
−
∫ t

0
(λ(x + s) + η(x + s)) ds

}
dt, (7.27)

where I have written both Hx(t) and Fx(t) in terms of their primitive def-
initions based on instantaneous hazard rates and mortality forces. Again,
when η(x + t) = η, the instantaneous hazard rate can also be absorbed
into the valuation rate r, and the valuation equations then proceed as before.
Of course, when η(x + s) is a more complicated function of time, there is
no choice but to roll up our sleeves and compute the integrals in equations
(7.26) and (7.27) by brute force.
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Table 7.6. $100,000 life insurance—Monthly
premiums for 50-year-old by lapse rate

Assumed lapse rate (η)
Term

(years) η = 3% η = 5% η = 10%

5 $24.68 $24.57 $24.30
10 $31.24 $30.71 $29.45
20 $47.15 $44.20 $38.13

Note: m = 86.34, b = 9.5, r = 6%.

When m = 86.34, b = 9.5, and λ = 0 under a r = 6% valuation rate, the
net periodic premium for an x = 50-year-old is Ā45:20/ā45:20 = 0.06257
per year for a $1 death benefit. This translates into $625.70 per $100,000
death benefit, or 625.7/12 = $52.14 per month, which is consistent with
the numbers in Table 7.5. If I now assume that, in each instant, 0.05dt of
the surviving group lapse and stop paying their insurance premiums, then
I can replace r = 6% by r + η = 11% in the valuation equation for GoMa
mortality. This leads to $530.38 per year, which is 530.38/12 = $44.20
per month—a reduction of approximately 20% in the required insurance
premium.

To recap, the lapse-adjusted annual premium for a τ -year term insurance
policy is

e−(r+η)τFx(τ ) − rāx :τ − e−(r+η)τ + 1

āx :τ
, (7.28)

where the valuation rate for all pension annuity calculations must be re-
placed by r + η and the temporary pension annuity factor āx :τ can be com-
puted via āx − (uāx), both of which are easily available in analytic format.

Table 7.6 provides a simple example of the impact of lapsation on pricing.
Observe that when the term of the policy is 5 years, the impact of assum-
ing a lapse rate is minimal; for instance, when the lapse rate is assumed to
be 5%, the difference in monthly premiums is less than 30 cents. However,
as the term of the policy is increased—even though the actual premium
goes up due to the increased probability of death—the impact of lapsation
is more pronounced. Assuming an η = 10% lapse rate reduces the monthly
premium by almost $9 per month. In general, the impact of lapse assump-
tion is proportionally much greater under longer-term policies. This is fully
consistent with the actual quotes displayed in Table 7.1.
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Once again, it is important to stress that our mathematical life is being
made much easier by assuming a constant lapse rate η so that Hx(t) =
1− e−ηt. In practice, the lapse rate curve η(x + t) is more complicated and
depends on economic conditions, but the qualitative impact remains.

7.16 Duration of Life Insurance

As in the case of pension annuities, we can compute the duration of the net
single premium and net periodic premium by using the following relation-
ship and the calculus chain rule:

∂

∂r
Āx = ∂

∂r
(1 − rāx) = −

(
r

∂

∂r
āx + āx

)
. (7.29)

Recall from Section 6.11 that the duration of a pension annuity is de-
fined as Dannuity = −(∂āx/∂r)/āx , which implies that we can substitute
−Dannuity(āx) = ∂āx/∂r in the relevant part of equation (7.29). And, since
the tradition is to define duration D as the “negative” of this expression
scaled by Āx , we are left with

Dinsurance = −
∂
∂r

Āx

Āx

= āx

Āx

(1 − rDannuity). (7.30)

Another way to look at this is by explicitly recognizing that

∂

∂r
Āx =

∫ ∞

0

∂

∂r
e−rtfx(t) dt = −

∫ ∞

0
te−rtfx(t) dt, (7.31)

since we are allowed to interchange the integral and derivative signs. We are
left with a “mess” similar to that in the previous chapter when we attempted
to compute duration for the annuity. Compare the numbers in Table 7.7 with
those in Table 6.8 (for pension annuities) and notice how the duration values
are all lower.

Let us do a simple example of duration for life insurance under an expo-
nential remaining lifetime. In this case, since the NSP is

Āx = 1 − r

r + λ
= λ

r + λ
,

it is easy to take the derivative of this expression with respect to r and then
scale by Āx. This operation leaves us with

Dinsurance := −
∂
∂r

(
λ

λ+r

)
λ

λ+r

= 1

r + λ
. (7.32)
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Table 7.7. Duration value D (in years) of NSP
for life insurance

Interest rate r
Initiated
at age x 4% 6% 8%

55 22.825 20.512 18.209
65 15.753 14.304 12.948
75 9.912 9.159 8.446
85 5.534 5.220 4.927

Note: GoMa mortality with m = 86.34 and b = 9.5.

Oddly enough, the duration of the NSP is equal to the pension annuity
factor. If interest rates change by �r, then the NSP will change by approx-
imately −�r × Dinsurance percent. For example, when r = 0.05 and λ =
1/20, the NSP is (1/20)/(0.05 + 1/20) = 0.5, which is $50 per $100 of
death benefit. But when r = 0.055 under the same λ = 1/20, the NSP is
(1/20)/(0.055 + 1/20) = 0.476, which is $47.60 per $100 of death bene-
fit. You pay less because the interest rate is higher. Now, at a value of r =
0.05, by (7.32) the duration of the NSP is 1/(0.05+1/20) = 10 units. Thus,
under the duration approximation developed in earlier chapters, −�r×D =
−(0.005)(10) = −0.05 and hence the new (after the change in interest rate)
value of the NSP should be $50 − $50(0.05) = $47.50, which is not far
from the exact value of $47.60 per $100 of death benefit.

How does lapsation affect duration? Well, if we price the same exponen-
tial life net single premium under a constant η lapse rate then we can replace
the interest rate r with r +η, which leads to an NSP of Ā

η
x = λ/(r +η +λ)

and a lapse-adjusted duration of

D
η

insurance := −
∂
∂r

(
λ

λ+r+η

)
λ

λ+r+η

= 1

r + λ + η
. (7.33)

Notice that the numerator is the same as the non–lapse-adjusted duration
in (7.32) and that the denominator is larger by η units, which serves to re-
duce the duration of the net single premium. Intuitively, a change in interest
rates will have a smaller impact on the NSP because a fraction of the pop-
ulation is assumed to lapse and thus does not receive the death benefit. Of
course, the concept of lapsation for a single premium doesn’t make much
sense—why in the world would anyone lapse after they have paid the en-
tire premium up front? To truly make use of this concept, we must divide
the lapse-adjusted NSP Ā

η
x by the lapse-adjusted annuity factor ā

η
x to arrive
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Table 7.8. Modeling a book of insurance policies over time

Age Lives Deaths In (premium) Out (death) Reserve

90 10,000 1,506 $18,926,119 $15,055,701 $4,840,781
91 8,494 1,408 $16,076,659 $14,084,133 $7,905,767
92 7,086 1,293 $13,411,079 $12,926,554 $9,483,230
93 5,793 1,162 $10,964,584 $11,615,650 $9,880,546
94 4,632 1,020 $8,766,193 $10,195,205 $9,407,572
95 3,612 872 $6,836,636 $8,717,902 $8,359,164
96 2,740 724 $5,186,675 $7,241,679 $6,998,671
97 2,016 582 $3,816,107 $5,824,892 $5,544,371
98 1,434 452 $2,713,681 $4,520,802 $4,160,649
99 982 337 $1,858,068 $3,372,178 $2,955,125

100 645 241 $1,219,846 $2,406,989 $1,982,037
101 404 164 $764,296 $1,636,063 $1,251,078
102 240 105 $454,653 $1,053,299 $739,886
103 135 64 $255,304 $638,467 $407,748
104 71 36 $134,467 $361,983 $208,032
105 35 19 $65,958 $190,553 $97,485
106 16 9 $29,894 $92,383 $41,526
107 7 4 $12,409 $40,880 $15,821
108 2 2 $4,672 $16,347 $5,197
109 1 1 $1,578 $5,842 $1,281
110 0 0 $473 $1,843 $0

Note: NPP = $1,893, r = 5%, benefit = $10,000.

at a lapse-adjusted net periodic premium; in the exponential case the result
is exactly λ, which is independent of interest rates and lapse rates. This,
once again, is a feature of constant hazard rates. Call it the peculiarities of
lobster premiums (cf. Section 3.8).

7.17 Following a Group of Policies

In this section I will explain why Āx/āx is a reasonable price to charge
for life insurance—when the premiums are paid on an ongoing basis—by
building a “model life office” in which premiums flow in, death benefits are
paid out at the end of the year, administrative costs are ignored, and an in-
surance reserve builds over time to pay for the death benefits. See Table 7.8.

Obviously, 90 is not a typical age at which people purchase life insur-
ance, but the point is to illustrate how the books of the business evolve. In
the table I assume that all of the premiums come in at the beginning of the
year and that all death benefits are paid out at the end of the year. This is a
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very rough approximation. Indeed, in a continuous-time model, the premi-
ums of Āx/āx would be paid into the company on an ongoing basis—hence
the company would not have access to all the funds from the beginning of
the year—and the outflow benefits would be payable as death claims occur,
which would also restrict the company’s use of funds in the interim. All in
all, this would imply that the company can charge less than our formula’s
$1,893 to cover all the claims.

Note that, in the table, the number of deaths were generated by a pure
GoMa mortality of m = 86.34 and b = 9.5 with λ = 0. The probability of
an x-year-old surviving one year is exp{e(x−m)/b(1 − e1/b)}, and the prob-
ability of death is 1 minus this number. The reserve grows or shrinks as a
result of either receiving payments—number of lives at the start of the year
times the premium of $1,893—or satisfying the claims: number of deaths
times $10,000.

Observe how the reserve increases to roughly $10 million and then starts
to decline. The rate we have used for asset growth is precisely r = 5%, the
valuation rate used to derive the $1,893 premium.

7.18 The Next Generation: Universal Life Insurance

One more type of life insurance that we should discuss in more detail is
universal life insurance (UL), which is increasing in popularity and has
some interesting features. In some sense, universal life insurance is the
most general type of life insurance policy available. It combines elements
of tax-sheltered savings, investment asset allocation, and adjustable human
capital protection. At the “big picture” level, policyholders deposit a flex-
ible (ongoing) payment into the policy and the insurance company with-
draws a fraction of the account value to pay for the life insurance portion.
There is no direct link between the amount the policyholder deposits into
the account and the amount the insurance company uses for protection or
insurance coverage. This is quite different from a term life insurance pol-
icy, where by definition the amount being sent to the insurance company is
precisely the amount used to cover the insurance. With UL, the two aspects
are detached. The policyholder might decide to deposit $10,000 into a UL
policy that pays a $100,000 death benefit. In the first year, the insurance
company would withdraw or use $500 from the account to pay for the mor-
tality costs of the death benefit, but the remaining $9,500 would remain in
the account. Think of it as a basic open-ended mutual fund linked to an in-
surance policy. The remaining $9,500 would grow in value (tax deferred) at
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money market rates; and if the variable universal life (VUL) policy is pur-
chased, the remaining funds can be allocated by the policyholder amongst
the universe of available investments (e.g., stocks, bonds, cash) and the ac-
count would then grow (or shrink) over time.

The policyholder can change the face value or death benefit at any time—
as long as sufficient funds remain in the policy account to pay for the on-
going death benefit. As the policyholder ages, the amount withdrawn from
the account to pay for the mortality cost would increase and in some cases
might drive the savings portion of the account to zero. Note that in the ab-
sence of any “no-lapse” guarantees, an account that falls to zero is lapsed
and coverage ends. At any time, the UL /VUL policyholder can surrender
or withdraw the investment funds from the account, although there may be
“surrender” charges as well as adverse tax implications.

From a mathematical point of view, the UL /VUL policy can be fully
and best described by the way in which the market value Mt of this pol-
icy changes over time. In the simplest case of a policy offering a choice
between only two investments—a risky stock fund and a risk-free bond
fund—I will denote the change by

dMt = (θtµ + (1− θt )r − f )Mt dt + θtσMt dBt + It dt − Dtλ̄t dt. (7.34)

Here the policy is defined over the time interval [0, T ], Mt denotes the for-
mal account value, and Mt(1 − ξt ) denotes the cash surrender value after
all penalties are paid. The applied deferred surrender charge ξt is based on
a curve that starts at ξ0 and declines toward zero over time.

I will address each part of equation (7.34) in order. First, the asset allo-
cation “vector” θt denotes the portion of the account value that is invested
in risky equity and is expected to earn µ per annum; 1− θt denotes the por-
tion allocated to the risk-free rate r. Next, the asset-based fee is denoted
by f and is paid continuously in time. For instance, each year the UL ac-
count might be charged f = 50 basis points for investment management
fees. The term It denotes the insurance deposit made by the policyholder
at time t. This number is not fixed or forced in advance; rather, it is up to
the policyholder to decide how much should be placed in the account at any
given time. The only requirement is that there be enough to pay for the in-
surance coverage.

The death benefit that is paid if death occurs and time t is represented by
Dt , and λ̄ t is the mortality cost, which is multiplied by the death benefit Dt

and is withdrawn from the account on an ongoing basis. Note that λ̄ t need
not necessarily be the instantaneous force of mortality at time t, which is
why a bar appears over the hazard rate to distinguish the two. For example,
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the policyholder might want to pay a fixed premium for the next 10 years,
in which case λ̄ t = (Āx :10)/(āx :10) during the time period t = 0, . . . ,10.

Then, at the end of the 10 years, the policyholder can decide whether to re-
duce the death benefit Dt or to pay for the insurance using the instantaneous
cost λ̄ t = λt .

7.19 Further Reading

The material presented in this chapter is fairly basic from the standpoint
of actuarial mathematics. Thus, the references cited in earlier chapters on
pension annuities and mortality modeling are relevant here as well.

For a practitioner’s overview of the life insurance industry, I suggest read-
ing Baldwin (2002). As for the issue of how much life insurance a person
needs—as well as the interaction of this need with other “moving parts”
in one’s portfolio—this is a long-standing question in the field of insur-
ance economics, starting withYaari (1965) and Fischer (1973). Both papers
are heavily cited classics in the (personal) insurance economics literature.
However, I will postpone (to Chapter 9) a more in-depth discussion regard-
ing the demand for insurance and the microeconomic foundations of human
capital protection. In this chapter, I have tried to focus exclusively on the
actuarial valuation of life insurance as opposed to the analysis of why peo-
ple would buy these instruments. See Chen and colleagues (2006) for a
theory that ties together the optimal asset allocation and life insurance port-
folio over the human life cycle.

The tax arbitrage strategy that involves life insurance and pension annu-
ities is described and analyzed in greater detail in Charupat and Milevsky
(2001). A related paper by Philipson and Becker (1998) uses a GoMa model
for mortality to price life insurance policies and then “inverts” the equation
to solve for the implied hazard rates using actual market prices and insur-
ance quotes.

7.20 Notation

(uĀx :τ )—net single premium for a life insurance policy sold to an individ-
ual at age x, where u denotes the deferral period and τ denotes the term
of temporary coverage

7.21 Problems

Problem 7.1. Confirm the duration numbers for the life annuity NSP by
integrating the relevant expression.
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Problem 7.2. Recall that Āx :τ denotes the value of life insurance (NSP)
that covers you for the next τ years. Derive an expression for limτ→0 Āx :τ ,
but don’t get carried away with fancy math. Think about what this means.

Problem 7.3. A “critical illness” insurance policy pays a fixed “illness
benefit” if the insured individual is afflicted with any one of a list of in-
sured illnesses during the term of the insurance. For example, if the insured
is diagnosed with cancer, has a stroke, or suffers a heart attack within 10
years, the insurance company will pay a lump sum of $100,000 in benefits.
A recent innovation in this market has been a return-of-premium clause,
which stipulates that—at maturity of the insurance term or upon death—if
the insured did not claim any benefits then the sum of the premiums will be
returned. For example, if the annual premiums are $5,000 and if the insured
individual died after 5 years of paying premiums without having claimed
any benefits, then the named beneficiary will receive $25,000 back from the
insurance company. Likewise, if the insured dies after 8 years of paying
premiums (but without having claimed any benefits) then the beneficiary
will receive $40,000 under this “return of premium” guarantee. Finally, if
the insured does not file a claim for 15 years and is still alive, then the in-
surance company will refund the entire $75,000. Please devise a model to
price this insurance policy. Assume that the instantaneous force of mortal-
ity (IFM) curve satisfies the GoMa parameters m = 86.34, b = 9.5, and
λ = 0, but assume that the hazard rate for covered illnesses is constant at
a rate of η = 0.03 per year. Also, given a valuation rate of r = 5%, com-
pute the “value” of this critical illness insurance policy (assuming an illness
benefit of $100,000).
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Models of DB vs. DC Pensions

8.1 A Choice of Pension Plans

Would you like to have a pension that promised to pay you 60%–70% of
your final salary for the entire duration of your retirement? Or would you
rather be part of a pension arrangement that places 6% of your salary each
year in a savings account and then lets you do whatever you want with the
accumulated funds when you retire? This is the essence of the defined bene-
fit (DB) versus defined contribution (DC) dilemma facing many individuals
and corporations. Figure 8.1 provides a diagram of the two basic pension
extremes and the various subcategories within the DB and DC world. On
the leftmost side, the DB pension agreement—where the future benefit is
defined—can be structured as an unfunded pay-as-you-go (PAYGO) plan in
which current workers pay the pensions (via payroll and employment taxes)
of retirees. In contrast, a funded DB plan is one in which funds are con-
tributed and accumulated over time to pay the benefits of retirees. Whether
the plan is fully funded, overfunded, underfunded, or PAYGO, there is a
well-defined formula that links the actual retirement benefits to the number
of years of work. In most cases, the financial risk (investment and longevity
risk) is in the hands of the plan sponsor. They must make sure that, what-
ever they do with the funds, there is enough to pay pensions to retirees.
And, barring any default on their obligation, they can be “on the hook” for
a very long time.

A defined contribution plan does not explicitly promise a level of benefits
during retirement but instead can be viewed as a regular savings account in
which employers and sometimes employees contribute on a regular basis.
For example, under certain plans the employer fully or partially matches
employee contributions. Regardless of the plan design, only the contri-
bution payments are defined, relieving the sponsor of the investment and
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Figure 8.1

longevity risks. These accumulations grow over time at some (random) rate
of return. Whatever these funds grow to at the time of retirement will deter-
mine the amount of the pension. The investments and portfolio allocations
within DC plans can be managed by professional trustees, or they can be
managed by the individuals themselves.

Finally, hybrid pensions combine aspects of both DB and DC plans. A
hybrid plan can, for example, guarantee a floor or minimal pension in re-
tirement using a DB-type formula and then supplement this pension using
a DC-type formula that depends on realized investment performance.

Most individuals who have a formal pension plan through work or from
government-provided plans are not allowed to choose their type of pension
contract. Some employers offer DC plans, while others offer DB plans or
some hybrid combination. However, in a growing number of recent cases
either DB plans are closed to new entrants, or employees who are currently
in one type of pension plan are allowed to switch to the other type under
predetermined parameters for the “exchange rate” between the two plans.
One of the largest such offers to switch was made to each of the 600,000
employees of the State of Florida a few years ago. This trend seems to
be gaining momentum in other states and private sector companies. Either
way, it is important to develop an analytic framework for comparing and
contrasting the two extreme pension arrangements.

8.2 The Core of Defined Contribution Pensions

To understand the “core” of the difference between these two plans, I will
start at the very end by displaying the two main equations for DC and DB
pension plans.
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When you retire from a DC pension—at age x or after T years of em-
ployment and participation in the plan—the annual retirement income (i.e.
pension) you are entitled to is specified by the following formula:

[DC pension income] :=
∫ T

0 c(s)eg(s)(T −s)w(s) ds

āx

, (8.1)

where c(s) is the contribution rate, g(s) the realized investment growth rate,
and w(s) the wage or salary—all of which are parameterized by time s.

Finally, āx is the familiar pension annuity factor that converts a lump sum
in the numerator into a periodic income flow. It is important to note that
(8.1) is backward looking and meant to be used at retirement for comput-
ing a retirement income benefit under the pension plan. Heuristically, you
meet with the “plan” or human resource administrator one instant prior to
retirement, when you are just about to turn x years old. Their job is then
to integrate the sum of the contributions c(s)w(s) against the credit invest-
ment rate g(s) from initial time s = 0 to retirement time s = T. The annual
income is expressed in year-T dollars.

Allow me to walk through a basic example so that you can develop some
intuition. Assume that you are just about to turn x = 65 years old, the
point at which you will be retiring from the labor force and will start to
draw a pension. You have been working for the same company for the last
T = 30 years and have been earning a constant w(s) = $50,000 each
year. Note that if there has been any price or wage inflation during the
last 30 years, which likely there was, then your salary has been falling in
real (inflation-adjusted) terms. Assume that each year you and/or your em-
ployer contributed 7% of your salary to a defined contribution pension fund
and that this fund earned g(s) = 10% during each of the 30 years. I know
that most of this is quite unrealistic, but bear with me for a moment. In this
case, the funds in your DC account will have accumulated to

0.07
∫ 30

0
50000e(0.10)(30−s) ds = 667994 (8.2)

dollars at retirement. Equation (8.2) “adds up” the 7% pension contribution
plus investment gains for the entire 30-year period. Finally, the $667,994
is divided by the ā65 = 11.395 pension annuity factor to yield a retirement
income of $58,622 per year. The pension annuity factor was obtained by
using our favorite m = 86.34, b = 9.5, and r = 5% parameters. Observe
that this is a very nice pension. Your salary was $50,000 per year, which
means that your pension has replaced $58,622/$50,000 = 117% of your
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pre-retirement income. Remember, though, that the $58,622 is in nominal
terms, which means that inflation will erode its purchasing power as you
move through your retirement years. The same type of calculation can be
done with nonconstant values of c(s), which (for example) can be 7% when
you are relatively junior and 12% as you move up through the ranks. Or,
the same calculation can be done under a time-varying investment rate g(s)

or with time-varying wages. In the end, it will all come down to an integral
similar to that in (8.1).

A few caveats are in order. First, not all DC pension plans provide the
benefit in the form of a pension annuity. Many plans offer their pension-
aries only a lump sum (the numerator of equation (8.1)) and then supply the
phone number of a “decent” insurance company that can actually provide
the pension annuity. It is up to the individual to buy the pension annuity and
convert their lump sum—for example, $667,994—into a true retirement in-
come. As you can imagine, many retirees, when faced with a lump sum
and the option to annuitize, choose not to purchase the pension annuity. In-
stead, they manage the money themselves and draw down their account to
support their standard of living. When retirees can “take the money and
run,” in some jurisdictions there are regulatory guidelines on how much the
retiree can spend each year—the government doesn’t want them gambling
their money away—and what they can invest in.

Another point worth emphasizing is inflation. There are a few DC (as
well as DB) pension plans that provide a real, inflation-adjusted pension
annuity instead of a nominal pension annuity. Other plans offer a nominal
annuity that increases by a fixed and predetermined rate each year. Either
way, the mathematics of equation (8.1) are identical except that the valua-
tion rate is modified to account for the inflation protection. For instance, in
the previous example I used an r = 5% nominal valuation rate to “value”
the pension annuity. However, if the pension annuity will make payments
in inflation-adjusted terms, then I would use a real valuation rate to obtain
the annuity factor. Suppose the real interest rate in the economy is r =
2.5%; then I would obtain a pension annuity factor of ā65 = 14.362 instead
of ā65 = 11.395. This higher number would be used in the denominator of
(8.1) and would result in an initial retirement income of $667,994/14.362 =
$46,511 per year. Initially this might appear much worse than the $58,622
resulting from the r = 5% valuation rate. However, on an actuarial basis
they are equivalent! This is because the $46,511 is in real terms while the
$58,622 is in nominal terms. Over time, the buying power of the $58,622
pension will decline as inflation erodes its purchasing value, while the buy-
ing power of the $46,511 will remain exactly the same since it will increase
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every year to match changes in the Consumer Price Index (CPI). Of course,
this assumes that the CPI is an appropriate measure for retiree inflation (this
was discussed in Chapter 6). The bottom line is that you can receive your
retirement income pension in a variety of formats depending on your need
and preferences.

The key insight from the DC side of the story is that there are no guaran-
tees concerning what the income will be or what the value of the denom-
inator in (8.1) will be come retirement time. The only guarantee within a
DC plan is the contribution rate c(s) of funds being poured into your retire-
ment savings (pension) account. If after 30 years the realized value of g(s)

is low then you will have less retirement income; it’s as simple as that. The
investment risk is in your hands. Of course, the flip side is that if you are a
good investor (or just plain lucky) and the realized return g(s) is high, then
your pension will be much larger. Stepping back to time 0—as opposed to
the age and time of retirement—your pension income is a random variable
that can be expressed as∫ T

0 c(s) exp{B(ν,σ)

(T −s)}w(s) ds

āx

. (8.3)

Here B
(ν,σ)
t is the familiar Brownian motion term (introduced in Chapter 5)

representing the total return that will have been earned on the contributions
made at time s, and w(s) denotes the random and unpredictable wage or
salary over the T years of work. In fact, some might argue that even the
denominator in equation (8.3) should be viewed as stochastic since interest
rates and perhaps even GoMa parameters are unknown so far in advance of
retirement. This is a legitimate point, and we will return to the “stochastic-
ity” of annuity factors in Chapter 10.

I would urge you to think carefully about each of the terms within (8.3)
and about how each contributes to the overall pension equation. At first
glance, it might seem strange to integrate B

(ν,σ)

(T −s) in the exponent of the in-
tegrand. But after thinking about this for a while you should realize that,
when s is very small, the savings component will be growing over an en-
tire path of 30 years, for example. However, as s gets larger, the path over
which we integrate gets smaller (since the contribution is made later), which
is why only the reduced portion is used.

In sum, I have just laid down the mathematical foundation of a DC pen-
sion plan formula. The main ingredients are the contribution rate c(s), the
wage process w(s), and the earnings path g(s). At retirement, these ele-
ments are all known with certainty, but before this date—when market re-
turns are unknown—all we have is a random variable for the pension.
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Figure 8.2

8.3 The Core of Defined Benefit Pensions

In contrast to the DC pension formula, the DB formula focuses on and pro-
vides a guarantee of actual retirement income. In the DB case, there is no
numerator or denominator but rather a direct formula:

[DB pension income] := αTβ

∫ T

0
e−β(T −s)w(s) ds, (8.4)

which I will abbreviate as

[DB pension income] := αTω(T ). (8.5)

Here α is the pension benefit accrual rate, and the new “salary weighting
function” is defined by

ω(T ) = β

∫ T

0
e−β(T −s)w(s) ds, (8.6)

which allows the company some flexibility in linking pensions to your aver-
age salary.

Once again we have a number of moving parts, so I will explain each
term individually. Figure 8.2 provides a graphical illustration of the salary
weighting function. The greater the value of β, which is determined by
the company, the more weight is placed on recent or final wages versus the
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overall path of wages. For example, when β = 0.1, the value of the ω(t)

function starts quite low and then slowly increases over time as the wage
increases. However, when β = 1 (and in theory it can go as high as infin-
ity), the ω(t) function quickly moves to a number that is close to w(t). In
some sense, ω(t) and w(t) are the same after a while.

The point in all of this is to capture a stylized feature of most DB pension
plans: namely, that retirement income benefits are computed by multiply-
ing the number of years of credit service T by the accrual factor α and then
by the “average” salary over the working period. Some companies use an
actual average of the entire T-year period, while others use an average of
the last few years or perhaps even the “best earning” years. The purpose of
the function ω(T ) was to capture the diversity of averaging methods in a
parsimonious and easy-to-use manner.

In fact, when the function for salary or wages satisfies a simple exponen-
tial growth equation,

w(t) = wekt (8.7)

(where k is an annual growth rate), then the salary weighting function de-
fined in equation (8.6) can be integrated explicitly to yield

ω(T ) = βw

β + k
(ekT − e−βT ). (8.8)

When k = 0 (a flat wage profile) the function collapses to w(1 − e−βT ),
which rapidly converges to the salary value itself as e−βT becomes very
small.

So, for example, let w = $30,000 and suppose it grows each year by
k = 1%. Then, for β = 0.1, equation (8.8) leads to a value of ω(30) =
$35,456; when β = 0.2 we have ω(30) = $38,497; and if β = 1 then
ω(30) = $40,095, which is extremely close to 30000e(0.01)(30) = $40,496,
the actual salary at retirement. And, if the DB pension stipulates an accrual
rate of α = 1% for each year of employment, then at retirement the re-
tiree will be entitled to a nominal pension income of (30)(0.01)(35456) =
$10,637 under a β = 0.1 weighting, (30)(0.01)(38497) = $11,549 under
a β = 0.2 weighting, and (30)(0.01)(40095) = $12,028 under a β = 1.0
weighting.

Thus, we have finally reached the point where meaningful comparisons
can be made between DB and DC plan benefits.

Table 8.1 displays a range of retirement income values for a DC pension
plan. Once again, we imagine someone right before retirement and calcu-
late the amounts shown based on the realized investment return g and the
periodic contribution rate c. All values are in nominal terms. Thus, with
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Table 8.1. DC pension retirement income

Assumed investment returns
DC rate of

contribution g = 3% g = 5% g = 7%

c = 4% $5,105 $7,203 $10,452
c = 6% $7,658 $10,805 $15,678
c = 8% $10,210 $14,407 $20,904
c = 10% $12,763 $18,009 $26,130
c = 12% $15,315 $21,610 $31,356

Notes: m = 86.34, b = 9.5, λ = 0, r = 3.5%. Initial salary
of $30,000, T = 30 years of work, and k = 1% salary growth
yielding final salary of $40,496.

Table 8.2. DC pension: Income replacement rate

Assumed investment returns
DC rate of

contribution g = 3% g = 5% g = 7%

c = 4% 12.6% 17.8% 25.8%
c = 6% 18.9% 26.7% 38.7%
c = 8% 25.2% 35.6% 51.6%
c = 10% 31.5% 44.5% 64.5%
c = 12% 37.8% 53.4% 77.4%

Note: See notes to Table 8.1.

an initial salary of w = $30,000 and a salary growth rate of k = 1%, the
final salary at the end of T = 30 years of work is w(30) = $40,496. Under
these parameters, the retirement income is obtained by dividing the retire-
ment value of the account by the pension annuity factor, which in this case
is ā65 = 13.043 under an r = 3.5% valuation rate. For example, if c =
10% of salary is contributed to the account—either by the employer or the
employee—and if these contributions are invested and grow at g = 7% per
annum (for 30 years), then the retirement income will be $26,130 per year.
This, again, is in nominal terms. Lower contribution rates and lower invest-
ment returns result in a lower pension. As I have mentioned many times,
in reality the value of g will not be known until retirement. This places the
risk squarely in the hands of the pensioners.

Alternatively, the same information can be displayed by converting the
numbers in Table 8.1 to replacement rates; to do this we divide the retire-
ment income by the final wage—see Table 8.2, where each entry is divided
by the $40,496. Obviously, the larger the replacement rate, the more in-
come one has in retirement. In this example, if investment returns (set by
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Table 8.3. DB pension retirement income

Salary weighting scheme

β = 0.1, β = 0.2, β = 1,
DB rate average of average of average of

of accrual $35,457 $38,497 $40,095

α = 1.00% $10,637 $11,549 $12,028
α = 1.25% $13,296 $14,436 $15,036
α = 1.50% $15,955 $17,323 $18,043
α = 1.75% $18,615 $20,211 $21,050
α = 2.50% $26,592 $28,872 $30,071

Notes: All numbers are in nominal terms. Initial salary of $30,000,
T = 30 years of work, and k = 1% salary growth yielding final salary
of $40,496.

the capital market) are g = 7% and if the contribution rate (set by the plan
documents) is 12%, then the replacement rate will be 77.4% of the final
pre-retirement income. This number is obtained by dividing $31,356 by
$40,496, which was the final salary in the year prior to retirement.

Replacement rates are a good segue into the parallel analysis of DB plans,
since the product of working years and accrual rates lends itself naturally
to a replacement rate. For example, if T = 30 years and the accrual rate is
α = 1.75%, then (0.0175)(30) = 52.5%; the formula specifies a replace-
ment rate of 52.5% of the weighted average salary, denoted by ω(30).

The case of a DB pension is illustrated in Table 8.3. For example, under
a β = 1 weighting scheme and an α = 1.75% accrual rate, the retirement
pension income will be $21,050 per year of retirement. As intuition should
dictate, the lower the value of β and the lower the value of α, the lower
the retirement pension income. Table 8.4 converts these numbers to re-
placement ratios like those shown for DC plans in Table 8.2. Note that the
replacement rate is very close to αT for high values of β, where T = 30
years in all cases.

In sum, Tables 8.1–8.4 provide a range of perspectives on the retirement
income one may be entitled to under a DB or DC pension. Without knowl-
edge of future investment returns and wages, it is impossible to argue that
one plan is inherently better or worse than the other.

8.4 What Is the Value of a DB Pension Promise?

Most of the previous discussion centered on retirement income and what
you are entitled to once retired. I would like to step back from retirement
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Table 8.4. DB pension: Income replacement rate

Salary weighting scheme

β = 0.1, β = 0.2, β = 1,
DB rate average of average of average of

of accrual $35,457 $38,497 $40,095

α = 1.00% 26.3% 28.5% 29.7%
α = 1.25% 32.8% 35.6% 37.1%
α = 1.50% 39.4% 42.7% 44.5%
α = 1.75% 46.0% 49.9% 52.0%
α = 2.50% 65.6% 71.3% 74.3%

Note: See notes to Table 8.3.

by a few years. Imagine that you are y years old and have worked for τ

years at your current job that offers a defined benefit pension plan, where
0 < τ ≤ T. The DB plan allows you to retire at age x (e.g., 65 years of age)
so that x − y = T − τ by definition.

I will use ϒ to denote the current value or worth of what you are enti-
tled to at retirement age x, and there are three possible ways to measure
this quantity. The first measure of the firm’s pension obligation to their em-
ployees is called the retirement benefit obligation (RBO), the second is the
projected benefit obligation (PBO), and the third is the accumulated benefit
obligation (ABO). Here is the formal definition of all three quantities:

ϒ RBO
y = e−r(x−y)αTω(T )āx , (8.9)

ϒ PBO
y = e−r(x−y)ατω(T )āx , (8.10)

ϒ ABO
y = e−r(x−y)ατω(τ)āx. (8.11)

Before I get into the similarities and differences between these three possi-
ble measures, notice that once you have worked at the company for the full
T years and you are x years old, then all three expressions collapse to the
simple and intuitive αTω(T )āx. This is your annual DB retirement income
entitlement—years of service multiplied by the accrual factor multiplied by
the final salary weight—multiplied by the pension annuity factor. This is a
lump-sum value at retirement.

Prior to retirement, however, there are three possible ways to character-
ize the firm’s obligation or commitment to you. The RBO discounts the
lump-sum value by a valuation rate of r for x −y years to arrive at an age-y
value (assuming you will be entitled to your full pension benefits). In con-
trast, the ABO takes a more pragmatic view of the relationship between you
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Figure 8.3

and your employer. The ABO calculation counts the number of years τ you
have already worked and multiplies by the salary average ω(τ) to that date
and then assumes that you are fired or terminated immediately. In this case
you will have earned only ατω(τ) in retirement income, which leads to a
lump-sum value at retirement of ατω(τ)āx; discounted to age y, this is pre-
cisely ϒ ABO

y = e−r(x−y)ατω(τ)āx. In contrast to a deferred annuity, the
employee would not have to “survive to retirement” in order to receive the
pension benefit. The computed value of the benefit would be available to
your beneficiary if something happens between age y and retirement age x.

Now, some of you might rightfully argue that the ABO is a biased or in-
accurate measure of what the employee’s DB pension promise is worth,
since they are not in fact being terminated at the time of the valuation. In-
deed, they may end up working for the full T years until age x, which then
entitles them to a total retirement pension of αTω(T ) per year. This is why
we have a third measure of pension value, the projected benefit obligation.
The PBO takes a compromise view. At age y, which is time T − τ, the em-
ployee has indeed worked only for τ years but is projected to have a salary
weight of ω(T ) at retirement. This middle view implies that as an employee
you have earned ατ worth of the total αT of the αTω(T ) you receive in
retirement.

Figure 8.3 provides a graphical illustration of the relationship between
the three possible measures of the value of the pension promise at age y.
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Table 8.5. Current value of sample retirement pension by
valuation rate and by type of benefit obligation

Valuation
rate ABO PBO RBO ā65

r = 5% $43,399 $53,008 $123,685 11.394
r = 7% $24,686 $30,152 $70,355 9.669
r = 9% $14,271 $17,431 $40,672 8.339

Notes: m = 86.34, b = 9.5, k = 1%; α = 2%, β = 1. Assumes
45-year-old worker with15 years of pension service, earning $34,855
annually and planning to retire at age 65.

The underlying parameters for this particular figure are the standard m =
86.34 and b = 9.5, which lead to the pension annuity factor of ā65 =
11.3949 at retirement. The initial salary of w = $30,000 grows by k =
1% each year until it reaches w(35) = $42,572 at age x = 65. The salary
weighting function under a β = 1 leads to ω(35) = $42,151. Finally,
α = 2% per each year of credited service in the DB plan. This leads to
(0.02)(35)(42151)(11.3949) = $336,214, the lump-sum value at retirement.
Using our notation, ϒ65 = $336,214 for the RBO, PBO, and ABO. This is
the point (age) at which the three curves meet.

As the current age y declines, all three curves go down in value, which
is to be expected under the “algebraic rules” for present value calculations.
Notice that the PBO and ABO are relatively close to each other. The RBO
curve lies well above the other two and starts off at a much higher level. On
the first day of employment—for example, at age y = 35—the RBO value
immediately assumes 35 years of work in the discounted value calculation.
Clearly, this is an overly optimistic view of the employment contract. In
contrast, the ABO is often called a “wind-up” measure of the pension obli-
gation. If a DB pension plan were terminated, the ABO would be the best
estimate of what it would cost to purchase pension annuities to fulfill this
obligation. It captures what the employee “owns.”

The distinction between the ABO, PBO, and RBO measures is critical to
understanding some of the accounting issues that arise. To get a better sense
of the interaction between the values, Table 8.5 lists some numerical exam-
ples. The table assumes a 45-year-old employee who has credited service
for τ = 15 years in a DB pension plan that provides a retirement income
benefit of α = 2% times the final salary weight for each year of service.
The salary weighting function ω(T ) uses β = 1 (which, recall, is heavily
tilted toward the final salary w(T )). In Table 8.5, the salary is assumed to
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increase by k = 1% each year, which will take it from the current w(15) =
$34,855 to w(35) = $42,572 at retirement.

Observe the impact of the valuation rate r on the ABO, PBO, and RBO
as a result of the e−r(x−y) in equations (8.9), (8.10), and (8.11), respectively.
The right-most column of the table displays the pension annuity factor under
the various valuation rate assumptions of 5%, 7%, and 9%. It should come
as no surprise that ā65 also declines as the valuation rate r increases.

For example, under an r = 9% valuation rate, the accumulated benefit
obligation after 15 years of work is a mere $14,271 at age 45. In contrast, if
the valuation rate is reduced to r = 5% then the RBO is $123,685, which
is almost ten times more.

So what is the pension promise really worth? The truth is that I don’t
have an answer. It is not about mathematics anymore. It comes down to ac-
counting, economics, and even legal and ethical issues. Can the employer
terminate any employee at any time and prevent them from accruing any
more pension credits? In that case, the ABO might be the most appropriate
measure of what a pension is worth. On the other hand, if the labor relation-
ship is more than just a “spot market” transaction and if there are implicit
contracts between the employer and the employee, then perhaps the PBO
or even the RBO is a better measure of pension value.

8.5 Pension Funding and Accounting

A related and equally vexing question is how an employer should “fund”
the DB pension. In a DC plan, the answer is trivially obvious. The fund-
ing is precisely the contribution or cash flow c(s)w(s) that must be added
to the pension fund account each year. In the case of a DB plan, there is
no natural economic obligation to “invest” or “fund” a portion of the ABO,
PBO, or RBO while the employee is still working. In theory the company
could wait until the employee retires and then pay the retirement pension
of αTω(T ) from corporate revenues. This would be the ultimate unfunded
DB pension plan. If you think about it, this would save the company a large
sum of money today because pension contributions for active employees—
as opposed to retired employees—can add up to billions of dollars per year.
Why not put it off until the payment must be made?

In practice the pension industry is heavily regulated, and most private
sector companies cannot “wait and worry” to pay the pension once the em-
ployee retires. In the United States, for example, there is a substantial body
of law that governs exactly how pensions must be funded. The companies
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Table 8.6. Change in value (from age 45 to 46)
of sample retirement pension by valuation rate

and by type of benefit obligation

Valuation
rate �ABO �PBO �RBO

r = 5% $5,756 $6,433 $6,341
r = 7% $3,839 $4,342 $5,101
r = 9% $2,552 $2,913 $3,830

Note: m = 86.34, b = 9.5, k = 1%; α = 2%, β = 1.

Table 8.7. Change in pension value at various
ages assuming r = 5% valuation rate

Age y at
retirement �ABO �PBO �RBO

35 $2,012 $2,562 $3,659
45 $5,252 $5,947 $6,032
55 $12,640 $12,646 $9,945
65 $28,626 $25,535 $16,397

Notes: m = 86.34, b = 9.5, k = 1%; α = 2%, β = 1.
Assumes 30-year-old worker with starting salary of
$30,000.

have no choice and they must set aside—today—a sum of money in a pen-
sion fund even though you will not be retiring for another 10, 20, or even
30 years. These funds are contributed to a stand-alone legal entity called
the pension plan, and the money actually grows tax deferred, within limits,
until the funds are needed to pay pensions.

This is exactly where the ABO and PBO come into play. They are more
than a theoretical curiosity; they determine how much must be contributed
to these funds. Table 8.6 provides us with a first step in understanding pen-
sion funding, as it illustrates how the ABO, PBO, and RBO change over
time. More specifically, it displays the change (also known as “Delta”) in
the ABO, PBO, and RBO after one additional year of work. For example,
under an r = 5% valuation rate, the ABO will increase from $43,399 at age
y = 45 to $49,155, which is an increase of �ABO = $5,756. The change
in the PBO would be $6,433, and the change in the RBO would be $6,341.

Table 8.7 provides a different perspective on the change. It picks one par-
ticular valuation rate, r = 5%, and examines the impact of age alone on the
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Table 8.8. Change in PBO from prior year

Costs
Age y at Service
valuation Salary Interest + Service = �PBO (% of salary)

35 $31,538 $418 $2,143 $2,562 6.80%
45 $34,855 $2,413 $3,534 $5,947 10.14%
55 $38,521 $6,820 $5,826 $12,646 15.13%
65 $42,572 $15,929 $9,606 $25,535 22.56%

Note: r = 5%, k = 1%; α = 2%, β = 1.

Table 8.9. Change in ABO from prior year

Costs
Age y at Service
valuation Salary Interest + Service = �ABO (% of salary)

35 $31,538 $301 $1,711 $2,012 5.42%
45 $34,855 $1,956 $3,296 $5,252 9.46%
55 $38,521 $6,109 $6,531 $12,640 16.95%
65 $42,572 $15,770 $12,856 $28,626 30.20%

Note: r = 5%, k = 1%; α = 2%, β = 1.

change in the ABO, PBO, and RBO. For example, between the ages of y =
34 and y = 35, the ABO increases by $2,012. Between age y = 44 and y =
45 the ABO increases by $5,252, and from age y = 64 to age y = 65 the
ABO increases by $28,626. The intuition for these changes comes directly
from Figure 8.3. The ABO, PBO, and RBO increase with time. The rate at
which the values increase is time dependent, and this rate is precisely what
is being measured in Table 8.7.

Table 8.8 and Table 8.9 take a closer look at the changes in the PBO and
ABO, decomposing the �ABO and �PBO in two components. The first
part is the interest component or cost, and the second part is the service
component or cost. The interest cost is the change in ABO or PBO that is
attributable to one more year of the time value of money. Mathematically,
if last period’s benefit obligation is denoted by ϒt , then the interest compo-
nent of next period’s obligation is ϒt rdt. In contrast, the service component
is the portion of the change that is due to an increase in service.

For example, from age y = 34 to age y = 35, the ABO increases by
$2,012. Of this sum, $301 is attributed to the (valuation) interest of 5%
on last year’s $5,876 ABO, and the remaining $1,711 service component
comes from the additional year in the ABO calculation; in other words, it
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is from using τ = 5 instead of τ = 4 in the ABO formula. Here is another
way to think about it. If the managers of the pension fund had set aside ex-
actly $5,876 when the employee was y = 34 years old and if this sum of
money had grown by the valuation rate of r = 5% during the next year,
then the managers need only contribute or fund $1,711 in the subsequent
year in order to bring the assets of the fund to the new required ABO level
of $7,888. The service component or cost of $1,711 is equal to 5.42% of the
35-year-old’s salary of $31,538. By age y = 55, the service component of
the change in the ABO has now increased to about 17% of the salary. At
age y = 65, the service component is 30% of the salary.

Let me say this once again to reiterate how central it is to our main story.
If a DB pension fund is 100% funded to either the PBO or ABO level and if
the fund’s assets earn the valuation rate during the subsequent year, then the
managers will only have to “add” the service cost to the fund to bring the
value up to the new ABO or PBO. I remain agnostic as to whether compa-
nies “should” fund up to the ABO or PBO. Note how the service component
of the PBO is a larger fraction of the salary—compared to the service com-
ponent of the ABO—early on in the life cycle. But, as time goes on, the
service component of the ABO becomes higher than the PBO’s as a per-
centage of salary.

Formally speaking, a pension funding method describes the manner under
which defined benefit pension sponsors contribute to the pension fund over
time so that sufficient reserves are available upon the employees’retirement.
As I mentioned, in theory there are infinitely many ways in which to fund a
pension. The sponsors could wait until one instant prior to the employee’s
retirement and then deposit or contribute āx times the pension income to
the plan. Alternatively, they could contribute the entire RBO right away
and then invest the funds at the valuation rate until it grows to the required
āx×[pension income] at retirement. An even more extreme funding method
is the PAYGO system, under which the sponsors provide benefits to retirees
when they are due and payable; thus, an actual fund is never accumulated.

In practice, a funding method must balance the needs and interests of cur-
rent and future shareholders against current and future employees, taking
into account both regulatory and tax requirements. In fact, even the intu-
itively simple method of contributing the aforementioned service cost—
assuming the fund earns the valuation rate from year to year—is fraught
with problems because it creates an uneven pattern of expenses over time.
Some companies and pension sponsors might prefer to smooth the contri-
butions so that approximately the same percentage of salary is contributed
to the pension plan over the course of an individual’s employment. Also,
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while it is convenient to think of the assets of and contributions to the pen-
sion plan on a per-employee basis, these decisions are actually made in
aggregate and thus depend on the distribution of employees and of their
ages and salaries within the plan.

Indeed, pension actuaries have developed and now implement a number
of “rational” funding methods, which are meant to develop sufficient assets
to equal liabilities upon retirement. These methods have a variety of (nonde-
scriptive) names: the unit credit funding method, entry age funding method,
attained age funding method, and aggregate cost funding method. Regard-
less of the exact name, the unifying theme for all these actuarial funding
methods—besides accumulating a steady base of assets to pay liabilities—
is smoothing fluctuations in financial markets when the funds’ investment
performance does not match the assumed valuation rate and so there is an
unfunded actuarial liability.

And finally, while on the subject it is important to discuss a number of
additional benefits that might be part of the pension promise. For example,
many plans guarantee that upon retirement the pension income will con-
tinue for as long as one member of a couple is still alive, not only while the
retired employee is living. This provision is obviously meant to protect the
spouse of the employee, which makes perfect sense from the perspective of
financial planning and wealth management. However, this also makes the
pension promise more expensive, since the annuity factor at retirement is no
longer āx but the presumably larger joint and survivor factor āx,y introduced
in the previous chapter, where x is the age of the employee at retirement
and y is the age of the employee’s spouse. In this case, the ABO, PBO, and
RBO would all be higher at any moment in time prior to retirement.

Other factors that might contribute to increases in ABO, PBO, and RBO
values—and hence to the value of the pension guarantee—are life (and even
health) insurance benefits that the employee’s beneficiary might be entitled
to in the event of the employee’s early death. I leave all of these complicated
and important issues to other sources on the actuarial aspects of pensions.

8.6 Further Reading

In this chapter I have only scratched the surface of material that one can
cover on pension funding, valuation, and accounting. Indeed, pension ac-
tuaries must study for many years to learn all the rules and regulations on
the subject, and it is well beyond the scope of this book to delve into these
matters in any depth. In the United States, for example, a large body of lit-
erature and analysis has centered around the Employee Retirement Income
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Security Act (ERISA), which among other things dictates the funding re-
quirements for private (i.e. corporate) pension plans. At the same time, I
would be remiss if I did not mention that many of the assumptions and
practices used by traditional pension actuaries have recently come under at-
tack by financial economists because they do not properly account for risk.
If you are interested in reading more about defined benefit pension valu-
ation, accounting, and funding through the prism and history of financial
economics, I recommend you start with Treynor (1977), Ezra (1980), Black
and Dewhurst (1981), Bodie, Marcus, and Merton (1988), Barret (1988), and
Ippolito (1989), and then conclude with Babbel, Gold, and Merrill (2002)
as well as Gold (2005).

Note also that in this chapter I have adopted the notation and framework of
Sundaresan and Zapatero (1997), in which the defined benefit salary weight-
ing function is parameterized by the constant β. Indeed, the function can
capture a wide spectrum of salary weighting schemes, although it obviously
lacks the ability to precisely model a pension that pays out based on (say)
the five best years or the last six months of salary. However, given the scope
of this particular chapter, I felt it was more important to maintain analytic
simplicity than practical realism. For those readers who are interested in
a more detailed description of the types of salary weighting schemes and
their actuarial implications—but in a relatively accessible manner—I rec-
ommend the book by Booth et al. (1999). For those interested in a more
detailed description of the various pension funding methods, please see the
concise monograph by Berin (1989).

The field of defined contribution pensions—by virtue of their simplicity
and transparency—has not generated as much formal academic literature as
there is on defined benefit pension. However, for a deeper understanding of
the options available within these plans and the peculiar choices and deci-
sions that people make within them, I suggest Stanton (2000), Benartzi and
Thaler (2001), and Brown and Warshawsky (2001). For a life-cycle view
of pension plan selection—in other words, whether DB or DC is better for
individuals—see McCarthy (2003). For a more mathematical analysis of
the options that are embedded within DB and DC plans, see Sherris (1995),
Pennacchi (1999), or Friedman and Shen (2002).

8.7 Notation

α—accrual factor or portion of average salary contributed to the pension
fund

β—weighting factor used in determining average salary over years worked
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ϒy —measure of the firm’s pension obligation to the worker at the current
age y, which can be stated as the retirement, projected, or accumulated
benefit obligation

8.8 Problems

Problem 8.1. Making two plans equivalent. Derive a formula that “solves”
for the contribution rate c in a DC plan, so that a DB pension {α, β} pro-
vides the same retirement income benefit. Assume a time horizon T and an
investment rate g.

Problem 8.2. In a DC plan, assume that c(s) = 0.09e−(0.1)s (which means
that contributions to the plan decline over time), that w(s) = 30000e(0.02)s,
and that g(s) = 8%. Please derive the retirement income from this plan,
assuming the individual is y = 35 now and plans to retire at age x = 65.

Problem 8.3. What is the service component of the change in the RBO?
Why?

Problem 8.4. Derive an expression for the interest component and service
component of a change in theABO and PBO over a small amount of time dt.

Problem 8.5. You are the head of risk management at a large insurance
company that sells both life insurance and pension annuities. In general,
you are selling pension annuities to people between the ages of 60 and 80
using GoMa mortality parameters of m = 90 and b = 9.5; you are sell-
ing life insurance to people between the ages of 30 and 50 using the GoMa
mortality parameters m = 80 and b = 9.5. Your use of different “modal”
values is due to the different clientele and to adverse selection issues.

As a risk manager, you are worried that your actuaries may have misesti-
mated how long people will live. I would like you to investigate and discuss
how the company can use insurance to hedge against mispricing of annu-
ities and vice versa. More specifically, how much (notional value of ) life
insurance would the company have to sell a y = 45-year-old in order to
hedge the uncertainty in the pension annuity sold to the x = 70-year-old?
Build the hedge so that, if m increases, gains on the life insurance port-
folio offset losses on the pension annuity portfolio and vice versa. Think
duration!
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nine

Sustainable Spending at Retirement

9.1 Living in Retirement

Jorge Guinle—the famous Brazilian playboy—died on Friday the fifth of
March 2004 in Rio de Janeiro. Jorge was born to one of the wealthiest fam-
ilies in Brazil, and he spent a large part of his life dating famous Hollywood
starlets such as Rita Hayworth, Lana Turner, and Marilyn Monroe. This
hobby was quite expensive and apparently he squandered most of his fam-
ily’s fortune well before he died at the age of 88. In fact, in an interview a few
years before his death, Jorge said: “The secret of living well is to die without
a cent in your pocket. But I miscalculated, and the money ran out too early.”

I do not know whether Mr. Guinle spent too much, invested too poorly,
or lived too long. All three factors likely contributed to his unfortunate sit-
uation, and the objective of this chapter is to carefully model the chances of
“dying without a cent in your pocket” using the probability tools developed
in the last few chapters. More specifically, I will compute the probability
that, under a given asset allocation and spending policy, you will run out of
money while still alive.

To better understand the nature of risk management during retirement,
the triangle in Figure 9.1 provides a graphical illustration of the relationship
between (what I consider to be) the three most important factors in retire-
ment planning: spending rates, investment asset allocation, and mortality
considerations. If you spend and consume too much (or underestimate the
impact of inflation on your long-term needs), or if you invest poorly (taking
too much risk or too little risk), or if you underestimate your longevity and
the time to be spent in retirement, then the probability of ruin in retirement
increases.

The topic of sustainable withdrawal and spending rates has been the
focus of academic and practitioner research over the years. But this field
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Figure 9.1. Source: Copyright 2005 by the CFA Institute, Financial Analysts Journal,
Charlottesville, VA. Reprinted with permission.

has developed a renewed sense of urgency as a wave of North American
Baby Boomers approaches retirement and seeks wealth management guid-
ance on “what’s next” for their savings plans.

Many financial planners and advisors have resorted to Monte Carlo sim-
ulations (similar to those described in Section 2.8) in order to illustrate fi-
nancial life cycles. The problem with these and similar Monte Carlo–based
studies is that they (i) can be difficult to replicate, (ii) are quite time consum-
ing to generate if done properly using the required number of simulations,
and (iii) provide very little financial or pedagogical intuition on the trade-off
between risk and return during retirement,

Therefore, in this chapter I address the issue of sustainable spending rates
from a different and perhaps novel perspective. I start by linking the three
factors of Figure 9.1 in a parsimonious and intuitive manner by using the
“probability of retirement ruin” as a risk metric that gauges the relative im-
pact of these factors and the trade-offs between them. This is similar to the
probability of shortfall—that a stock portfolio will do worse than a risk-
free investment—presented in Chapter 5. Thus, for example, if a retiree
increases her spending rate while maintaining the same investment alloca-
tion then the probability of retirement ruin will increase, all else being equal.
However, if a retiree’s health suddenly deteriorates (not the most comfort-
ing thought) then the probability of retirement ruin will obviously decline,
assuming the same asset allocation and spending rate are maintained. My
point is that, by using retirement ruin probabilities and the relatively simple
analytic approximation developed in this chapter, retirees and their advisors
can better understand the link between the factors affecting risk without re-
sorting to complicated simulations.

In the first step toward developing the analytic approximation, I intro-
duce the concept of a stochastic present value (SPV) and use this to provide
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an expression for the probability that an initial corpus (nest egg) will be
depleted under a fixed consumption rule when the rate of return and the
horizons are both stochastic. I stress the dual uncertainty for returns and
horizons, which is something that has not received much attention in the
portfolio management literature as it pertains to retirees.

The analysis is based on the aforementioned SPV and a continuous-time
approximation under lognormal returns and exponential lifetimes. In the
case of an investor with an infinite horizon (perpetual consumption), this
formula is exact. In the case of a random future lifetime, the formula is based
on moment matching approximations, which target the first and second mo-
ment of the “true” stochastic present value. The results are remarkably ac-
curate when compared with more costly and time-consuming simulations.

I will also provide several numerical examples to demonstrate the ver-
satility of the closed-form expression for the stochastic present value in
determining sustainable withdrawal rates and their respective probabilities.
This formula can easily be implemented in Excel or any other spreadsheet
using a variety of portfolio risk–return parameters, ages, and withdrawal
rates, and it reproduces results that are within the margins of error from ex-
tensive Monte Carlo simulations.

This chapter first casts the mathematics of the sustainable spending prob-
lem within the context of a traditional “present value of future cash flows”
calculation, derives a closed-form analytic expression for the probability
that a given spending rate is sustainable, and provides extensive numerical
examples over a variety of ages and spending rates.

9.2 Stochastic Present Value

Recall from Chapter 2 that, if you invest your money in a portfolio earn-
ing R% per annum and plan to consume a fixed real (after-inflation) dollar
each year until some horizon denoted by T, then the present value (PV) of
your consumption at initial time 0 would be computed as

PV =
T∑

i=1

1

(1 + R)i
= 1 − (1 + R)−T

R
, (9.1)

but only if the horizon and investment rate of return are known with abso-
lute certainty. Thus—in a deterministic world—if you start retirement with
a nest egg greater than the PV in equation (9.1) times your desired consump-
tion, then your money will last for the rest of your life. If you have less than
this amount, you will be “ruined” at some age prior to death. Note that as
T goes to infinity, which I call the endowment case, the PV converges to
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1/R. At R = 0.07 (= 7% effective annual rate), the resulting PV is 14.28
times the desired consumption. An endowment fund that wants to sustain
a payout of $1 per year forever—when investment returns are assumed to
be a constant 7% forever—will require $14.28 in initial capital. Hence, if
it wants to sustain a payout of $100 per year then the fund will need $1,428
of initial capital.

Of course, human beings have a random (and finite) life span—which is
the core model of Chapter 3—and any exercise that attempts to compute re-
quired present values at retirement must account for this uncertainty. From
a retirement spending perspective, a 65-year-old might live 20 more years
or 30 more years or only 10 more years. How should this uncertainty affect
the withdrawal rate?

Should a 65-year-old plan for the 75th percentile, the 95th percentile, or
the end of the mortality table? What T -value should be used in equation
(9.1)? The same question applies to the investment return R: What is a rea-
sonable number to use? The average real investment returns from a broadly
diversified portfolio of equity during the last 75 years has been in the vicin-
ity of 6%–9% (as discussed in Chapter 5), but the year-by-year numbers
can vary widely.

So, in contrast to the trivial deterministic case—where both the horizon
and the investment return are known with certainty—here these variables
are stochastic, and the analogue to equation (9.1) is a stochastic present
value:

SPV = 1

1 + R̃1

+ 1

(1 + R̃1)(1 + R̃2)
+ · · · + 1

T̃∏
j=1

(1 + R̃j )

=
T̃∑

i=1

i∏
j=1

(1 + R̃j )
−1, (9.2)

where the new variable T̃ denotes the random time of death (in years) and
the new R̃j denotes the random investment return in year j. Without any
loss of generality, T̃ = ∞ is the infinitely lived endowment or foundation
situation. I touched upon these ideas in Chapter 3 with regard to the present
value of a life-cycle plan, and in this chapter I am focusing exclusively on
retirement.

If the consumption/withdrawals take place once per month or once per
week, the random variables R̃j and T̃ are adjusted accordingly. And if the
return frequency is infinitesimal then, of course, the summation sign in
equation (9.2) converges to an integral while the product sign is converted
into a continuous-time diffusion process.
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Figure 9.2. Source: Copyright 2005 by the CFA Institute, Financial Analysts Journal,
Charlottesville, VA. Reprinted with permission.

The intuition behind the equation is as follows. Looking forward, we
must sum up a random number of terms in which each denominator is also
random. The first item discounts the first year of consumption at the first
year’s random investment return. The second item discounts the second
year’s consumption (if the individual is still alive) at the product of the first
and second years’ random investment return, and so on.

The SPV defined by equation (9.2) can be visualized as in Figure 9.2.
One can think of the stochastic present value as a random variable with
a probability density function (PDF) that depends on the risk–return pa-
rameters of the underlying investment-generating process as well as on the
random future lifetime. If you start retirement with an initial endowment or
nest egg of $20 and intend to consume $1 (after inflation) per annum, then
the probability of sustaining this level of consumption is equal to the prob-
ability that the SPV is less than $20. In the figure, this corresponds to the
area under the curve to the left of the ray emanating from $20 on the x-axis.
The probability of ruin is the area under the curve to the right of this $20
ray. The precise shape and parameters governing the SPV depend on the
investment and mortality dynamics, but the general picture is remarkably
similar to Figure 9.2. This family of SPVs is defined over positive numbers,
is right skewed, and at zero is equal to zero.

The four distinct curves in Figure 9.2 denote differing random life spans.
In the first plot the (unisex) individual is 50 years old; in the second, 60;
in the third, 65; and in the last, 75. As the individual ages, the SPV of
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future (planned) consumption shifts toward the left (relative to the same
$20 mark) because chances are that $20 is enough to sustain this standard
of living when starting consumption at an older age.

Now I move on to the main goal of this chapter, which is to obtain a
closed-form expression for the distribution of the SPV. Remember that the
model developed in Chapter 5 assumed that investment returns are gener-
ated by a lognormal distribution, also known as the geometric Brownian
motion diffusion process. (In that chapter I spent some time discussing
whether this is a reasonable assumption for security prices, and I will not
revisit those justifications here.)

9.3 Analytic Formula: Sustainable Retirement Income

Before I come to the main part of the story, I will review quickly the three
important probability distributions that play a critical role in our calculations
of sustainability. The first is the ubiquitous lognormal (LN) distribution,
the second is the exponential lifetime (EL) distribution, and the third is
the (perhaps lesser-known) reciprocal Gamma (RG) distribution. The con-
nection between these three will become evident in this section. For more
detailed information I urge the reader to revisit Chapters 3 and 5.

First, the investment total return denoted by Rt between time 0 and time t

is said to be lognormally distributed with parameters {µ, σ} if the expected
total return is E[Rt ] = eµt, the logarithmic volatility is SD[ln Rt ] = σ

√
t ,

and the probability law can be written as Pr[ln Rt < x] = N
((

µ − 1
2σ 2
)
t,

σ
√

t , x
)
, where N(·) denotes the cumulative normal distribution (introduced

in Chapter 3). For example, a mutual fund or portfolio that is expected to
earn an inflation-adjusted and continuously compounded return of µ = 7%
per annum with a logarithmic volatility of σ = 20% has a N(0.05, 0.20, 0) =
40.13% chance of earning a negative return in any given year. But if the
expected return is a more optimistic 10% per annum, the chances of losing
money are reduced to N(0.08, 0.20, 0) = 34.46%. Recall from Chapter 5
that, whereas the expected value of the lognormal random variable Rt is
eµt, the median value (geometric mean) is a lower e(µ−σ 2/2)t. And by defini-
tion the probability that a lognormal random variable is less than its median
value is precisely 50%. Again, the gap between the expected value eµt and
the median value e(µ−σ 2/2)t is always greater than zero, proportional to the
volatility, and increasing in time.

In this chapter I will also use the by-now familiar exponential lifetime
random variable. Recall that the remaining lifetime random variable T is
said to be exponentially distributed with mortality rate λ if the probability
law for T can be written as Pr[T > s] = e−λs. The expected value of the
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remaining lifetime random variable is E[T ] = 1/λ, and the median value
(the 50% mark) can be computed via Med[T ] = ln[2]/λ. Again, the ex-
pected value is greater than the median value. As argued in Chapter 3, the
exponential assumption is a most convenient one for future lifetime ran-
dom variables. Even though human aging does not quite conform to an
exponential—or constant force of mortality—assumption, I will show that,
for the purposes of estimating a sustainable spending rate, it does a remark-
ably good job of capturing the salient features.

The reciprocal Gamma distribution will also play a key role. A random
variable denoted by X is said to be reciprocal Gamma distributed with pa-
rameters {α, β} if the probability law for X can be written as

Pr[X < x] := β−α

�(α)

∫ t

0
y−(α+1)e(−1/yβ) dy. (9.3)

The cumulative distribution function (CDF) displayed in equation (9.3)
plays the same role as the CDF of the normal or lognormal distribution. The
definition of the reciprocal Gamma random variable is such that the proba-
bility an RG random variable X is greater than or equal to x is equivalent to
the probability that a Gamma random variable is less than 1/x. The CDF of
a Gamma random variable is available in all statistical packages—even in
Excel—and thus should be easily accessible to most readers. The precise
syntax would be as follows: for Pr[X ≥ x], type GAMMADIST(1/x,alpha,
beta,TRUE); and for Pr[X < x], type 1-GAMMADIST(1/x,alpha,beta,
TRUE).

The reciprocal Gamma distribution is central to the analysis and the
models developed in this chapter, which is why it is important to develop
some intuition for how it differs from the normal distribution (reviewed in
Chapter 3). First of all, the RG—like all statistical distributions—can be
visualized graphically as a function that maps values into probabilities and
whose area under the plotted curve integrates to a value of exactly 1. Like
the normal distribution, the RG can take on very large values but with small
probability. Yet in contrast to a normal random variable, which can take on
negative values, the RG random variable can only take on values between
zero and positive infinity. Thus, whereas the domain of the normal distri-
bution is (−∞, ∞), the domain of the RG distribution is (0, ∞). This is an
important difference between the two densities, particularly when we move
on to computing actual probabilities. To compute the Pr[X < x] for a nor-
mal variable, we must integrate the relevant PDF from the lower bound of
−∞ to the upper bound x. But in the RG case, we integrate only from a
lower bound of 0 to x.
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Figure 9.2 (in Section 9.2) provides a rough picture of the probability den-
sity function of the RG random variable under various parameter values. At
the lower left-hand side of the picture, the value of the PDF at zero is zero.
At the right-hand side of the picture, the value of the PDF at large (infinite)
values is also zero. Between the two extremes, the PDF rises to a unimodal
hump and then falls again toward zero.

Like the normal distribution, which is governed by two parameters (tra-
ditionally the mean and variance), the RG distribution also has two degrees
of freedom. These two parameters α, β, which are both assumed positive,
determine the shape and rate of decline of the PDF. These parameters do
not have an immediate statistical interpretation, but the α, β values can be
converted into mean and variance (i.e., first and second moments) of the RG
distribution. For example, if β = 1 and α = 5, then the probability that an
RG random variable takes on a value less than x = 0.25 is Pr[X < 0.25] =
62.88%. However, if the governing parameter is changed from α = 5 to
α = 2, the relevant probability is Pr[X < 0.25] = 9.16%. Notice that by
reducing the value of α we are pushing more mass toward the right tail of
the distribution. In the high-α case approximately 37% of the mass is to the
right of x = 0.25, but in the low-α case a much higher 91% is to the right of
x = 0.25. These numbers all come from Table 14.5, and I urge the reader to
scan that table in order to better understand the behavior of the reciprocal
Gamma distribution.

Finally, the expected (mean) value or first moment of the reciprocal
Gamma distribution is E[X] = (β(α − 1))−1, and the second moment
is E[X2] = (β2(α − 1)(α − 2))−1. For example, within the context of this
chapter, a typical parameter pair is α = 5 and β = 0.03. In this case, the
expected value of the RG variable is 1/((0.03)(4)) = 8.33, and the prob-
ability that the RG random variable is greater than or equal to, say, 8 is
40.37%. In contrast, if we decrease α from a value of 5 to a value of 4, then
the relevant expected value becomes E[X] = 11.11 and the probability then
becomes Pr[X ≥ 8] = 59.84%.

9.4 The Main Result: Exponential Reciprocal Gamma

With the mathematical background behind us, my primary claim is that if
one is willing to assume lognormal returns in a continuous-time setting, then
the stochastic present value (displayed graphically in Figure 9.2) is actually
reciprocal Gamma distributed in the limit. In other words, the probabil-
ity that the SPV is greater than or equal to the initial wealth w—which is
equivalent to the probability of retirement ruin—is the simple-looking
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Pr[SPV ≥ w] = GammaDist

(
2µ + 4λ

σ 2 + λ
− 1,

σ 2 + λ

2

∣∣∣∣ 1

w

)
, (9.4)

where GammaDist(α, β | ·) denotes the CDF of the Gamma distribution
evaluated at the parameter pair α, β. The precise Excel syntax is as follows:
GAMMADIST([spending rate as a fraction of wealth],alpha,beta,TRUE).
The familiar pair µ, σ are the expected return and volatility parameters from
the investment portfolio, and λ is the mortality rate. The expected value of
the SPV—based on the reciprocal Gamma representation—is (µ−σ 2+λ)−1.

For the precise derivation of the exponential reciprocal Gamma (ERG) equa-
tion, see Section 9.10.

Here is how to apply the formula. Start with an investment (endowment,
nest egg) fund containing $20 to be invested in an equity fund that is ex-
pected to earn µ = 0.07 per annum with a volatility or standard deviation
of σ = 0.20 per annum. Assume that a (unisex) 50-year-old with a median
remaining lifetime of 28.1 years intends to consume $1 (after inflation) per
annum for the rest of his or her life. Recall from Chapter 3 that if the median
life span is 28.1 years then by definition the probability of survival for 28.1
years is exactly 50%, which implies that our instantaneous force of mor-
tality parameter is λ = ln[2]/28.1 = 0.0247. By (9.4) our probability of
retirement ruin, which is the probability that the stochastic present value of
$1 consumption is greater than or equal to $20, is approximately 26.8%. In
the language of Figure 9.2, if we evaluate the SPV at w = 20 then the area
to the right has a mass of 0.268 units. The area to the left—which is the
probability of sustainability—has a mass of 0.732 units. Naturally, differ-
ent values of w will result in different probabilities of ruin.

9.5 Case Study and Numerical Examples

A newly retired 65-year-old has a nest egg of $1,000,000, which must pro-
vide income and must last for the remainder of this individual’s natural life.
In addition to expected Social Security benefits of $14,000 per annum and a
defined benefit (DB) pension from an old employer providing $16,000 per
annum (with both payments adjusted for inflation each year) the retiree es-
timates the need for an additional $60,000 from the investment portfolio.
The $60,000 income will be coaxed from the million-dollar portfolio via
a systematic withdrawal plan (SWiP) that sells off the required number of
shares/units each month using a reverse dollar-cost average (DCA) strategy.
All of these numbers are prior to any income taxes and thus do not distin-
guish between tax-sheltered plans and taxable plans—a significant matter
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not addressed here. What is important to note is that the $90,000 consump-
tion plan will be satisfied with $30,000 from a de facto inflation-adjusted
life annuity and the remaining $60,000 from a SWiP.

In our previous lingo, I am interested in whether the stochastic present
value of the desired $60,000 income per annum is probabilistically less than
the initial nest egg of $1 million. If so, the standard of living is sustainable.
If, however, the SPV of the consumption plan is greater than $1 million,
then the retirement plan is deemed unsustainable and the individual will
eventually face ruin unless consumption is reduced. Once again, the basic
philosophy of this chapter is that the SPV is a random variable and so the
proper analysis comes down to probabilities.

Tables 9.1–9.3 list an extensive range of consumption/withdrawal rates
across various ages so readers can gauge the impact of these factors on
the ruin probability. The first column in each table displays the retirement
age x; the second column displays the median age at death, x + Med[T ]
(based on actuarial mortality tables); and the third column computes the im-
plied mortality rate λ from this median value. With a λ-value in hand and
given µ and σ as indicated, the table evaluates the SPV of various spending
rates ranging from $2 to $10.

The first group of entries (lines 1–3) within Table 9.1 provides results in
the case of a retiree who would like the spending to last forever (hence the
median age at death is infinity); this applies also to an endowment or foun-
dation with an infinite horizon. The probability of ruin ranges from a low
of 15% ($2 spending) to a high of 92% ($10 spending) if investments are
made in an equity-based portfolio that is expected to earn a (lognormal) re-
turn with a mean value of µ = 7% and a volatility of σ = 20% per annum.

Back to our retiree: according to Table 9.1, if the 65-year-old invests the
million-dollar nest egg in the same equity-based portfolio and withdraws
$60,000, then the exact probability of ruin—that is, the probability that the
plan is not sustainable—is 25.3%. Roughly one out of four retirees who
adopt this retirement consumption plan will be forced to reduce their stan-
dard of living during retirement. By “exact probability of ruin” I mean the
outcome from discounting all future cash flows using the correct (unisex)
actuarial mortality table starting at age 65.

In the table, just above this exact 25.3% number I list the result using
the ERG approximation formula, which is based on an exponential future
lifetime implemented within equation (9.4). Observe that the approximate
answer is a slightly higher 26.2% probability of ruin. Here the gap between
the exact and approximate number is less than 0.9%, which inspires addi-
tional confidence in our ERG formula (9.4).
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Table 9.1. Probability of retirement ruin given (arithmetic mean)
return µ of 7% with volatility σ of 20%

Spending rate (per $100)

Age
x at Median

retire- age at Mortality
ment death rate λ $2 $4 $5 $6 $9 $10

N.A. ∞ 0.00% A 15.1% 45.1% 58.4% 69.4% 89.1% 92.5%
E 15.1% 45.1% 58.4% 69.4% 89.1% 92.5%
D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

55 83.0 2.48% A 4.3% 18.0% 26.7% 35.7% 60.2% 66.8%
E 2.8% 18.0% 28.7% 39.6% 66.7% 73.0%
D 1.4% 0.0% −2.0% −3.9% −6.5% −6.3%

65 83.9 3.67% A 2.6% 12.3% 18.9% 26.2% 48.3% 54.9%
E 1.0% 9.4% 16.8% 25.3% 50.5% 57.4%
D 1.6% 2.8% 2.1% 0.9% −2.2% −2.5%

70 84.6 4.75% A 1.8% 9.0% 14.2% 20.1% 39.5% 45.8%
E 0.5% 5.7% 11.0% 17.6% 39.6% 46.4%
D 1.3% 3.2% 3.2% 2.6% −0.1% −0.6%

75 85.7 6.48% A 1.1% 5.7% 9.3% 13.6% 29.0% 34.4%
E 0.2% 2.9% 6.10% 10.5% 27.7% 33.7%
D 0.9% 2.8% 3.2% 3.1% 1.2% 0.7%

80 87.4 9.37% A 0.5% 3.0% 5.1% 7.7% 18.0% 21.9%
E 0.1% 1.2% 2.8% 5.2% 16.6% 21.1%
D 0.5% 1.8% 2.3% 2.5% 1.4% 0.8%

Note: A = approximate answer, E = exact answer, D = A − E.
Source: Copyright 2005 by the CFA Institute, Financial Analysts Journal, Charlottesville,
VA. Reprinted with permission.

Now I would argue that, regardless of whether one uses the exact or the ap-
proximate methodology, a 25% chance of retirement ruin—which is only a
75% chance of success—should be unacceptable to most retirees. Table 9.1
indicates that lowering the desired consumption or spending plan by $10,000
to a $50,000 SWiP reduces the probability of ruin to 16.8% (using the exact
method) or 18.9% (using the approximation); if the spending plan is further
reduced to $40,000, the probability of ruin shrinks to 9.4% (exact) or 12.3%
(approximate). Retirees (together with a financial planner or analyst) can de-
termine whether these odds are acceptable in light of their tolerance for risk.

In the other direction, if the same individual were to withdraw (the en-
tire) $90,000 annually from the million-dollar portfolio, then—using the
7% mean and 20% volatility portfolio parameters—the probability of ruin
would be 50.5% (exact) or 48.3% (approximate).
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To develop an intuition for these numbers, note that the mean or expected
value of the SPV of $1 of real spending is 1/(µ − σ 2 + λ), where µ and
σ are the investment parameters and λ is the mortality rate parameter as-
sociated with a given median future lifetime. For a (unisex) 65-year-old,
the median future lifetime is 18.9 years according to the RP2000 Society
of Actuaries mortality table. To derive the 50% probability point with an
exponential distribution, we must solve the equation e−18.9λ = 0.5, which
leads to λ = ln[2]/18.9 = 0.0367 as the implied rate of mortality.

Returning to the mean value of the SPV, if µ = 7% and σ = 20% then
this works out to 1/(0.07 − 0.04 + 0.0367), which is an average of $15 for
the SPV per dollar of desired consumption. Thus, if the retiree plans to
spend $90,000 per annum, it should come as no surprise that a nest egg of
only 11 times this amount is barely enough to give even odds. Note that the
expected value of the SPV decreases in {µ, λ} and increases in σ. The im-
pact of portfolio parameters should be obvious: higher mean is good, higher
volatility is bad. The benefit of a higher mortality rate λ comes from reduc-
ing the anticipated life span and hence the length of time over which the
withdrawals are taken.

Now, if the same individual were to delay retiring by five years—or,
more precisely, to begin consuming from the nest egg at age 70—then the
same $60,000 consumption plan would result in a 17.6% (exact) or 20.1%
(approximate) probability of ruin according to Table 9.1. The increased sus-
tainability of the same plan (compared with the roughly 25% probability
if this individual were to retire at age 65) is due to the reduced future life
span and hence the lower stochastic present value of consumption. Think
back to the expected value of the consumption plan. At age 70 the median
future life span is only 14.6 years, which leads to a higher λ and hence a
lower value for E[SPV]. The retiree can start retirement with less or can
consume more.

Tables 9.2 and 9.3 provide results under various portfolio investment pa-
rameters using the ERG approximation from equation (9.4). In Table 9.2
I have reduced the expected investment return from 7% to 5% but left the
volatility at 20%. In this case all the corresponding probabilities are higher
than in Table 9.1 because a higher volatility can only make things worse. In
Table 9.3 I have reduced the volatility from 20% to 10% and kept the ex-
pected return at 5%. For example, the 65-year-old withdrawing $60,000
annually from a million-dollar portfolio has a 39.8% probability of ruin
under a µ = 5% and σ = 20% investment regime, compared to a 26.2%
probability of ruin under a µ = 7% and σ = 20% regime, where the
difference is clearly due to the 200-basis-point loss in returns. But if the
µ = 5% investment return is matched with a (more reasonable) σ = 10%
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Table 9.2. Probability of retirement ruin given µ of 5% with σ of 20%

Spending rate (per $100)

Age
x at Median

retire- age at Mortality
ment death rate λ $2 $4 $5 $6 $9 $10

N.A. ∞ 0.00% 42.8% 73.9% 82.8% 88.8% 97.1% 98.1%
55 83.0 2.48% 11.5% 32.8% 43.4% 53.1% 74.9% 80.0%
65 83.9 3.67% 6.7% 22.3% 31.1% 39.8% 62.2% 68.1%
70 84.6 4.75% 4.4% 16.1% 23.3% 30.8% 51.9% 58.0%
75 85.7 6.48% 2.4% 10.0% 15.1% 20.8% 38.7% 44.4%
80 87.4 9.37% 1.1% 5.0% 8.0% 11.5% 24.1% 28.6%

Table 9.3. Probability of retirement ruin given µ of 5% with σ of 10%

Spending rate (per $100)

Age
x at Median

retire- age at Mortality
ment death rate λ $2 $4 $5 $6 $9 $10

N.A. ∞ 0.00% 2.1% 40.7% 66.7% 84.5% 99.3% 99.8%
55 83.0 2.48% 1.0% 10.8% 20.1% 31.2% 63.9% 72.4%
65 83.9 3.67% 0.7% 7.0% 13.2% 21.0% 47.9% 56.4%
70 84.6 4.75% 0.5% 5.0% 9.5% 15.3% 37.3% 45.0%
75 85.7 6.48% 0.3% 3.1% 6.0% 9.9% 25.8% 31.9%
80 87.4 9.37% 0.2% 1.7% 3.2% 5.4% 15.0% 19.1%

volatility, then by Table 9.3 the probability of ruin shrinks to 21%. The
intuition once again comes down to the expected value of the SPV of $1
spending: 1/(µ − σ 2 + λ). If µ = 5% and σ = 10% then µ − σ 2 in the de-
nominator is 0.04, but if µ = 7% and σ = 20% then the same term is only
0.03, which ceteris paribus increases the SPV and so lowers the sustainable
spending rate. Note that Table 9.3 does not provide uniformly lower prob-
abilities of ruin. For high levels of consumption, a more aggressive (µ =
0.07, σ = 20%) portfolio may lead to better odds of sustainability than the
more conservative (µ = 0.05, σ = 10%) portfolio.

One can think of a number of ways in which to manipulate this formula.
For example, our main equation (9.4) can be inverted to compute a “safe”
rate of investment return based on a given tolerance for probability of ruin.
This idea is akin to some recent applications of shortfall as a measure of risk
in the context of portfolio management. Along the same lines, the impact
of the expected return µ on the sustainability of a given withdrawal strategy
can easily be “stress tested.”
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Table 9.4(a). Maximum annual spending given tolerance for
5% probability of ruin

Expected investment return µ
Age x at Mortality

retirement rate λ 3% 4% 5% 6% 7% 8%

N.A. 0.00% $0.004 $0.103 $0.352 $0.711 $1.145 $1.635
55 2.48% $0.526 $0.859 $1.247 $1.680 $2.148 $2.647
65 3.67% $0.923 $1.296 $1.710 $2.157 $2.633 $3.135
70 4.75% $1.310 $1.707 $2.135 $2.592 $3.074 $3.576
75 6.48% $1.958 $2.380 $2.825 $3.293 $3.779 $4.284
80 9.37% $3.080 $3.525 $3.988 $4.466 $4.959 $5.465

Note: Investment return volatility σ = 20%.

Table 9.4(b). Maximum annual spending given tolerance for
10% probability of ruin

Expected investment return µ
Age x at Mortality

retirement rate λ 3% 4% 5% 6% 7% 8%

N.A. 0.00% $0.016 $0.211 $0.584 $1.064 $1.610 $2.204
55 2.48% $0.884 $1.340 $1.846 $2.391 $2.967 $3.568
65 3.67% $1.461 $1.953 $2.482 $3.039 $3.622 $4.225
70 4.75% $2.008 $2.521 $3.063 $3.629 $4.216 $4.820
75 6.48% $2.911 $3.445 $4.002 $4.576 $5.168 $5.774
80 9.37% $4.452 $5.007 $5.578 $6.162 $6.758 $7.366

Note: Investment return volatility σ = 20%.

Likewise, Tables 9.4(a)–(c) invert or “solve for” the sustainable spend-
ing rate that results in a given probability of ruin. The mathematics of this
operation are quite straightforward. One simply uses the inverse function
for the Gamma distribution applied to the relevant probability—say 5%,
10%, or 25%—under the given alpha and beta coefficients, and the result is
the maximum spending rate.

For example, if the retiree is willing to assume or “live with” a ruin prob-
ability of only 5%, which means that a 95% chance of sustainability is
desired, then the most a 65-year-old can consume under a µ = 5% as-
sumed return is $1.71 per initial nest egg of $100 (assuming 20% volatility).
On the other hand, if the retiree is willing to tolerate a 10% chance of ruin,
then the maximum consumption level increases from $1.71 to about $2.48
per $100. A retiree who can tolerate a 25% chance of ruin can consume as
much as $4.30 per $100 of capital. Of course, all these numbers are in real
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Table 9.4(c). Maximum annual spending given tolerance for
25% probability of ruin

Expected investment return µ
Age x at Mortality

retirement rate λ 3% 4% 5% 6% 7% 8%

N.A. 0.00% $0.102 $0.575 $1.213 $1.923 $2.675 $3.455
55 2.48% $1.866 $2.561 $3.288 $4.039 $4.808 $5.593
65 3.67% $2.845 $3.563 $4.304 $5.063 $5.836 $6.622
70 4.75% $3.748 $4.480 $5.229 $5.993 $6.769 $7.555
75 6.48% $5.212 $5.957 $6.715 $7.484 $8.262 $9.049
80 9.37% $7.677 $8.434 $9.201 $9.975 $10.756 $11.544

Note: Investment return volatility σ = 20%.

terms and are based on the ERG approximation and an assumption of log-
normal investment returns. But the intuition should be the same regardless
of the return-generating process or the specific law of mortality. Namely,
the higher the age and the higher the mortality rate (λ), the more the indi-
vidual can consume. Consumption can also increase with higher expected
returns and greater tolerance for increased probability of ruin.

Observe once again the strong impact of age (or health status) on the
sustainable spending rate for any given expected return and level of toler-
ance for ruin. When the mortality rate is zero—that is, when consumption
is needed perpetually—the sustainable spending rate can change (with re-
spect to consumption from age 80 until death) by more than $5 per $100,
depending on the expected return and tolerance assumptions.

Another interesting insight comes from examining the interplay between
the parameters in our formula. Reducing the fixed mortality rate λ by 100
basis points—which increases the median remaining lifetime from ln[2]/λ
to ln[2]/(λ − 0.01)—has the “probability equivalent” effect of increasing
the portfolio return by 200 basis points and increasing the portfolio vari-
ance by 100 basis points; both lead to the same statistical results. Recall that
our α, β parameter arguments in equation (9.4) can be expressed as a func-
tion of µ + 2λ and σ 2 + λ. Thus, a longer life span (i.e., a lower mortality
rate) is interchangeable with decreasing the portfolio return and portfolio
variance relative to the baseline. In aggregate, however, a longer life span
increases the probability of ruin and reduces the probability that a given
level of wealth is enough to sustain retirement spending.

Figure 9.3 provides a graphical perspective for the results in Tables 9.4
but takes a slightly different approach. It fixes a probability of ruin toler-
ance level—for example, 1%, 5%, or 10%—and then displays the minimum
initial wealth needed to support a $1-for-life consumption stream with the
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Figure 9.3

given probability. For example, if you are 70 years old and want 99% con-
fidence that you will not run out of money during retirement, then—using
precise unisex mortality rates of m = 87.8 and b = 9.5 (GoMa parameters)
rather than the ERG approximation—you must start with approximately
W0 = $40, which can be read from the vertical axis. On the other hand, if
you are content with a 95% chance of success then approximately W0 =
$25 is enough.

In the next chapter, which discusses longevity insurance and the role of
pension annuities in a retirement portfolio, you will see how these numbers
compare with the sum needed at retirement to purchase lifetime income
from an insurance company. It should come as no surprise that you will
need much less to generate the same retirement income, since you are ced-
ing control of the assets in the event of death.

Finally, it is important to stress that in the λ = 0 (infinite horizon) case
our result is not an approximation: it is a theorem that the SPV is, in fact, re-
ciprocal Gamma distributed. If you remain unconvinced that what is effec-
tively the “sum of lognormals” in equation (9.4) can converge to the inverse
of a Gamma distribution, I urge you to simulate the SPV for a reasonably
long horizon and then conduct a Kolmogorov–Smirnov (KS) goodness-of-
fit test of the inverse of these numbers against the Gamma distribution, with
the parameters given by α = (2µ+ 4λ)/(σ 2 + λ)−1 and β = (σ 2 + λ)/2.

As long as the volatility parameter σ is not too high relative to the expected



9.5 Case Study and Numerical Examples 201

Figure 9.4. Source: Copyright 2005 by the CFA Institute, Financial Analysts Journal,
Charlottesville, VA. Reprinted with permission.

return µ, we obtain convergence of the relevant integrand. Thus, it is only
in the random life span that our result is approximate, though it is correct
to within two moments of the true SPV density. To illustrate this graphi-
cally, Figure 9.4 provides a stylized illustration—under a 7% mean and 20%
volatility—of the approximation error from using the ERG formula based
on an exponential future lifetime when the true future lifetime random vari-
able is actually more complicated. Here “true” refers to the probability of
ruin obtained using numerical methods for solving the relevant partial dif-
ferential equation (PDE).

Figure 9.4 displays the retirement ruin probability (i.e., the probability
that the spending rate is not sustainable) starting at age 65 for a range of
consumption rates from $1 to $10 per original $100 nest egg. For low con-
sumption rates, the ERG formula slightly overestimates the probability of
ruin and thus gives a more pessimistic picture of the sustainability of spend-
ing. At higher consumption rates, the exact retirement ruin probability is
higher than that claimed by the approximation. Yet there is only a rela-
tively small error gap between the two curves that at worst is no more than
3%–5%. The two curves are at their closest—which implies that the ap-
proximation is at its best—when the spending rate is between $5 and $7 per
original $100, which (coincidentally) is precisely the range over which sus-
tainable spending is currently debated.
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Table 9.5. Probability of ruin for 65-year-old male
given collared portfolio under a fixed spending rate

$4 $5 $6

No downside protection 7.3% 13.7% 21.3%
−5% against +6.6% 1.5% 6.0% 16.8%
−10% against +12.8% 4.1% 9.7% 18.3%

9.6 Increased Sustainable Spending without More Risk?

Can you increase your sustainable spending rate without taking on addi-
tional risk? Believe it or not, the answer to this question is Yes. Let me
explain. A retiree who invests “too much” money in risky equity funds will
run the risk of retirement ruin if markets perform poorly during the first few
years of retirement. On the other hand, investing “too little” in the equity
fund runs the same risk of retirement ruin but this time because there is in-
sufficient portfolio growth to sustain the spending rate. It seems that you
are “damned if you do and damned if you don’t.”

However, there is a third alternative: use derivative securities to reduce
the dispersion of portfolio returns—both positive and negative—and thus
concentrate investment returns around a central value that, in most cases,
will improve the sustainability of the portfolio. For those new to the con-
cept of financial options, a derivative instrument is one whose value is based
on (derived from) the value of some underlying investment such as a stock.
Specifically, buying a call option gives an individual the right (but not the
obligation) to purchase an investment at a predetermined price, whereas
buying a put option guarantees the holder the right to sell the underlying in-
vestment at a predetermined price. Purchasing put options on a portfolio’s
assets thus guarantees a minimum return when the assets are finally sold.
Combining puts and calls in a “retirement collar” allows one to sell a call
with a strike price of Kc, for example, and then use the proceeds to pur-
chase a put with a lower strike price Kp. Hence, if the asset’s market price
falls below Kp, your loss is limited because you have the right to sell it at a
price of Kp. However, if the asset’s value increases above Kc then you will
have to sell it to the call’s holder at the Kc price, thus limiting the gains you
could have earned on the portfolio.

Table 9.5 provides an example of how this would work. Imagine that you
decide at retirement to allocate your $100 nest egg (which can arbitrarily be
scaled up or down) and to consume $4 annually from this nest egg. If all of
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Table 9.6. Probability of ruin for 65-year-old female
given collared portfolio under a fixed spending rate

$4 $5 $6

No downside protection 8.4% 15.4% 23.5%
−5% against +6.6% 1.5% 6.0% 16.8%
−10% against +12.8% 5.9% 14.1% 25.1%

the money is invested in equity-based products, then the probability of re-
tirement ruin (the probability that the standard of living is not sustainable)
is 7.3% for a male (and 8.4% for a female; see Table 9.6) using the method-
ology described earlier. However, if you purchase a 3-month put option
that is 5% out of the money—which means that the strike price is initially
$95—and if you fund this purchase by selling a call option that is 6.6% out
of the money, then the put–call combination will reduce the dispersion of
your portfolio and thus will reduce the probability of ruin to 1.5% for a male
and 2.4% for a female. Note that these scenarios ignore transaction costs
and assume that the 3-month options are rolled over upon expiration (at the
same price).

The intuition for this result is that when “very bad” investment returns
are removed or purged from future scenarios, the stochastic present value
is shifted to a lower value and so the same initial sum of money has a much
higher probability of sustaining a given standard of living.

It is important to recognize that this collar strategy of buying puts funded
by selling calls is not a free lunch. As I have demonstrated, the strategy
reduces the probability of retirement ruin by limiting the magnitude and fre-
quency of (large) negative returns, but this comes at the expense of reducing
the portfolio’s upside potential. Although the portfolio’s income will last
longer if its depletion is delayed via “collaring,” the portfolio cannot in-
crease in value as rapidly as the uncollared or unprotected portfolio.

Figure 9.5 illustrates this graphically. Starting from time t = 0, two lines
are plotted. The first (upper) line represents the expected value of wealth
E[Wt ], from time t = 0 to t = 40, assuming a 100% allocation to risky
equity that is expected to earn µ = 7% with a standard deviation of σ =
20%. The second (lower) line represents the expected value of wealth as-
suming that the 100% equity allocation is protected by a collar whose 3-
month put option is 5% out of the money. (Recall that this means the most
a portfolio can lose during any given quarter is 5%.) The put is funded by
selling a 3-month call option that is out of the money. You can see that,
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Figure 9.5

although both curves start off at a normalized value of 100, the expected
level of wealth for the uncollared portfolio is uniformly higher throughout
the 35–40-year horizon. Thus, the downside risk (variance or standard de-
viation) is reduced, but so is the upside potential.

It might seem odd that using derivative securities such as puts and calls
can have such a dramatic impact on the probability of retirement ruin. After
all, the assumed asset allocation and consumption patterns remain exactly
the same, so why is the stochastic present value of consumption so much
lower? Figure 9.6—which was created based on Monte Carlo simulations—
provides an additional perspective and yet another way to understand these
intriguing results. Recall that, according to the main formula (9.4), if a 65-
year-old male invests his entire nest egg in (risky) equities that are expected
to earn a 5% (inflation-adjusted) geometric mean return then the probability
of retirement ruin—if he consumes $7 each year—is approximately 30%.

However, my simulations indicate that if this 65-year-old male gets lucky
by earning a 10% compound annual return during his first decade of retire-
ment, then the conditional probability of retirement ruin drops from about
30% to about 7%. In other words, if I artificially force the portfolio’s invest-
ment return to be exactly 10% each year between ages 65 and 75 and then
let the investment return vary randomly for the remaining part of his life, the
probability of retirement ruin is reduced. This should come as no surprise.
If investment returns are better than anticipated, the odds of sustainability
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Figure 9.6

will be better as well. Likewise, if I force the investment return during the
first decade of retirement as being 0%, then the probability of retirement
ruin increases from 30% to about 75%. Once again, the qualitative aspects
of this result should be expected.

However, what is interesting is that, when I perform the exact same
“conditioning” for the second or third decade of retirement, the impact on
the probability of retirement ruin is much less than in the previous (first-
decade) case. Notice that fixing the compound annual return during the
second decade at 10% reduces the probability of ruin not to 7% but only to
15%; if instead the third decade’s return is set at 10%, then the ruin proba-
bility drops only to 25%. It is much better to earn an abnormally high rate
of return in the first decade of retirement than in the second or third decade.
Of course, the opposite is true of low investment returns. If you earn a 0%
compound annual return during your second decade of retirement (from age
75 to 85) then the retirement ruin probability is high at 60% but not as high
as if that 0% were earned in the first decade of retirement, for in that case
the probability of ruin would be close to 75%.

The main insight from this picture and the underlying analysis is that the
first decade of retirement is the most crucial one in determining whether your
retirement plan will be successful. Intuitively, a poor performance from the
market when you have a lot of wealth at stake has a more detrimental im-
pact overall. Thus, it makes sense that purchasing downside protection in
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the form of put options—funded by selling call options—will reduce the
probability of retirement ruin. In some sense, it is like conditioning the in-
vestment performance on a higher number, which improves the odds. The
implications of this insight go far beyond arguing the benefits of using put
options to protect a retirement portfolio. In fact, any financial or insurance
product that can create similar downside investment protection will increase
a portfolio’s sustainability.

It is easy to verify these results with a simple spreadsheet. Create a col-
umn (vector) of random investment returns representing the year-by-year
performance of a portfolio during 30 possible years of retirement. For each
sequence of 30-year investment returns, compute the (stochastic) present
value of a particular consumption stream—for example, $7 per year. Do
this a few hundred times and count the number of times the present value is
higher than your initial wealth of $100. This is your probability of retirement
ruin, assuming you die in exactly 30 years. Now, go back to the spreadsheet
and put an “IF statement” in place of the first 10 years of portfolio invest-
ment returns. Namely, if the investment return is less than a given floor (i.e.,
the strike price of the put option you purchased), force the investment return
to be the floor for that year. Likewise, if the investment return is greater than
a given ceiling (i.e., the strike price of the call you have written), force the
investment return to be the ceiling for that year. Remember that the relation-
ship between the floor (which protects your portfolio) and the ceiling (which
you have given away) should be determined in a fair economic manner. As
before, discount your consumption by this path of returns to obtain a stochas-
tic present value. Do this a few hundred times and compute the number of
times the present value is greater than your initial $100 retirement nest egg.

The results will show that your present values are lower and thus your re-
tirement ruin probability is reduced. If you then try the same exercise for
the second and third decade of retirement, the odds still improve—as shown
in the figure—but they will not be as good as when the portfolio is protected
during the first decade. In fact, in the extensive simulations I have run to-
gether with a number of my colleagues and graduate students, it seems that
the first seven years of retirement are the most critical in affecting the prob-
ability of retirement ruin.

9.7 Conclusion

A casual search on the Web reveals close to a dozen on-line calculators—
most sponsored by financial services companies—that purport to com-
pute via Monte Carlo simulations a sustainable withdrawal rate (and asset
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allocation) for retirees. A number of these calculators are plagued by opacity
in the details of their stochastic generating methodology, and most conduct
an absurdly small number of simulations when compared with the tens of
thousands needed for convergence. Moreover, the uncertainty generated by
the randomness of human life is often either ignored or merely alluded to
outside of the formal model. Indeed, the “black box” and time-consuming
nature of obtaining results do little to enhance a pedagogical understand-
ing of retirement income. The same issues are relevant in the endowment
business, where trustees and other decision makers must trade off current
spending against future growth.

The distinction between traditional Monte Carlo simulations and the ana-
lytic techniques promoted in this chapter is more than just a question of
academic tastes and techniques. For example, the Wall Street Journal—in
an article entitled “Tool Tells How Long Nest Egg Will Last” (31 August
2004)—described the benefits of analytic PDE-based solutions over Monte
Carlo simulations. Clearly, retirement income mathematics has gone main-
stream. And though Monte Carlo simulations will continue to have a legit-
imate and important role within the field of wealth management and retire-
ment planning, I believe that a simple, easy-to-use, and baseline formula
can serve as a sanity check or a calibration point for more complicated sim-
ulations. At the risk of overselling, this is akin to having a Black–Scholes
formula for the price of a call or put option: although many of the under-
lying assumptions are questionable, it still enables a deep understanding of
the embedded risk and return trade-offs and can live side-by-side with more
sophisticated option pricing models based on simulations.

For example, we can use formula (9.4) to find that a (unisex) 65-year-
old retiree who invests a portfolio in the market and expects to earn a real
(after-inflation) 7% with a volatility of 20% and who consumes $4 annu-
ally per $100 of initial portfolio value will be “ruined” 10 times out of 100.
However, if the same retiree withdraws a more aggressive $6 per $100 then
the probability of ruin increases to about 25 times out of 100. This level of
consumption is clearly not sustainable. As an upper bound, a retiree should
be spending no more than (µ−σ 2 +λ) percent of the initial nest egg, where
µ is the expected return, σ is the volatility, and λ = ln[2]/m for m a me-
dian future lifetime. This spending rate would be sustainable “on average”
but not much better.

Note that most of these numbers are in line with results from a variety
of simulation studies—for example, the widely used Ibbotson Associates
retirement wealth simulator—even though they were produced by a single
formula in a fraction of the time.
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Our hero, of course, is the (reciprocal) Gamma distribution, which should
take its rightful place beside the lognormal density in the pantheon of proba-
bility distributions that are of immediate relevance to financial practitioners
and portfolio managers. The same formula can also be used to show how
annuities reduce ruin and increase sustainability.

9.8 Further Reading

This chapter draws heavily from—and is an extended and more techni-
cal version of—Milevsky and Robinson (2005). Indeed, the question of
sustainable spending rates as they pertain to retirement pensions has been
explored by a number of authors and from various perspectives. An arti-
cle by Arnott (2004) lamented the lack of academic research on sustain-
able spending. The “simulation or bootstrap” approach was used in Ho,
Milevsky, and Robinson (1994), Bengen (1994, 1997), Khorasanee (1996),
Cooley, Hubbard, and Walz (1998), Milevsky (1998), Jarrett and String-
fellow (2000), Pye (2000, 2001), Ameriks, Veres, and Warshawsky (2001),
Albrecht and Maurer (2002), Blake, Cairns, and Dowd (2003), and Smith
and Gould (2005), among others. An alternative analytic approach (based
on the lognormal distribution) is proposed in McCabe (1999); Milevsky and
Robinson (2000) provide a more complicated moment matching technique;
and Huang, Milevsky, and Wang (2004) discuss the PDE approach to the
problem. For an extension of retirement ruin probabilities to a dynamic
model, see Browne (1999) orYoung (2004) for a deterministic horizon. For
yet another perspective on dynamic asset allocation to maximize spending
rates within the context of endowments, see Dybvig (1999). For an earlier
proof of (9.4) for zero λ, see Dufresne (1990). Finally, for a comprehensive
treatment of ruin probabilities, see Asmussen (2000).

9.9 Problems

Problem 9.1. Create a simulation spreadsheet in Excel that computes the
probability of lifetime ruin. Start the simulation at age 65. Generate 40
random (lognormal) investment returns for the next 40 years of retirement.
Generate a random future lifetime—for example, 22 years—and then com-
pute the present value of a given consumption plan under a particular real-
ization of the investment sequence. Compare the analytic approximation to
the empirical probabilities. How good (or bad) is the formula?

Problem 9.2. Assume you have just retired and are planning to spend 5%
(adjusted for inflation) of your nest egg each year. You are investing in a
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portfolio with a real expected return of µ = 7.5% and a volatility of σ =
18%. Compute the probability of retirement ruin under a median remaining
lifetime of m = 20 years and of m = 30 years.

9.10 Appendix: Derivation of the Formula

The main formula presented in this chapter connected the instantaneous
mortality rate λ, the investable asset’s expected return µ, the investable
asset’s volatility σ, and the initial spending rate 1/w to the probability of
ruin Pr[SPV ≥ w]. The formula was presented in equation (9.4) and formed
the basis of many numerical examples and case studies throughout the chap-
ter. I have argued that the formula yields a good approximation of the true
probability of ruin and that it can be used to calibrate or benchmark more
complicated simulations. In this appendix I will sketch the precise steps
that lead to this formula.

I start by assuming that the investable asset (mutual fund, index fund,
etc.) obeys the basic geometric Brownian motion model, denoted by

dSt = µSt dt + σSt dBt , S0 = 1. (9.5)

Recall from Chapter 5 that the solution to this stochastic differential equa-
tion (SDE) can be written formally as

St := e(µ−σ 2/2)t+σBt = eνt+σBt, (9.6)

where µ is the arithmetic mean and ν is the geometric mean (a.k.a. the
growth rate).

This underlying asset forms the basis of the retirement income portfolio
from which the quantity 1dt dollars is being withdrawn, continuously in
time, from an initial wealth of w. Therefore, the dynamics of the invest-
ment portfolio satisfy a related SDE:

dWt := dSt − 1dt = (µWt − 1)dt + σWt dBt , W0 = w. (9.7)

The investment portfolio Wt starts off at a value of W0 = w at time t = 0
and then fluctuates over time as per the dynamics given by (9.7). The drift
of the retirement portfolio process is µWt − 1, which differs from the drift
µSt of the investable asset itself. The investable asset St is expected to grow
over time because the expected return µ > 0, but it is quite likely that the
retirement portfolio will shrink over time—especially if µWt < 1.

The solution to the SDE for Wt can be written explicitly as

Wt = eνt+σBt

[
w −

∫ t

0
e−νt−σBt dt

]
, W0 = w; (9.8)
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by (9.6), this can be rewritten as

Wt = St

[
w −

∫ t

0
S−1

t dt

]
, W0 = w. (9.9)

To confirm that equations (9.8) and (9.9) actually do satisfy the SDE in (9.7),
you can take derivatives of either equation using the stochastic calculus (Ito)
version of a derivative.

My main objective is to compute the probability of retirement ruin, which
can be expressed mathematically as

φ(w) := Pr
[

inf
0≤s<T

Ws ≤ 0 | W0 = w
]
. (9.10)

It is the probability that the lowest value of the stochastic process Wt hits or
breaches a value of zero at some point prior to the random time of death T.

The function φ(w) is an explicit function of the initial level of retirement
wealth w, or the initial spending rate 1/w, and an implicit function of the
mortality dynamics governing T as well as the portfolio parameters µ, ν, σ.

Naturally, the greater the value of w, the lower the probability of retirement
ruin. I will prove that the probability of retirement ruin in equation (9.10)
can be expressed as the probability that a suitably defined stochastic present
value function is greater than w.

Now let us look carefully at equation (9.9) and the probability that it will
reach a value of zero. The process Wt consists of two parts multiplied by
each other. The first portion St can never be negative, since it is an expo-
nential function of Brownian motion, and so the process Wt will hit zero if
and only if the second portion equals zero. The quantity in brackets starts

off at time 0 at a value of w, since the integral
∫ t

0(S
−1
t ) dt is equal to zero

at time 0. The only way the quantity in brackets can equal zero is if the in-
tegral portion

∫ t

0(S
−1
t ) dt grows from zero to a value of w. Note that this

integral is monotonically increasing in the upper bound of integration t;
therefore, once

∫ t

0(S
−1
t ) dt exceeds w, it will never go back under w. This

means that we can rewrite the retirement ruin probability strictly in terms
of St alone:

φ(w) := Pr

[ ∫ T

0
e−νt−σBt dt ≥ w

]
. (9.11)

The integral in equation (9.11) is precisely the stochastic present value
introduced in the body of this chapter. The probability of retirement ruin
is equivalent to the probability that the SPV is greater than or equal to the
initial retirement wealth. This problem is now reduced to finding an appro-
priate probability distribution for the integral, defined by
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XT :=
∫ T

0
e−νt−σBt dt, (9.12)

where the probability of retirement ruin is:

φ(w) = 1 − Pr[XT < w]. (9.13)

Note that an explicit distribution function is not available for XT when T <

∞, but we can use moment matching techniques to locate an approximat-
ing distribution that shares the first two moments of the true distribution.

To obtain these moments, I start by defining the following intermediate
variables: ν = ν0 = µ − σ 2/2, ν1 = µ − σ 2, ν2 = µ − 3σ 2/2, and ν3 =
µ − 2σ 2; this implies that ν0 ≥ ν1 ≥ ν2 ≥ ν3. I will assume the most re-
strictive case that ν3 > 0, which in turn implies that the expected return µ

is sufficiently larger than the volatility σ ; this is required for convergence
of the SPV integral defined by (9.12). To compute moments, I switch the
integral and expectations signs, which yields

M
(1)
t := E[Xt ] =

∫ t

0
e−ν1s ds = 1 − e−ν1t

ν1
(9.14)

as the first moment of the stochastic present value (to a fixed time) and

M
(2)
t := E[X2

t ]

= 2

ν3

∫ t

0
(e−ν1s − e−2ν2 s ) ds

= 2

ν3

(
1 − e−ν1t

ν1
− 1 − e−2ν2 t

2ν2

)
(9.15)

as the second moment of the SPV (to a fixed time). The time index on
both M

(1)
t and M

(2)
t indicates that we are integrating up to time t, which

is fixed; I will return to the random horizon (where t = T ) in a moment.
Note also that, when t → ∞ and the SPV is over an infinite horizon, the
first and second moments converge to M

(1)∞ = (ν1)
−1 and M

(2)∞ = (ν1ν2)
−1

or, using the original parameters µ, σ, to M
(1)∞ = (µ − σ 2)−1 and M

(2)∞ =
((µ − σ 2)(µ − 3σ 2/2))−1.

When Pr[T > t] = e−λt, which is the exponential mortality case, the
relevant moments are

M
(1)
λ := E[Xλ] =

∫ ∞

0
e−(ν1+λ)s ds = 1

ν1 + λ
(9.16)

and
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M
(2)
λ := E[X2

λ ] = 2

ν3

∫ ∞

0
(e−(ν1+λ)s − e−(2ν2+λ)s ) ds

= 2

ν3

(
1

ν1 + λ
− 1

2ν2 + λ

)

= 2

(ν1 + λ)(2ν2 + λ)
, (9.17)

since 2ν2 − ν1 = ν3. Using the original parameters µ and σ in place of the
values ν1 and ν2 , we are left with

M
(1)
λ = 1

µ + λ − σ 2
= 1

µ̃ − σ̃ 2
, (9.18)

M
(2)
λ = 2

(µ + λ − σ 2)(2µ − 3σ 2 + λ)
= 2

(µ̃ − σ̃ 2)(2µ̃ − 3σ̃ 2)
, (9.19)

where the modified expected return and volatility variables are µ̃ := µ+2λ

and σ̃ 2 := σ 2 + λ, respectively. In sum, I have just derived the first and
second moments of the SPV under exponential mortality.

I will now choose the reciprocal Gamma distribution as our candidate for
approximating the SPV and will locate parameters α, β that match these
moments. The reason I have selected the RG distribution as the approxima-
tor is that, in the limit, the distribution of X∞ actually does converge to the
reciprocal Gamma density. See Dufresne (1990) and Milevsky (1997) for a
proof and for the references therein.

Recall that a random variable is RG distributed with parameters α, β if
the probability law for X can be written as

Pr[X < x] := β−α

�(a)

∫ x

0
y−(α+1)e(−1/yβ) dy, (9.20)

where α and β are the free parameters. The expected (mean) value or first
moment of the reciprocal Gamma distribution is E[X] = (β(α −1))−1, and
the second moment is E[X2] = (β2(α − 1)(α − 2))−1. The first two mo-
ments of the RG distribution, which are denoted generically by M(1) and
M(2), are

M(1) = 1

β(α − 1)
, M(2) = 1

β2(α − 1)(α − 2)
. (9.21)

This imposes a natural condition for the existence of the second moment—
namely, that α > 2. Equation (9.21) induces a one-to-one relationship be-
tween the parameters α, β and the moments M(1), M(2). Indeed, one can
invert the moment equations and solve for the implied α, β parameters,
which leads to
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α = 2M(2) − M(1)M(1)

M(2) − M(1)M(1)
, β = M(2) − M(1)M(1)

M(2)M(1)
. (9.22)

So, because we know the first two moments of the SPV, we can invert them
and then solve for the α, β values just displayed. The result of this moment
matching approximation is

Pr[Xλ ≤ w] = RG(α̃, β̃ | w)

:= 1 − β̃−α̃

�(α̃)

∫ w

0
x−(α̃+1)e−(1/xβ̃) dx, (9.23)

where now α̃ = 2µ̃/σ̃ 2 −1 and β̃ = σ̃ 2/2. I will pause for a moment to let
this statement sink in, since it is the basis of the approximation that I used
within the actual chapter.

For those readers who are struggling to understand the intuition behind
the lifetime ruin probability, start by thinking about what happens when
σ → 0 in the SPV defined by equation (9.4). In this case, the two RG pa-
rameters collapse to values of α̃ = 2µ/λ + 3 and β̃ = λ/2. The expected
value of the SPV is (µ + λ)−1. Now, let us use Wt to denote the wealth of
a retiree who invests and consumes $1 per year. This Wt process will obey
the ordinary differential equation (ODE)

dWt = (µWt − 1)dt, W0 = w, Wt ≥ 0, (9.24)

where µ is the arithmetic (continuously compounded) return. Without any
loss of generality, we can define this equation up to the point of ruin Wt∗ =
0. The solution to the ODE is

Wt =
{

(w − 1/µ)eµt + 1/µ if t < t∗,
0 if t ≥ t∗,

(9.25)

where t∗ is the time of ruin. This value can be obtained exactly by solving(
w − 1

µ

)
eµt + 1

µ
= 0 ⇐⇒ t∗ = 1

µ
ln

[
1

wµ − 1

]
. (9.26)

Now, if the initial value of the function /process W0 is arbitrarily set equal
to w = (λ + µ)−1, then the ruin time t∗ can be simplified to

t∗ = 1

µ
ln

[
1 + µ

λ

]
. (9.27)

Moreover, if µ = λ then the value of t∗ = ln[2]/λ, which is exactly the
median life span. In the limit as µ → 0, the ruin time is precisely the life
expectancy 1/λ because
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lim
µ→0

1

µ
ln

[
1 + µ

λ

]
= 1

λ
. (9.28)

Finally, the probability of not surviving to the point at which Wt hits zero is

1 − exp{−λt∗} = 1 − exp

{
− λ

µ
ln

[
1 + µ

λ

]}
. (9.29)

I refer the interested reader to Huang et al. (2004) for further analysis and
discussion of the robustness and accuracy of this approximation as com-
pared to one derived using a PDE-based technique.
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Longevity Insurance Revisited

10.1 To Annuitize or Not To Annuitize?

The pension plan at my university will present me with a very difficult choice
when I reach retirement. At that time I must decide whether I want to re-
ceive my benefits in the form of an immediate pension annuity (which the
university will provide for the rest of my life) or to take the money out in one
lump sum and assume the responsibility for retirement income myself. This
is an all-or-nothing decision. I can’t leave part of the money in, nor can I re-
verse my decision after I retire. If I take the pension annuity, I will never be
able to access the funds, and if I withdraw the money, I can never rejoin the
university pension plan and convert the balance into a pension annuity. So
if I take the lump-sum payout but then later want an annuity, my only option
will be to go to an established insurance company and purchase a (retail)
pension annuity directly. In this case, the price I must pay for the lifetime
income will depend on the insurance company and their pricing assump-
tions, but it will certainly provide me with less income than what I could
have received from my university pension plan because of the difference be-
tween group pricing and individual pricing. Thus, if I truly want to receive
my benefits in the form of a pension annuity, I’m much better off doing this
via my university pension plan. Hence the gut-wrenching dilemma!

This situation is obviously quite extreme and scary compared to the deci-
sion that most retirees face, but it is at the heart of prudent financial planning
toward the end of the human life cycle. Should you annuitize? This ques-
tion and its various answers are the topic of this chapter. I might be tempted
to avoid the pension annuity altogether because it is clearly irreversible,
illiquid, and nonmarketable. The funds cannot be accessed under any cir-
cumstances, regardless of whether it is needed for emergencies, a bequest,
or any other reason—unless I pay extra for a guaranteed period certain.

215
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Fixed-payout annuities also face inflation risk and the risk of locking in
a low fixed income during periods of low interest rates. This can be par-
tially alleviated through inflation or cost-of-living adjustments or through
the purchase of immediate variable payout annuities (IVA). However, some
individuals are not comfortable with the fluctuating income of IVAs. And
though the income from a life annuity would last for the rest of my life
(and possibly longer, if I purchase one with survivorship benefits), I could
instead manage and invest the money myself and create my own income
stream—that is, self-annuitize.

In earlier chapters I talked about the valuation of pension annuities and
the mathematics behind the mortality and interest rate components. In this
chapter I take a deeper look at the topic of longevity insurance and discuss
why anyone would choose to lock in an irreversible pension annuity.

10.2 Five 95-Year-Olds Playing Bridge

Let us begin our discussion of longevity insurance with a simple story that
illustrates the benefits of this concept. A 95-year-old grandmother loves
playing bridge with her four best friends on Sunday every few months. Co-
incidentally, all five of them are aged exactly 95 years, are quite healthy, and
have been retired—and playing bridge—for 30 years. Recently, the cards
have become rather tiresome, and the grandmother has decided to juice up
their activities. Last time they met, she proposed that they each place $100
on the kitchen table. “Whoever survives ’til the end of the year gets to split
the $500,” she said. “And, if you don’t make it, you forfeit the money . . . .
Oh yeah, don’t tell the kids.” Yes, this is an odd gamble, but you will see
my point in a moment.

In fact, they all thought it was an interesting idea and agreed to partici-
pate, but they felt it was risky to leave $500 on the kitchen table for a whole
year. Hence they decided to put the money in a local bank’s one-year term
deposit, paying 5% interest for the year.

So what will happen next year? Roughly speaking, there is a 20% chance
that any given member of the bridge club will die during the next year.
This, in turn, implies an 80% chance of survival. Virtually anything can
happen during the next 12 months of waiting (in fact, there are six possible
scenarios), but the odds are that, on average, four 96-year-olds will survive
to split the $525 pot at year’s end.

Note that each survivor will receive $131.25 as their total return on the
original investment of $100. The 31.25% investment return contains 5% of
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the bank’s money and a whopping 26.25% of what I call mortality credits.
These credits represent the capital and interest “lost” by the deceased and
“gained” by the survivors.

The catch, of course, is that the nonsurvivor forfeits any claim to the
funds. The beneficiaries of the deceased might be frustrated with this out-
come, but the survivors get a superior investment return. From the per-
spective of retirement planning, all five bridge players get to manage their
lifetime income risk in advance and without having to worry about what the
future will bring.

I think this story does a nice job of translating the benefits of longevity
insurance (a.k.a. pension annuities) into investment rates of return. There
is no other financial product that guarantees such high rates of return, con-
ditional on survival.

We can take this scenario one step further. What if the grandmother and
her club decided to invest the $500 in the stock market—or in some risky
NASDAQ high-tech fund—for the next year? Moreover, what happens if
this fund or subaccount collapses in value during the year and falls 20% in
value? How much will the surviving bridge players lose? Well, if you are
thinking “nothing” that is absolutely the correct answer. They divide the re-
maining $400 amongst the surviving four and so receive their original $100
back.

Such is the power of mortality credits. They subsidize losses on the down-
side and enhance gains on the upside. In fact, I would go so far as to say
that once you wrap true longevity insurance around a diversified portfolio,
the annuitant can actually afford to tolerate more financial risk.

Of course, real-world annuity contracts do not work in the way described
here. The grandmother’s policy is actually a tontine contract, which she
would have to renew each year if she wanted to continue. In fact, the sur-
viving 96-year-olds have the option to take their mortality credits and go
home. In practice, annuity contracts are for life and these credits are spread
and amortized over many years of retirement. But the basic insurance eco-
nomics underlying the contract are exactly as I have described.

In sum, pension/ life annuities provide a unique and peculiar kind of in-
surance. It is virtually the only insurance policy that people acquire and
actually hope to use! Although we are willing to pay for home insurance,
disability insurance, and car insurance, we never want to exercise or use the
policy: after all, who wants their house to burn down (or to break a leg or
crash a car)? Yet the “insurable event” underlying pension annuities is liv-
ing a long and prosperous life. Perhaps this is why the industry marketers
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Table 10.1. Algebra of fixed tontine vs.
nontontine investment

End-of-year payoff

Invesment now Alive Dead

$100 (nontontine) 100(1 + R) 100(1 + R)

$100 (tontine) 100
(1px)

(1 + R) 0

have yet to achieve much success in selling these products—they are still
accustomed to scaring us. I hope simple tales like this can help retirees and
their financial advisors understand the benefits, risks, and returns from buy-
ing longevity insurance.

10.3 The Algebra of Fixed and Variable Tontines

I will now present the mathematics behind the example of Section 10.2. My
specific objective is to measure the impact of age on the so-called mortality
credits. What if a group of 50-year-olds entered into such an arrangement?
Would the financial gains or benefits for the survivors be as high? Table 10.1
provides a general answer.

As usual, I will let (1px) denote the one-year probability of survival for
someone currently aged x. In our story, (1p95) = 80% for each of the
95-year-old females, and this is pretty close to the Gompertz–Makeham
(GoMa) values under the parameters we have been using throughout the
book. From the individual’s perspective, a $100 investment will grow to
100(1 + 0.05) = 105 at the end of one year. This will be split amongst
the surviving 80%, which leads to a gain of 105/(0.8) = 131.25 per sur-
vivor, or a one-year investment return of 31.25%. Of course, in the event
of death, the end-of-period payoff will be zero and the investment return
will be −100%. If we average the four ladies (survivors) who are getting
31.25% and the one lady (deceased) who gets −100%, we are left with ex-
actly (4(31.25) − 100)/5 = 5%, which is the 5% return from the bank.
There is no magic or sleight of hand in the algebra. The “dead” subsidize
the investment returns of the “living”; the survivors are “eating” other peo-
ple’s money.

At this point, you will notice that the same analysis can be done at any age
using the same R = 5% (effective annual) interest rate. Thus, Table 10.2
shows the mortality credits at age x = 30, 50, 60, 65, 70, 75, 80, 85, and 90.
To be precise, I will use our favorite GoMa parameters of m = 86.34 and
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Table 10.2. Investment returns from fixed tontines
given survival to year’s end

Survival Payoff Mortality credits
Age (1px)% $100

(1px)
(1 + R) 10000

(
1

(1px)
− 1
)
(1 + R)

30 99.97% $105.03 3.1 b.p.
50 99.76% $105.25 25.4 b.p.
60 99.31% $105.73 73.1 b.p.
65 98.83% $106.24 124.0 b.p.
70 98.03% $107.11 210.8 b.p.
75 96.69% $108.59 359.3 b.p.
80 94.46% $111.15 615.3 b.p.
85 90.81% $115.63 1,062.6 b.p.
90 84.94% $123.61 1,861.0 b.p.

Notes: b.p. = basis points. GoMa mortality with m = 86.34 and
b = 9.5; R = 5%.

b = 9.5 with λ = 0. Recall that, under GoMa mortality with λ = 0, the
survival probability is given by the functional form

(tpx) = exp{e(x−m)/b(1 − e t/b)}. (10.1)

In this case, Table 10.1 can be extended to the following numbers. A 50-
year-old who invests $100 in a one-year tontine will lose the entire $100 by
dying during that year. But if the 50-year-old survives to age 51 then the
$100 will grow to $105 plus an additional $0.25, which is the principal plus
interest of the (1 − 0.9976) = 0.24% who die during the year. Stated dif-
ferently, if 10,000 50-year-old investors each place $100 in a tontine fund
that earns 5% during the year, then the $1,050,000 “pot of money” will be
split amongst the 9,976 survivors and leave each with a total cash flow of
1050000/9976 = $105.25, which is 0.25% more than the 5% return. This
is a mortality credit of (approximately) 25 basis points. At age 70, the mor-
tality credit is close to 211 basis points and at age 90 it is 1,861 basis points
(see Table 10.2).

Another way to think about the results in Table 10.2 is by focusing on
those individuals who do not enter into a tontine agreement—instead allo-
cating their money to traditional investments—and still survive to the end
of the year. A 50-year-old would have to earn 25 basis points above the
“valuation rate” of 5% to be as well off as someone who purchased the
tontine. At age 75, the same (reluctant) investor who did not purchase the
tontine would have to earn 359 basis points above the valuation rate just to
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Table 10.3. Algebra of variable tontine vs.
nontontine investment

End-of-year payoff

Investment now Alive Dead

$100 (nontontine) 100(1 + X) 100(1 + X)

$100 (tontine) 100
(1px)

(1 + X) 0

keep up. At age 85 it becomes an (insurmountable)10% above the valuation
rate: the individual would have to earn a rate higher than15% just to keep up.

The same idea can be applied to variable returns. Instead of investing
$100 in a riskless deposit that earns R, the investor (i.e., the tontine group)
can place the money in a “risky fund” earning X, which is random. As-
suming that the fraction (1px) of the group survived, the total return to the
survivors at year’s end would be 100(1+X)/(1px), rather than the quantity
of 100(1 + R)/(1px) that would be applicable in the fixed case.

Table 10.3 shows the payoff matrix under the alive and dead states as a
function of whether the individual purchased a risky asset or rather a ton-
tine “wrapped around” a risky asset. If the market does well—for example,
if X = 20%—the survivors get 120/(1px). On the other hand, if the market
fares poorly (say, X = −20%) then the survivors get 80/(1px).

On a more formal level, assuming (1px) people survive to the end of the
year, the expected return from the “risky tontine” would be (1 + E[X])/
(1px) − 1, which by definition is higher than E[X] because (1px) < 1.
Likewise, the standard deviation of the return from the risky tontine condi-
tional on (1px) individuals surviving is SD[X]/(1px), which is also larger
than SD[X] itself. Note that both the mean and the standard deviation (vol-
atility) are larger. The natural question is: “Is the extra risk worth it?” In
other words, if all I care about is making sure I have enough money to last
for the rest of my natural life and if I don’t care about giving up the op-
tion of leaving a bequest, do these extra mortality credits influence my asset
allocation? The next section will answer this question.

10.4 Asset Allocation with Tontines

To understand this concept in a more rigorous manner, imagine a situation
in which you have W0 = $100 that you would like to allocate between a
“safe bonds” fund yielding an interest rate of R during the next year and a
“risky stocks” fund yielding (a random) X during the next year. Assume
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that your allocation proportion is denoted by the symbol θ, which can range
from θ = 0% to θ = 100%, allocated to the risky investment fund. In gen-
eral, if W0 denotes your initial investment or wealth, then at year’s end you
will have a total of

W1 = W0(θ(1 + X) + (1 − θ)(1 + R)). (10.2)

For example, if you allocate θ = 60% to stocks and 1− θ = 40% to bonds
and if the safe bonds fund is paying R = 5% per year, then an initial invest-
ment of W0 = 100 will become W1 = 100((0.6)(1 + 0.2) + (0.4)(1.05)) =
114.0 if the realized return from risky stocks were X = 20%. But if the real-
ized return from risky stocks were negative at X = −20% then the portfolio
would be worth W1 = 100((0.6)(1 − 0.2) + (0.4)(1.05)) = 90.0, which is
a loss of 10% in portfolio value.

Let the expected investment return from the risky stock be denoted by
E[X] = ν, the volatility or standard deviation of this return be SD[X] = σ,
and the investment return X itself be normally distributed. Then the end-
of-year portfolio value will also be normally distributed with

E[W1] = W0(θ(1 + ν) + (1 − θ)(1 + R)) (10.3)

and

SD[W1] = W0θσ. (10.4)

For instance, in the aforementioned case where R = 5% and θ = 60%,
if the risky stock satisfies ν = 11% and σ = 20% then E[W1]/W0 − 1 =
8.6% and SD[W1]/W0 = (0.6)(0.2) = 12%. Observe that I subtracted 1
from the ratio E[W1]/W0 in order to convert the total return into a rate of
return.

Now, let me examine the probability of earning a certain threshold return,
similar to the concept or shortfall risk discussed in Chapter 5. We seek

max
θ

E[W1] (10.5)

subject to the constraint that

Pr[W1 ≤ W0 ] ≤ ε. (10.6)

In other words, we are looking for the “best” value of θ such that the ex-
pected value of the portfolio at the end of the year is at its highest level—
subject to the condition that the probability of losing money is less than ε.

Note that our “objective function” E[W1] is linear in the choice variable θ
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as long as ν > R, which makes perfect sense. Intuitively, since E[X] =
ν > R by definition, our natural inclination—and the formal solution to
this problem—is to increase θ as much as possible until Pr[W1 < W0 ] =
ε exactly, which is the point at which the constraint has become binding.
We are therefore reduced to locating the largest value of θ under which
Pr[W1 < W0 ] = ε.

So let us focus on the probability of shortfall in question. Recall from
Chapter 5 that the probability of a standard normal random variable “taking
on” a value less than or equal to c is


(c) =
∫ c

−∞
1√
2π

e−z2/2 dz. (10.7)

The probability that a nonstandard normal random variable will take on a
value less than or equal to c is 
((c − ν)/σ), where ν is the mean and σ is
the standard deviation. In our case, the probability that the portfolio W1 is
worth less than its initial value W0 is




(
W0 − W0(θ(1 + ν) + (1 − θ)(1 + R))

W0θσ

)
, (10.8)

where the numerator is the difference between the initial value W0 and the
portfolio’s expected value E[W1] from equation (10.3) and where the de-
nominator is the portfolio value’s standard deviation SD[W1] from equation
(10.4). Again, we are looking for the largest value of θ—which will become
our optimum θ∗—such that the probability of shortfall is exactly equal to ε.

After some basic cancellations and simple algebra, we can invert the func-
tion 
(·) and search for the largest value of θ such that

1

θσ
−
(

1 + ν

σ
+ 1 + R

θσ
− 1 + R

σ

)
= 
−1(ε), (10.9)

where 
−1(ε) denotes the inverse of the normal cumulative distribution
function evaluated at ε. For example, a tolerance value of ε = 0.01 leads to

−1(0.01) = −2.326, while 
−1(0.10) = −1.281and obviously 
−1(0.5) =
0. All these numbers correspond to the z-value for which the “area to the
left of z” is equal to ε.

Collecting terms and simplifying further lead us to

−
(

ν − R

σ

)
− R

θσ
= 
−1(ε), (10.10)

which—by isolating the choice variable θ—finally yields
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θ∗ = R

−σ
−1(ε) − (ν − R)
. (10.11)

There are a number of technical conditions for this to work. First and fore-
most: −σ
−1(ε)− (ν −R) > 0, which means that (ν −R)/σ < −
−1(ε).

In conclusion, if I want to allocate my portfolio between a risk-free as-
set and a risky asset so that my expected portfolio return is at its highest yet
the risk of losing money is bounded by ε%, then the optimal allocation will
be θ∗ as presented in equation (10.11).

Now let me investigate the same problem when the asset allocation deci-
sion takes place within the tontines described in previous sections. In this
case the R variable is replaced by (1 + R)/(1px) − 1, the ν variable is re-
placed by (1+ν)/(1px)−1, and the standard deviation σ of the risky asset is
replaced by σ/(1px). The mathematics of the problem proceeds exactly as
before, but this time I replace the ν- and σ -values with their tontine-adjusted
numbers.

Another way to think about this is by examining the tontine-adjusted port-
folio mean and standard deviation via:

E[W tontine
1 ] = W0(θ(1 + ν) + (1 − θ)(1 + R))/(1px), (10.12)

SD[W tontine
1 ] = W0θσ/(1px). (10.13)

The optimization problem remains the same, except that the probability
constraint must now be written as:




(
W0 − W0(θ(1 + ν) + (1 − θ)(1 + R))/(1px)

W0θσ/(1px)

)
≤ ε. (10.14)

Going through similar algebra as before—and canceling the (1px) wher-
ever possible—we are left with the problem of locating the largest value of
θ such that

(1px)

θσ
−
(

1 + ν

σ
+ 1 + R

θσ
− 1 + R

σ

)
= 
−1(ε), (10.15)

which can be simplified to

(1px) − (1 + R)

θ
− (ν − R) = σ
−1(ε). (10.16)

This then leads to

θ∗∗ = R + (1 − (1px))

−σ
−1(ε) − (ν − R)
. (10.17)
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Table 10.4. Optimal portfolio mix of stocks and safe cash

Allocation to stocks

Loss θ∗∗ (age-75 θ∗∗ (age-60
tolerance θ∗ tontine) tontine)

ε = 1% 12.34% 20.51% 14.04%
ε = 5% 18.59% 30.90% 21.15%
ε = 10% 25.47% 42.33% 28.98%
ε = 20% 46.16% 76.71% 52.53%
ε = 25% 66.76% 110.95% 75.97%

Note: E[X] = 11%, SD[X] = 20%, R = 5%; (1p60) = 99.31%,
(1p75) = 96.69%; m = 86.34, b = 9.5.

The structure of equation (10.17) matches that of (10.11) except for the
numerator, where (10.17) contains an additional (1 − (1px)) term. This ad-
ditional term will become larger—and hence increase the optimal value of
θ∗∗—as the survival probability declines.

Table 10.4 provides numerical estimates of θ∗∗ and θ∗ (with and without
tontines, respectively) under a variety of loss tolerance levels ε. The main
result is the rapid increase in risk taking once the investment options are
offered within a tontine structure. For example, if all you are willing to tol-
erate is a 10% chance of losing any money by the end of the year, then with-
out a tontine you should allocate only 25.47% of your wealth to the risky
asset X; the remaining 74.53% should be placed in the risk-free R asset.
On the other hand, if you are making the exact same asset allocation deci-
sion within a tontine, the optimal allocation to the risky asset increases to
28.98% if you are 60 years old and to 42.33% if you are 75 years old. Re-
member that the older age implies a lower probability of survival (1px) and
hence a higher investment return value of (1 + ν)/(1px) − 1, even if this is
at the expense of a higher standard deviation σ/(1px).

Of course, the discussion so far—in terms of asset allocation and mor-
tality credits—has taken place within the context of a simple (and currently
unavailable) tontine insurance in which contracts are terminated and then
possibly renegotiated each year. (One has to wonder why insurers have not
yet developed the equivalent short-term annuities.) As you recall, in ex-
change for one lump sum āx , the annuitant receives a dollar of income for
the rest of his life. This stream of income consists of three parts: the return
of principal, the interest, and other people’s money (the mortality credits).
It is therefore much harder to isolate the precise value of these mortality
credits as in Table 10.2, given the multiperiod nature of the contract. In the
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next section, however, I will introduce an equivalent idea that should help
generalize the concept of mortality credits from tontines to annuities.

10.5 A First Look at Self-Annuitization

Although most of the mathematics in this book has been in the language of
continuous time, I will now deviate for a bit and perform some of the calcu-
lations in discrete time. More specifically, I will examine pension annuities
that pay out $1 at the end of the year as opposed to paying 1dt continu-
ously. The reason for working ( just briefly) in discrete time is to capture
the essence of our mortality credits in a fresh and perhaps more accessible
way.

The basic market pricing definition of a $1-per-year pension annuity in
discrete time is

ax =
∞∑
t=1

(tpx)

(1 + R)t
, (10.18)

where R denotes the effective annual valuation rate used by the insurance
company to discount cash flows and (tpx) denotes the conditional probabil-
ity that an individual aged x will attain age x + t. I am (again) ignoring all
proportional insurance loads, premium taxes, sales commissions, and dis-
tribution fees that would be added to (or multiplied by) the pure actuarial
premium when arriving at a market price for the pension annuity. Notice
that there is no bar over the ax since this is not a continuous annuity but
rather a discrete (annual) one.

Now, imagine that—instead of purchasing a pension annuity and paying
ax for the promise of $1 per year for life—the retiree decides to delay pur-
chasing the life annuity for one year (until age x + 1). Now, in order to
afford the exact same life annuity stream in one year, the annual investment
return G earned by the retiree must satisfy the following inequality:

ax(1 + G) − 1 ≥ ax+1. (10.19)

In other words, the life annuity premium at age x invested at a rate G, minus
the $1 consumption at the end of the year, must be greater than or equal to
the market price of the annuity at age x + 1. Re-arranging equation (10.19)
in terms of the portfolio investment return G, we obtain the condition for
beating the rate of return from the annuity over one year:

G ≥ ax+1

ax

+ 1

ax

− 1. (10.20)
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The right-hand side of equation (10.20) is the threshold annual investment
return necessary for what I would consider a successful deferral decision.
Now using the actuarial identity

(tpx+n) = (n+tpx)

(npx)
(10.21)

(which is true regardless of whether I am working in discrete or continuous
time—think of the definition in terms of the instantaneous force of mor-
tality curve), we can rewrite ax+1 in terms of ax and then, using (10.20),
rewrite the condition for beating the annuity’s rate of return as

G ≥ 1 + R

(1px)
− 1. (10.22)

Thus, if you can earn at least G percent, you should have enough money
to consume $1 at the end of the year and then purchase an identical annu-
ity with the remaining funds. Equation (10.22) should be recognized as the
investment return plus the “mortality credit” from the tontine, and this for-
mulation is crucial to my main thesis. The intuitive condition for beating
the multiperiod annuity is that G ≥ (1 + R)/(1px) − 1. Hence, I hope to
have succeeded in illustrating how the concept of mortality credits applies
to more than just a simple one-period tontine. In fact, the concept can be
generalized far beyond a single year. Let us now return to continuous time
by way of an intuitive example.

10.6 The Implied Longevity Yield

A 65-year-old male can convert a $100,000 lump-sum premium into a pen-
sion annuity by going to any one of the many insurance companies that offer
competitive quotes. At the time of writing, companies were quoting a pay-
out ranging from a high of $690 per month to a low of $633 per month. The
average was about $678.22 per month, and I will use this figure hereafter.
These quotes assumed he was interested in acquiring 10 years of guaran-
teed payments and that the remaining payments would continue as long as
he lived. If he wanted a longer guarantee period—or, say, payments that
continued (to his spouse) after his death—then the monthly payout would
be lower. In contrast, by settling for a shorter guarantee period he would
receive more income per month.

Recall from Section 6.9 that an annuity with a 10-year (payment certain)
guarantee has two components. The guaranteed portion is similar to a port-
folio of zero-coupon bonds. The other portion continues to make payments
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to the annuitant after the end of the payment certain period—but only if the
annuitant survives the guaranteed period.

All else being equal, a 75-year-old male could convert a $100,000 pre-
mium into a much higher monthly payment ranging from $1,002 per month
to $948 per month depending on the insurance company. In this case, the
average of the five best quotes was $975.90 per month.

Now here is my main argument. If a 75-year-old male wanted to pur-
chase a life annuity with a zero-year guarantee paying the original $678.22
per month, he would have to pay only (678/976) × 100000 = $69,396 or
roughly 70% of the original cost. The same annuity would be cheaper if
purchased later. A 65-year-old needs a $100,000 premium to generate $678
for life (with 10 years of certain payments) whereas a 75-year-old requires
only $69,396.

In the language of continuous-time mathematics, the quantity100000/ā65

(that is, the annual income generated by a $100,000 premium annuitized at
age 65) will cost (100000/ā65)ā75 at age 75, and this cost must be less than
$100,000 because ā75 < ā65.

What would happen if the 65-year-old male decided to forgo the pur-
chase of a life annuity and instead invested the $100,000, withdrawing the
same $678.22 per month for the next 10 years? This strategy is called self-
annuitization. What would be the portfolio investment return needed to
withdraw $678.22 per month and still have $69,396 at the end of 10 years
to purchase an identical annuity?

This value is known as the Implied Longevity Yield (ILY).† In our exam-
ple (for age 65), the ILY works out to 5.90% (I will demonstrate shortly
how to compute this number). So, if the 65-year-old can earn an annual re-
turn of 5.90%, he will be able to purchase the exact same life annuity at
age 75 as he could have at age 65. The equivalent calculations for a female
yield an ILY of 5.46%. In comparison, 4.73% was the applicable risk-free
rate at the time. The ILY value for males (resp. females) was approximately
117 (resp. 73) basis points above the bond yield.

How can this number be used? There are several important applications
for such a metric and thus good reasons for it to be computed and reported
on an ongoing basis. The ILY should help consumers understand (and de-
compose) exactly what they are getting when they purchase a life annuity.
In fact, one can obtain ILY values (using the same algorithm) to compare
any two ages. One might compute the ILY for someone aged 70 or 75 who

† The “Implied Longevity Yield”—and its acronym, “ILY”—are registered trademarks and
the property of CANNEX Financial Exchanges.
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Figure 10.1. Source: Copyright 2005 by CANNEX Financial Exchanges. Reprinted
with permission.

is contemplating purchasing a life annuity versus waiting to age 80 or 85.
In the same manner, consumers can compute the ILY from taking a defined
benefit pension at any age.

Resuming our standard notation, let (uāx) denote the price of a deferred
life annuity that is sold to an individual aged x and that pays $1 per an-
num for life (in continuous time) starting at time u. If the annuitant does
not survive to age x + u then the estate or beneficiaries receive nothing.
Along the same lines, recall from Chapter 6 that V(r, u) denotes the price of
a term-certain (with no mortality component) annuity paying $1 per annum
(in continuous time) for u years. For example: the cost of a life annuity
paying $5,000 per annum (10 years payment certain) and purchased by a
65-year-old is denoted by 5000(V(r,10) + (10 ā65)).

The theoretical basis of the Implied Longevity Yield metric is as follows.
We compute the internal rate of return that an x-year-old would have to
earn on the nonannuitized portfolio over the next u years in order to repli-
cate the income payout from the annuity and still be able to acquire the
same income pattern at age x + u (assuming that current pricing remains
unchanged). Figure 10.1 provides a graphical illustration of what we are
trying to compute.

To understand the analytic dynamics of self-annuitization, I begin once
again with a hypothetical retiree who has W0 dollars in marketable wealth.
If this individual were to annuitize—that is, to convert a stock of wealth W

into a lifetime flow—then she would be entitled to W/a1 per annum for life,
where a1 is shorthand for the relevant pension annuity factor at the relevant
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age. If, in contrast, the retiree decided not to purchase the life annuity and
instead self-annuitized—by investing the funds at a “fixed” rate of interest
denoted by g and consuming in continuous time at the annuity rate W/a1—
then the wealth dynamics would satisfy the ordinary differential equation

dWt =
(

gWt − W0

a1

)
dt, Wt ≥ 0. (10.23)

In words, the instantaneous change in the value of the portfolio would be
the sum of the interest gain (gWt) minus the withdrawal for consumption
purposes (W0/a1). Remember that the investment return g is assumed to
be constant (nonstochastic) over time. The solution to (10.23) is

Wt =
(

W0 − W0

ga1

)
egt + W0

ga1
, Wt ≥ 0, (10.24)

where g can always be selected so that Wt > 0 for all values of t. However,
if this investment portfolio must contain enough funds to purchase the same
exact annuity flow at age x + u, then the following relationship must hold:

W0

a1
a2 =

(
W0 − W0

ga1

)
egu + W0

ga1
, (10.25)

where a2 is shorthand for the relevant pension annuity factor at age x + u.

The intuition behind equation (10.25) is as follows. The right-hand side de-
scribes the evolution of wealth under a consumption rate of W0/a1 and an
interest rate of g. The annuity factor a2 represents the cost of acquiring “a
dollar for life” at some future age x + u. The cost of acquiring the original
life annuity flow W0/a1 at age x + u is exactly the value of the left-hand
side, (W0/a1)a2.

We are therefore searching for a value of g that equates both sides: if g

is too small then the left-hand side will be “too expensive,” but if g is too
large then the individual can afford a better annuity. Finally, dividing by
W0 and multiplying by a1, we arrive at

a2 −
(

a1 − 1

g

)
egu − 1

g
= 0. (10.26)

The value of g∗ that solves (10.26) will be the Implied Longevity Yield. It
is the rate that must be earned on nonannuitized wealth in order to be as
well-off after u years, assuming a2 is known with certainty. Just to make
sure this point is clear: we are implicitly assuming that the current pension
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annuity factor āx+u (see Section 6.8) can be used as a proxy for the (random)
future annuity factor when this person reaches age x + u. In other words,
we are assuming the pension annuity factor does not change over time.

I will now demonstrate equation (10.26) using the numerical example
presented in the previous section. A 65-year-old male is quoted an aver-
age monthly payout of $678.22 per initial premium of $100,000 with a
10-year payment certain period. The continuous-time annuity factor is ap-
proximated as 100000/(12 × 678.216) = 12.2871, which in our notation
is a1 = 12.2871 per dollar-for-life. On the same exact date, a 75-year-old
is quoted an average monthly payout of $976 per premium of $100,000
with a zero-year payment certain period. This means that it would cost the
75-year-old approximately $69,497 to purchase the same annuity that the
65-year-old would be entitled to; in this case the annuity factor is 100000/
(12 × 975.904) = 8.5391, which is a2 = 8.5391 per dollar-for-life.

We are searching for the g that the 65-year-old would have to earn on
his discretionary investment portfolio in order to beat the annuity’s return
yet still consume the exact same income on an ongoing basis. The situation
we are faced with is equation (10.26) with u = 10 years, x = 65, and g the
unknown return variable:

8.5391 −
(

12.2871 − 1

g

)
e10g − 1

g
= 0. (10.27)

The solution (which must be computed numerically or approximated using
(10.34)) is g∗ = 0.0590, which is an ILY value of 5.90%. As stated pre-
viously, the 65-year-old male would have to earn 5.90% per annum each
year for the next 10 years in order to beat the return from the annuity. Thus,
the value of the ILY on the date in question is 5.90% for males. The same
calculation can be done for females using the average payouts listed ear-
lier. In this case, a1 = 13.3706 and a2 = 9.7875 for a value of g∗ =
5.465%. Naturally, the g∗-value is lower since mortality rates are lower and
since the (expected) horizon over which the payments are being returned is
longer.

Table 10.5 provides the average monthly payout for males and females of
various ages under different guarantee periods. These figures can, in turn,
be used to calculate ILY values for a number of combinations of age and
“period certain.” Tables 10.6–10.8 illustrate once again that an annuity pay-
ing out a specified monthly income will fall in price with increasing age
and that the comparable ILY value is always higher for males than for fe-
males. Keep in mind, however, that getting a “better deal” on both annuity
factors does not guarantee that the ILY will increase.
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Table 10.5. Monthly income from immediate annuity
($100,000 premium)

Period certain

Age Gender 0-year 10-year 20-year

60 M $582 $569 $536
60 F $546 $539 $519
70 M $741 $689
70 F $674 $644
80 M $1,075
80 F $967

Note: Amounts listed are averages of best U.S. companies as
of March 2005.
Source: CANNEX financial exchanges.

Table 10.6. Cost for male of $569 monthly
from immediate annuity

Period certain

Age 0-year 10-year 20-year

60 $97,816 $100,000 $106,204
70 $76,892 $82,675
80 $52,984

Implied Longevity Yield (age x to age y)

Age 60 to age 70 5.06%
Age 70 to age 80 5.58%
Age 60 to age 80 4.97%

Notes: Amounts listed are averages of best U.S.
companies as of March 2005. For comparison,
U.S. Treasury yield curve rates are 4.38% for 10
years and 4.80% for 20 years.
Source: CANNEX financial exchanges.

There is a close relationship between these ILY values and the actuar-
ial mortality credits described earlier. To see this connection explicitly, I
analyze the simplest possible case of annuity pricing—namely, when the
valuation rate is constant at r, the force of mortality is constant at λ(x) = λ

for all ages, and all annuities are life-only with no guarantee period. In this
case, the annuity pricing equation collapses to

āx =
∫ ∞

0
e−(r+λ)s ds = 1

λ + r
(10.28)
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Table 10.7. Cost for female of $539 monthly
from immediate annuity

Period certain

Age 0-year 10-year 20-year

60 $98,712 $100,000 $103,874
70 $80,054 $83,756
80 $55,779

Implied Longevity Yield (age x to age y)

Age 60 to age 70 4.93%
Age 70 to age 80 5.18%
Age 60 to age 80 4.86%

Note: See Table 10.6 notes.
Source: CANNEX financial exchanges.

Table 10.8. Should an 80-year-old annuitize?

Period Monthly
Age Gender certain income ILY

80 M 5-year $995
7.58%

85 M 0-year $1,352
80 F 5-year $917

6.71%
85 F 0-year $1,231

Note: For comparison, U.S. Treasury yield curve rate is
4.02% for 5 years.
Source: CANNEX financial exchanges, March 2005.

regardless of the age x. Using our shorthand notation, both a1 and a2 are
therefore equal to (r + λ)−1 because exponential mortality (and a constant
mortality rate) is synonymous with no aging.

The fundamental equation for the ILY is then

1

λ + r
−
(

1

λ + r
− 1

g

)
egu − 1

g
= 0, (10.29)

whose solution is precisely g = r + λ regardless of the value of u. In other
words, the self-annuitization strategy must earn (and the ILY value must
be) at least λ above the pricing rate r in order to purchase the same annuity
income flow in the future.

In sum, under the special exponential mortality case, the ILY spread
above the pricing rate g − r is exactly the instantaneous mortality rate λ.
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Under a more general law of mortality, the relationship would not be as di-
rect and would obviously depend on the deferral period u, which is why we
consider the ILY an extension of the traditional concept of mortality credits.

Technically, we can use numerical techniques to solve for the unknown
g-value by treating the left-hand side of (10.26) as a function f(g) and
then searching for the root of f(g) = 0. We use the often-called Newton–
Raphson (NeRa) algorithm to find the appropriate g. The NeRa algorithm
is based on Taylor expansion of the function f(x) in the neighborhood of a
point x:

f(x + ε) ≈ f(x) + f ′(x)ε + f ′′(x)

2
ε2 + · · · . (10.30)

For small enough values of ε, the terms beyond f ′(x)ε are of second-order
importance and so f(x + ε) = 0 implies

ε = −f(x)

f ′(x)
. (10.31)

Thus, when we are trying to locate a value of g such that f(g) = 0, we
start with an initial g = g0 and then use the NeRa algorithm to pick the
next value of g, so that

gi+1 = gi − f(gi)

f ′(gi)
. (10.32)

We continue this process until |gi+1−gi | < ε for ε sufficiently small (which
in our case is three significant digits after the decimal point).

In fact, looking back at equation (10.26), we can approximate the expo-
nential term egu over small values of g with the quadratic form 1 + gt +
1
2 (gt)2. Using this approximation and then collecting terms, the implied
longevity yield is the value of g that solves

−( 1
2a1u

2
)
g2 + ( 1

2u2 − a1u
)
g + (a2 + u − a1) = 0. (10.33)

The solution to this quadratic equation in g is

g∗ = (u − 2a1) +√u2 + 4a1(u + 2a2 − a1)

2ua1
. (10.34)

In our earlier case (male 65), for which a1 = 12.2871 and a2 = 8.5391,
the exact value of the ILY is g∗ = 5.900% using the NeRa method. Using
(10.34), we obtain
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g∗ = (10 − 24.5742) +√100 + 49.1484(10 + 17.0782 − 12.2871)

2(10)(12.2871)
= 0.05771,

which is an ILY value of 5.771%, a mere 13 basis points lower than the true
value. Our quadratic approximation consistently underestimates the true
value of g∗ by 10–20 basis points.

10.7 Advanced-Life Delayed Annuities

Consistent with the main theme of this chapter, this section explores the fi-
nancial risk–return properties of a “concept” product known as an advanced-
life delayed annuity (ALDA). This is a variant of a pure deferred annuity
contract that is paid by installments, is linked to consumer price inflation,
and locks in longevity insurance. Reduced to its essence, the product would
be acquired at a young age—and small premiums would be paid over a long
period of time—but theALDA would not begin paying its inflation-adjusted
and life-contingent income until the annuitant reached the advanced age of
80, 85, or even 90. Figure 10.2 illustrates the timing of these cash flows.

The product would have no cash value and no survival or estate benefits,
and it could not be commuted for cash at any age. Of course, these strin-
gent design requirements might be impossible to attain in the current regu-
latory environment. But in theory these features—combined with standard
actuarial, interest, and (possibly) lapsation discounting—would reduce the
ongoing premium for this insurance to mere cents on the dollar. The ALDA
and its derivatives are closely related to a DB pension and would be in-
tended for those who don’t have a pension (or perhaps as an option within
a DC-style pension).

From a slightly different perspective, this type of product is akin to buy-
ing car, home, or health insurance with a large deductible, which is also
the optimal strategy (and common practice) when dealing with catastrophic
risk. By analogy, the ALDA’s longevity insurance would kick in only if the
longevity risk became substantial and financially unsupportable. Indeed,
the raison d’être of life-contingent annuities is the acquisition of mortality
credits, which at advanced ages are substantial and unavailable from any
competing asset class. During the early years of retirement—when most
pension decisions are made—the magnitude of these credits is quite small
once survivor benefits, insurance fees, and antiselection (i.e., annuitant vs.
population) costs are included. In contrast, the ALDA would entitle the
holder to insurance against the risk of outliving assets, but only when the
assets actually run the risk of being depleted later in life.
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Figure 10.2

I start the discussion by letting uāx :τ denote the deferred, “temporary”
pension annuity factor, which is the cost of a financial contract that pays
an inflation-adjusted, life-contingent $1 per annum from time 0 (i.e., age
x + u) to time τ (i.e., age x + u + τ); this was first introduced in Chap-
ter 6. I will suppress the symbol τ = ∞ and use āx when dealing with
a complete life annuity that pays until death. Implicit in the expression is
a real interest rate (or curve) denoted by r, and the retirement or pension
income flow is adjusted for realized inflation each year. Thus, in nominal
terms, the life annuity initially pays $1 per annum and then increases by the
realized rate of the Consumer Price Index (CPI). For most of this section,
the ALDA purchase age will range from x = 35 to x = 45 and the ALDA
commencement age will range from x + u = 65 to x + u = 85.

Specifically, the deferred pension annuity factor that we are interested
in is (uāx), which represents the net single premium at age x for a $1-per-
annum ALDA benefit:

NSP := (uāx) =
∫ ∞

u

e−rt( tpx+u) dt. (10.35)

By construction, the NSP at age x < x +u for an ALDA benefit of $1 per
annum is the annuity factor āx+u, discounted for the probability of survival
and the time value of money (TVM). Mathematically, we have

NSP = e−r(u)(āx+u)(upx), (10.36)

where the first term captures the u years of interest, the second term rep-
resents the annuity factor commencing at age x + u, and the third term is
the conditional probability that someone currently aged x will survive for u

more years. Note that equation (10.36) is consistent with the idea that there
are no payments made to beneficiaries should the primary annuitant die be-
tween the initial acquisition age x and the benefit commencement age x+u.
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Table 10.9. ALDA: Net single premium (uax) required
at age x to produce $1 of income starting at age x + u

x + u (years)

Age x 70 75 80 85

r = 3.25% (real)
35 $3.642 $2.376 $1.412 $0.731
40 $4.294 $2.802 $1.665 $0.861
45 $5.070 $3.308 $1.965 $1.017

r = 2% (real)
35 $6.346 $4.325 $2.687 $1.456
40 $7.029 $4.790 $2.976 $1.612
45 $7.796 $5.313 $3.301 $1.788

r = 1% (real)
35 $9.951 $7.013 $4.509 $2.532
40 $10.484 $7.388 $4.750 $2.667
45 $11.061 $7.795 $5.012 $2.814

Note: GoMa mortality with m = 90 and b = 9.5.
Source: Copyright 2005 by the Society of Actuaries, Schaum-
burg, IL. Reprinted with permission.

Adding a survivorship benefit would increase the NSP and reduce the ap-
peal of the product from a personal risk management perspective. Note that
some of the ALDA-like products that have recently been created by U.S. in-
surance companies for the 401k (DC pension) market contain survivorship
benefits and cashable options—for example, the ability to sell the units at
some commuted value—which completely eliminates the mortality credits
during the accumulation phase.

Note the focus on real (after-inflation) versus nominal returns in the pric-
ing and valuation of the annuity factor. The real interest rate r is implicitly
used in two places in the valuation equation. The first is to discount a single
cash flow prior to the annuity commencement date—which covers the next
u years—and the second is to price the annuity and discount the repeated
cash flows that occur after age x + u. Thus, in practice one could envision
using slightly different interest rates during the deferral versus payout pe-
riods. Indeed, one could go a step further and use a real yield curve rt as
opposed to a single interest rate, which would conform to capital market
pricing techniques.

To provide some numerical intuition for the simple valuation of the
ALDA, I offer the following example under GoMa mortality with m =
90, b = 9.5, and three different (real) valuation rates r; see Table 10.9. I
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use a slightly higher m = 90 value (compared to m = 86.34 used else-
where) to reflect the healthy nature of anyone likely to purchase the ALDA.
Thus, for example, if we start (i.e., purchase the ALDA in one lump sum)
at age x = 35 and if benefits commence at age x + u = 85, then the NSP
from (10.36) is $0.73 in current dollars. This pure deferred lifetime annu-
ity will pay $1 in inflation-adjusted terms each year, commencing at age
85, in exchange for a premium payment of less than $1 today. The $0.73
resulted from multiplying the age-85 annuity factor of ā85 = 6.679 by the
0.556 probability of survival to age 85 and then by the 0.1969 TVM factor.
Of course, the annuity factors would look quite different under different
assumed real interest rates. For instance, Table 10.9 displays the NSP of
a unisex annuity purchased at age x and given a variety of annuity com-
mencement ages x + u under a variety of different real interest rates. As
one would expect, for any given combination of x and u, the annuity fac-
tor increases as the real rate r decreases, meaning that each dollar-per-year
received after u years is more expensive to acquire initially.

For reference purposes, the assumed life expectancy at the initial purchase
age was E[T35] + 35 = 84.7, E[T40 ] + 40 = 84.8, and E[T45] + 45 =
84.9, respectively. Likewise, the implied life expectancy at the annuity com-
mencement age was 87.6, 88.9, 90.7, and 92.9 at ages 70, 75, 80, and 85,
respectively.

Payment for ALDA would not be made in one lump sum. Rather, the
annuitant would make a series of inflation-adjusted, nonrefundable, and
noncashable payments between the ages of x and x + u that would entitle
the recipient to a real $1 per annum for life commencing at age x + u. In
practice, this would be implemented by linking both the periodic premi-
ums and the benefits to the same consumer price index so that all cash flows
could be discounted using the same unit of account. I emphasize that the
pure actuarial pricing of this product would not require any assumptions
about future inflation or nominal rates. Both premiums and benefits would
be variable in nominal terms but fixed in real terms.

The NSP or (uāx) must be actuarially amortized over the u years, contin-
gent on survival. Using our previous notation and assuming no lapsation,
the net periodic premium for ALDA is

NPP = (uāx)

(āx :τ )
, (10.37)

where the numerator is the NSP and the denominator effectively spreads
these payments over the τ = u years between the initial purchase age x and
the ALDA commencement age x + u. Intuitively, for any given purchase
age x, the longer the deferral period u, the greater the annuity factor āx :τ and
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the lower the ongoing periodic premium. Similarly, as emphasized in the
earlier discussion, it is quite conceivable that the pricing interest rate r in
the denominator’s factor will differ from (be greater than) the pricing rate in
the numerator’s factor. This is because in practice a nonflat yield curve will
result in different (constant) interest rate approximations, depending on the
period that is being discounted. Regardless, each r is a real (after-inflation)
rate.

Here are some examples under the same pricing conditions considered
previously. If the initial purchase age is x = 35 and the annuity commence-
ment age is x+u = 85, then (under an r = 3.25% real interest rate) the NPP
needed to create a $1-per-annum real lifetime annuity is precisely $0.0312
per annum. In other words, a mere three cents each year—paid over a pe-
riod of 50 years—will generate an annual income flow of $1 for life (after
age 84), a factor of 32 times the ongoing premium. I can scale this quantity
up or down and declare that, for each $100 of premium per week, month,
or year, the ALDA will pay a pension of $3,200 per week, month, or year.
If instead of using ages 35 and 85 I use ages 40 and 80—while retaining the
same interest rate of r = 3.25% percent—then the NPP becomes $0.0779,
which is a factor of 12.8 times the ongoing premium. Finally, if I increase
the interest rate to r = 4% then the premium that must be paid by the
40-year-old becomes $0.061, a factor of 16.2. Table 10.10 converts the NSP
values of Table 10.9 into payout factors that are the reciprocal of the NPP.
Once again, a decreasing interest rate results in a lower income multiple, as
shown in Table 10.10 under real valuation rates of 2% and 1%.

Table 10.10 includes the extreme case in which the commencement age
is x = 90. For example, in this case a 35-year-old would receive 77.70
real dollars starting at age 90 for each real dollar paid from age 35 (when
the interest rate is 3.25%). The number would drop by more than half to
32.50 real dollars per year for life under a lower r = 1% pricing rate. Thus,
with yields on inflation-protected zero-coupon bonds (a.k.a. TIPS) in the
2%–2.5% vicinity at the time of this writing, one would expect to see mar-
ket prices for ALDAs somewhere between the lower and upper extremes of
1% and 3.25% seen in the table.

Whether or not a 35-year-old would actually persevere and pay premi-
ums for 55 years is debatable, which brings us to the topic of lapsation.
Although everyone who purchases (or starts) an ALDA likely has the full
intention of holding the product to maturity, it is unreasonable to assume
that all survivors will continue to pay premiums until the commencement
date. In fact, if the product is structured with absolutely no cash value
and/or no ability to scale down the income benefit by reducing premiums,
there is a high probability that people will (irrationally) lapse the product
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Table 10.10. ALDA income multiple: Dollars received
during retirement per dollar paid today

Age x = 70 x = 75 x = 80 x = 85 x = 90

r = 3.25% (real)
y = 35 5.6 9.2 16.1 32.0 77.7
y = 40 4.4 7.2 12.8 25.7 62.6
y = 45 3.3 5.6 10.1 20.4 49.9

r = 2% (real)
y = 35 3.9 6.2 10.5 20.2 47.3
y = 40 3.1 5.1 8.7 17.0 39.9
y = 45 2.4 4.1 7.1 14.0 33.2

r = 1% (real)
y = 35 2.9 4.5 7.6 14.3 32.5
y = 40 2.4 3.8 6.5 12.4 28.3
y = 45 1.9 3.2 5.5 10.5 24.3

Note: GoMa mortality with m = 90 and b = 9.5.
Source: Copyright 2005 by the Society of Actuaries, Schaumburg, IL.
Reprinted with permission.

prior to the benefit commencement age. As a result, this lapsation phenom-
ena must be taken into account in the original pricing.

From a pricing perspective, one can assume the existence of an instanta-
neous lapse-rate curve—which is akin to a force of mortality—that deter-
mines the probability the contract will be lapsed as a function of the number
of years since initiation. This curve will most likely start at a level close to
zero, increase as time evolves, then start to decline again as the ALDA nears
the commencement date. The psychological justification would be that, on
an aggregate level, as individuals see the payoff horizon approaching they
are less likely to become disillusioned with the product. Denoting the lapse
rate curve by η, we can define the cumulative probability of lapsing prior
to time t as

Hx(t) := Pr[Lx < t] = 1 − e−ηt. (10.38)

This is akin to the cumulative probability of death function. It is critical
to stress that, if the premium is paid in one lump sum (up front), then the
lapsation factor is irrelevant because the premium has become a sunk cost.
Finally, the lapse-adjusted net periodic premium can be defined as

[lapse-adjusted NPP] = e−ηu
∫ ∞
u

e−rt( tpx) dt∫ τ

0 e−rt( tpx)(e−ηt ) dt
. (10.39)
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Table 10.11. Lapse-adjusted ALDA income multiple

Age x = 70 x = 75 x = 80 x = 85 x = 90

r = 3.25% (real)
y = 35 8.7 15.3 29.2 63.4 168.4
y = 40 6.3 11.2 21.6 47.0 125.3
y = 45 4.4 8.1 15.7 34.5 92.3

r = 2% (real)
y = 35 5.9 10.0 18.4 38.5 98.0
y = 40 4.4 7.7 14.3 30.1 76.8
y = 45 3.3 5.8 10.9 23.2 59.5

r = 1% (real)
y = 35 4.3 7.2 12.9 26.2 64.8
y = 40 3.4 5.7 10.4 21.3 52.7
y = 45 2.6 4.4 8.2 17.0 42.4

Note: GoMa mortality with m = 90 and b = 9.5; lapse rate η = 2%.
Source: Copyright 2005 by the Society of Actuaries, Schaumburg, IL.
Reprinted with permission.

The lapsation curve will affect the periodic premium in two partially off-
setting ways: it will reduce the numerator by virtue of the smaller number
of people who will end up using the product, but it will also reduce the de-
nominator by virtue of the reduced size of the group that actually covers
(funds) the actuarial present value of the ALDA benefit. The net effect will
be a total reduction in the NPP regardless of the precise shape of the lapsa-
tion curve. Indeed, for most reasonable specifications, the premiums will
decline quite substantially. One could envision a wide range of lapsation
specifications, each leading to its own premiums. For illustrative purposes,
in the following examples I take a simpler approach—in order to demon-
strate the impact of even a small lapse rate—and display the relevant income
payout factors assuming a constant 2% lapse rate each year.

The only difference, then, between Table 10.10 and Table 10.11 is the lat-
ter’s assumption that, each year, 2% of the ALDA population ceases to
make payments (for reasons other than mortality). I emphasize again that
this is a crude approximation; actual lapsation behavior in the case of such a
product would depend on the number of years remaining until commence-
ment date as well as on other, health-related factors. Despite the simplicity,
a number of interesting facts emerge from Table 10.11. Income multiples
increase by a factor of 2–3, and this effect becomes even more pronounced
at more distant commencement dates.
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10.8 Who Incurs Mortality Risk and Investment Rate Risk?

The foregoing description and pricing mechanics are predicated on the abil-
ity of the insurance company to guarantee the pricing rate and the mortality
table. In practice, if the insurance company offering the ALDA were to earn
less than the pricing rate and/or experience mortality that was worse than
assumed, the company would obviously face the potential of severe losses.
This raises the question of whether the ALDA should have a participating
structure in which a minimal income payout factor would be guaranteed
and then, depending on investment performance and mortality experience,
the income would be increased. Indeed, this kind of arrangement—which
involves an additional level of risk sharing—is at the heart of some prod-
ucts that have recently been introduced in the North American marketplace.
Thus, for example, a commercially viable version of the ALDA would guar-
antee an implicit real rate of at least 2% applied to the Annuity 2000 mortal-
ity table and then, depending on future financial and economic conditions,
would increase benefits on a periodic basis. The extent to which this mini-
mum guarantee is calibrated would depend on a number of factors, including
the insurance company’s ability to hedge part of its mortality risk (i.e., the
risk of underestimating longevity) by using life and health insurance prod-
ucts in their portfolio with the opposite exposure.

Expanding on the topic of mortality risk considerations, the insurance
company selling an ALDA would be taking a long position in mortality
rates by fixing the life-contingent payments for up to half a century in ad-
vance. Indeed, if experienced mortality (hazard) rates were to decline to
a level that is lower than what was priced in advance—that is, if people
live longer than expected—then the insurance company could be in for sub-
stantial losses. Thus, even if the pricing assumed a very conservative (real)
interest rate and even if the reinvestment risk were mitigated by hedging
in the capital markets, it would be difficult if not impossible to avoid the
uncertainty of mortality rates.

In fact, this is not a concern just for ALDAs. Insurance companies and
reinsurers alike are concerned about guaranteeing mortality on the sale of
immediate (let alone delayed) annuities. This is due to the perceived risk that
unknown (and nonquantifiable) medical discoveries might increase human
life spans beyond currently projected mortality tables, perhaps even leav-
ing the insurance company paying annuities to infinitely lived Methuselahs.
To cover this contingency, insurance companies selling variable payout an-
nuities commonly impose an explicit mortality risk charge on a perpetual
asset basis.



242 Longevity Insurance Revisited

Some actuaries and financial economists argue that in-force life insur-
ance might serve as a hedge against this (diversifiable) risk, but others are
quick to dismiss the so-called basis risk implicit in this strategy because
the target group for each class of policy is distinct. Immediate annuities
are sold to the old, whereas life insurance is purchased by the young (for
the most part). Thus, it is plausible that an increase in population longevity
will adversely affect the liabilities of the annuity book of business but only
marginally affect the profitability of the insurance book. Furthermore, an-
other concern is that the duration and especially the lapsation characteristics
of the two liabilities are mismatched and hence cannot properly hedge each
other. Thus, it is unclear to what extent one side of the business could offset
the other, so I leave this particular issue for further research.

Yet oddly enough—and here is the main point of this section—ALDAs
might not be terribly sensitive to changes (or misestimates) in mortality as-
sumptions and hence might not pose as much longevity risk to the insurance
company as one would expect a priori. Most actuaries are familiar with the
counterintuitive argument that a book of payout annuities sold to a 35-year-
old is less exposed to mortality risk than one sold to a 75-year-old. The
former’s price or value is similar to that of a fixed-income perpetuity, where
the annuity factor is āx ≈ 1/r, while the latter is closer to a medium-term
bond. At early issue ages and for long deferral periods, the dominant con-
cern is reinvestment and interest rate risk. The same is true for ALDAs, and
I offer the following numerical example to illustrate this concept.

Assume that an insurance company has just sold an ALDA to a (unisex)
45-year-old and that the benefit pays an inflation-adjusted $10,000 per year
starting at age 90. Long-term interest rates in the market are 3% (real) and
the insurance company prices the ALDA by subtracting a profit margin of
one percentage point from the 3% to arrive at an annual premium of $301.47
per year for the next 45 years (using our Gompertz parameters without lap-
sation and an adjusted r = 2% pricing rate).

Now let us further assume that the insurance company misestimated mor-
tality and that mortality rates decline by 20% more than anticipated (or,
stated differently, that mortality improves by 20% more than what was pro-
jected at the time of sale). The 20% can be modeled as a shock to the
instantaneous force of mortality (IFM) curve, one that immediately shifts
the IFM from λx to a modified 0.8λx at all ages. This might appear sim-
plistic, but it has the desired effect. To put this in perspective, the shifting
of the mortality rate curve translates the conditional probability of survival
to age 90 from the assumed 45p45 = 37.11% to a realized 45p45 = 45.25%
for an individual who is currently 45 years old. These numbers are obtained
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under the usual methods: integrating only 80% of the Gompertz IFM curve,
evaluating the integral between zero and the survival time, and then raising
to the exponent.

If we translate this into prices under the same r = 2% (which is 3%
minus the 100-basis-point spread), then the insurance company should have
charged a $412.15 premium for the ALDA as opposed to the $301.47 per
year it is committed to. Stated differently, if we solve for the implied in-
terest rate that equates the $301.47 premium to the model price under the
modified mortality curve 0.8λx , then the insurance company’s 100-basis-
point profit spread is reduced to a mere 4.2 basis points. This should not
be surprising since a 20% improvement in experienced mortality (i.e., re-
duction in mortality rates) will obviously reduce profits. Our model simply
quantifies this intuition by converting the 20% figure into basis points.

However, the interesting fact is what happens when I do the exact same
exercise—pricing the ALDA under one mortality assumption and then im-
mediately shocking the IFM curve to a lower level—at younger issue ages.
One would think that the longer the deferral period the greater the so-called
risk to the insurance company in misestimating the true curve. It turns out
that ceteris paribus the situation is reversed, which is my main point. An
ALDA that commences paying $10,000 at age 90 requires an annual pre-
mium of $301.47 if purchased at age 45 but of only $211.50 if at age 35
(under the full curve used previously). If the company misestimates mor-
tality by the same 20% factor, with hindsight the ALDA premiums should
have been $291.13 at age 35. In other words, under the true (new) mortality
curve, the insurance company undercharged the 35-year-old by the differ-
ence between $291.13 and $211.50 per year. Hence the company is losing
$79.63 per year, relative to what they should have charged. Finally, if we
invert and solve for the implied interest rate under the shifted IFM curve,
the equivalent profit spread drops from 100 basis points to 19 basis points.
Obviously, the product is less profitable ex post, but the interesting and rel-
evant fact is that the spread has dropped by less than when the ALDA was
sold to the 45-year-old. Recall that, for the 45-year-old, the same mortal-
ity misestimate led to a 4-basis-point profit spread. There are many ways to
quantify the profitability (or lack thereof ) of an ALDA, but I interpret this
evidence to imply that a longer deferral period does not necessarily lead to
greater longevity risk for the insurance company.

Table 10.12 provides a summary of this analysis by comparing the revised
profit spread under a variety of ALDA purchase and commencement ages.
Thus, although misestimating mortality can obviously be very costly—and
should be a concern in the pricing of any life-contingent instrument—my
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Table 10.12. Profit spread (in basis points)
from sale of ALDA given mortality

misestimate of 20%

Starting age
Purchase

age 85 90

35 38.4 19.0
40 32.9 12.2
45 26.6 4.1

Notes: GoMa mortality with m = 90, b = 9.5,
and IFM = 0.8λx. For comparison, the intended
profit spread was 100 basis points.
Source: Copyright 2005 by the Society of Actu-
aries, Schaumburg, IL. Reprinted with permission.

main argument is as follows. All else being equal, an earlier ALDA pur-
chase age reduces the sensitivity to misestimating experienced mortality;
hence longer deferral periods need not translate into greater mortality risk
for the insurance company.

10.9 Further Reading

For an entertaining and in-depth history of the tontine concept, which was
invented and promoted by Lorenzo Tonti around 1650, see the monograph
by Jennings and Trout (1982). Indeed, the early tontines were similar to that
of the five grandmothers of Section 10.2. A number of countries (including
France, Holland, and England) issued tontines as a substitute for govern-
ment debt to pay for wars, revolutions, and the like. The tontines paid a
reasonably competitive interest (coupon) rate of 5%–7%; in addition, the
survivors would receive the coupon payments of the deceased. In some
cases the tontine payments were contingent on lives other than those of the
investors themselves. Clever investors such as the Genevan bankers asso-
ciation selected a group of young and healthy “names” and were able to
earn abnormal rates of return—while providing these names with the best
medical care—until the French livre collapsed from inflationary pressures.
Apparently Queen Marie Antoinette and her husband King Louis XVI were
popular names used by annuitants, and their deaths cost investors over six
million livres. Indeed, Lorenzo Tonti himself was for seven years jailed in
the infamous Bastille, but I digress.
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For those who are interested in a more recent analysis of the pros and
cons of government-issued tontines—which now live under the respect-
able name of “survivor bonds”—please see Blake and Burrows (2001) and
the references therein. The concept of the implied longevity yield (ILY)
can be traced to Milevsky (1998) and is calibrated to a database of Canadian
annuity quotes in Milevsky (2005a). The ILY can also be seen as an exten-
sion of actuarial mortality credits; see Broverman (1986) for more details.
The paper by Chen and Milevsky (2003) provides additional examples of
asset and product allocation models involving conventional assets and annu-
ities; see Reichenstein (2003) for applications of this concept. The ALDA
is explored in Milevsky (2005b), on which much of the material is based.
Finally, Warner and Pleeter (2001) describe an experiment that involves the
choice between lump-sum and annuity-based pensions. They estimate the
subjective discount rate (mentioned in a number of places throughout this
book) and find that it ranges from 15% to 20% and possibly higher depend-
ing on wealth, education, and age.

10.10 Notation

θ —the fraction of assets that are allocated to a variable tontine

−1(ε)—inverse of the normal CDF evaluated at ε

10.11 Problems

Problem 10.1. You are y = 35 years old and are contemplating the pur-
chase of a deferred pension annuity (DPA) that will start providing income
at age x = 70, assuming you survive. If you do not survive then you get
nothing. Use a standard GoMa law of mortality with m = 86.34 and b =
9.5 to compute (35 ā35) under an r = 5% valuation rate. Now assume
that—instead of buying the DPA 35 years before your expected retirement
date—you invest the sum (35 ā35) in a savings account earning a fixed de-
terministic return of g in continuous time. What value of g ensures that you
have enough money in 35 years to purchase the same exact retirement in-
come at age 70? In other words, what rate must your investment earn to
have exactly (ā70) in 35 years? Is this larger than the valuation rate r? Why
(or why not)?

Problem 10.2. Continuing with the previous problem, assume you invest
the funds (35 ā35) in the stock market, which earns a random (annualized)
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nominal return of E[g̃] = 9% with a standard deviation of SD[g̃] = 20%
per year. What is the probability you will have enough to purchase the (ā70)

annuity at age 70? What happens if mortality improves to m = 90 by the
time you purchase the annuity in 35 years? What is the probability you will
have enough to purchase the pension annuity in this case?

Problem 10.3. You are 65 years old and are considering the purchase of
a pension annuity that would provide annual income of c = 100000/ā65

starting immediately. Your alternative is to invest the $100,000 in a mutual
fund earning a random return g̃ (where E[g̃] = 9% annually and SD[g̃] =
20%) and to withdraw c each year; this is called self-annuitization. Assume
that the force of mortality is constant at λ = 3.67%. What is the probability
you will run out of money while you are still alive?
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Options within Variable Annuities

11.1 To Live and Die in VA

In this chapter I will focus on exotic options and derivative securities that are
embedded within tax-sheltered saving policies called deferred variable an-
nuities, which are distinct from the immediate variable annuities discussed
in previous chapters. In the United States, a variable annuity (VA) contract
is similar to an open-ended mutual fund (“unit trust” in the United King-
dom) except that all investment gains are tax-sheltered until the money is
withdrawn or annuitized. Moreover, a variable annuity has a unique form
of investment protection: in the event of death, the variable annuity will
pay out the greater of the account market value and the original investment
grown at a fixed rate. More recent versions of variable annuities have addi-
tional guarantees—such as living benefits—that I will discuss a bit later.

Call and put options are the building blocks of most derivative securities
and thus are at the heart of most structured products in finance. As described
in Chapter 9, a call option provides the holder with the right but not the obli-
gation to purchase (or call) an underlying security at some fixed price (the
strike price). If we let St denote the price of the underlying security at time
t, then a call option pays off

max[St − X, 0],

where X is the strike price. A put option gives the holder the right but not
the obligation to sell (or put) the underlying security at some fixed price.
The put option pays off

max[X − St , 0],

where again X is the strike (or sale) price and St is the spot price of the
underlying security at time t. An American option can be exercised at any
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Figure 11.1. Three types of puts

time t ≤ T, where T is the maturity, whereas a European option can be ex-
ercised only at maturity t = T. Obviously, the value of an American option
should be at least as much as the value of a European option since the rights
of the latter are contained within the former. See Figure 11.1.

I label the options that mature at a random time of death “Titanic” options
because they are somewhere between American- and European-style op-
tions. A famous result in financial economics is the Black–Scholes/Merton
(BSM) valuation formula for the price of a European put and call option,
which can be written as

BSP(T ) = Xe−rT
(−d2) − S0e
−kT
(−d1) (11.1)

and

BSC(T ) = S0e
−kT
(d1) − Xe−rT
(d2), (11.2)

respectively. Here 
(z) denotes the standard normal cumulative distribu-
tion function (or the “area under the curve” from negative infinity to z), k

denotes any dividends (expressed as a yield) that are paid on the underlying
security, and d1 and d2 are defined by

d1 = ln[S0/X] + (r − k + 1
2σ 2
)
T

σ
√

T
, d2 = d1 − σ

√
T . (11.3)

Often the strike price X is set equal to the original security spot price S0,
which is then arbitrarily set to S0 = 1, so the ln[S0/X] term become zero.
In other cases the strike price increases over time at a (guaranteed) rate g ≥
0. If X = egT then the put formula can be simplified to
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BSP(T ) = e(g−r)T
(−d2) − e−kT
(−d1) (11.4)

with

d1 =
(
r − k − g + 1

2σ 2
)
T

σ
√

T
, d2 = d1 − σ

√
T , (11.5)

in which case the put option value will be expressed as a percentage of the
underlying security.

Either way, the formula is based on the assumption that the underlying
security price “obeys” or satisfies the equations of (Brownian) motion spec-
ified in Chapter 5, namely, that

�Si+1

Si

=
(

ν + 1

2
σ 2 − k

)
�t + σ�N

(
0,

√
�t
)
. (11.6)

This implies that the proportional change in the value of the state variable
is equal to the sum of two terms. The first term is a deterministic increase
of µ := ν + 1

2σ 2 minus a dividend yield of k, multiplied by the incremen-
tal change in time �t. The second term is the random component. In the
continuous-time limit, (11.6) converges to the following stochastic differ-
ential equation (SDE):

dSt

St

=
(

ν + 1

2
σ 2 − k

)
dt + σdBt

= (µ − k)dt + σdBt . (11.7)

I have elaborated on the intuition behind this equation in Chapter 4. Table
11.1 provides some numerical examples for the BSM (put) formula under a
variety of maturity values t.

A quick-and-dirty explanation for “where” the valuation formula comes
from can be obtained by going through the calculus:

BSM(t) =
∫ ∞

−∞
max[X − S0e

g̃T, 0] dg̃, (11.8)

where g̃ is the normally distributed “annualized growth rate” (but assuming
that E[g̃] = r + 1

2σ 2 instead of the usual E[g̃] = µ + 1
2σ 2) and SD[g̃] =

σ/
√

T . In terms of notation, I will write E∗ [g̃] = r + 1
2σ 2 when the ex-

pectation uses µ = r and E[g̃] = µ + 1
2σ 2 when the expectation uses the

standard µ. Remember, yet again, that we replace the arithmetic mean µ

with r.
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Table 11.1. BSM put option value as a function of spot price and maturity—
Strike price = $100

Maturity t (years)
Spot
price 1 2 3 4 5 6 7

$10 $84.28 $78.89 $73.82 $69.05 $64.57 $60.35 $56.39
$20 $74.38 $69.09 $64.12 $59.46 $55.11 $51.06 $47.30
$30 $64.47 $59.29 $54.47 $50.03 $45.99 $42.33 $39.00
$40 $54.58 $49.56 $45.08 $41.15 $37.68 $34.61 $31.85
$50 $44.70 $40.13 $36.36 $33.20 $30.47 $28.07 $25.92
$60 $35.01 $31.41 $28.67 $26.41 $24.43 $22.68 $21.09
$70 $25.94 $23.81 $22.20 $20.79 $19.51 $18.31 $17.19
$80 $18.08 $17.56 $16.95 $16.27 $15.54 $14.80 $14.06
$90 $11.87 $12.65 $12.81 $12.68 $12.38 $11.99 $11.54

$100 $7.38 $8.95 $9.62 $9.87 $9.88 $9.74 $9.51
$110 $4.38 $6.24 $7.19 $7.68 $7.90 $7.94 $7.87
$120 $2.50 $4.31 $5.36 $5.98 $6.33 $6.50 $6.55
$130 $1.39 $2.96 $3.99 $4.66 $5.09 $5.34 $5.47
$140 $0.75 $2.02 $2.97 $3.65 $4.10 $4.40 $4.58
$150 $0.40 $1.37 $2.22 $2.86 $3.32 $3.64 $3.86
$160 $0.21 $0.93 $1.66 $2.25 $2.70 $3.03 $3.26
$170 $0.11 $0.63 $1.24 $1.77 $2.20 $2.53 $2.77
$180 $0.05 $0.43 $0.93 $1.40 $1.80 $2.11 $2.36
$190 $0.03 $0.29 $0.70 $1.11 $1.48 $1.78 $2.01
$200 $0.01 $0.20 $0.53 $0.89 $1.22 $1.50 $1.73

Note: Risk-free rate = 6%, dividend yield = 1%, volatility = 25%.

11.2 The Value of Paying by Installments

One of the many unique aspects of derivative securities that are embedded
within life and pension annuity products is that—in contrast to over-the-
counter and exchange-traded financial derivatives, where the option pre-
mium is paid up front—the payment for these derivatives is made in install-
ments. These installments are often structured as an asset-based fee that is
proportional to the account value itself. In other words, you don’t really
know what you will end up paying (and the company takes the risk of not
knowing what fees they will be receiving). Thus, for example, you might
pay 1% of the market value of the asset, charged and withdrawn monthly
by multiplying the account value by 0.01/12. I stress that this is quite dif-
ferent from what happens when buying a generic call or put option, where
the premium (of, say, 5% or 10% of the notional value) is paid as soon as
the contract is initiated.
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My objective in this section is to value the ongoing stream of propor-
tional insurance /derivative fees and then discount this cash flow to time 0
so I can eventually compare the present value of the benefits you receive
from these various guarantees to the present value of the costs that you pay
for them. As in the rest of the book, I will discount these fees assuming
they are paid and deducted from the account in continuous time until some
deterministic or stochastic maturity horizon. At a crude level I am trying to
address the following question: What is the discounted value of the 1% or
2% insurance fee you will be paying on your investment account—which is
currently worth $10,000, for example—during the next 5, 10, or 20 years?
On the one hand, given that we do not know exactly how this investment
account will perform over time, it should be difficult to value 1% or 2% of
a random stream. However—and here is the counterintuitive aspect of this
exercise—we can actually obtain a present value by “self-replication” argu-
ments. Moreover, the risk-neutral present value does not depend on interest
rates.

I compute the discounted value of the insurance /derivative risk charge by
treating the stochastic cash flows as a contingent claim on the underlying
account value. The insurance company can be viewed as having a long po-
sition in the continuous-flow fee derivative. The derivative remains alive as
long as the policyholder has not died or lapsed the policy. Therefore, we
can model the general risk-neutral evolution of the underlying account or
asset price via the usual

dSt = (rt − kt )St dt + σ(St , t)St dBt , S0 = 1, (11.9)

where Bt is the by-now familiar Brownian motion, rt is a (possibly sto-
chastic) interest rate (but assumed independent of St), kt is the insurance /
derivative fee, and σ(St , t) represents the (possibly stochastic) volatility of
the underlying security. The integral representation of equation (11.9) is:

St = S0 +
∫ t

0
(ru − ku)Su du +

∫ t

0
σ(Su, u)Su dBu. (11.10)

In the special case of geometric Brownian motion—which was the core
of the presentation in Chapter 5—the volatility parameter σ = σ(S, t) is
constant.

I now need to define a new “money market” investment account, which
is denoted by

Rt = exp

{∫ t

0
rs ds

}
(11.11)
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and can be viewed as the future value of one dollar that is invested at a rate
of rt . When this rate is constant the future value factor will be Rt = ert,
but when the rate is stochastic the future value will be random. The inter-
esting result—which I will soon prove—is that, regardless of how compli-
cated one makes the interest rate dynamics for rt , the expected (risk-neutral)
discounted value of the proportional fees kt will be identical!

To show this, let Kt denote the stochastic value (discounted to time 0) of
insurance /derivative fees collected until time t. By construction, we have

dKt = R−1
t ktSt dt. (11.12)

The quantity ktSt dt can be viewed as the instantaneous earnings of the in-
surance company that is charging the proportional fee of kt , while the R−1

t

factor discounts the quantity to time 0. Our main objective now is to obtain
values both for Kτ and its expectation E[Kτ ], where τ is a general stopping
time for the process St . In English: What is the present value of paying 2%
of the account value from now (time 0) until some later time τ?

By a simple chain rule, we have

d(R−1
t St ) = −rtR

−1
t St dt + R−1

t dSt

= −rtR
−1
t St dt + R−1

t (rt − kt )St dt + R−1
t σ(St , t)St dBt

= −R−1
t ktSt dt + R−1

t σ(St , t)St dBt

= −dKt + R−1
t σ(St , t)St dBt . (11.13)

Therefore, by re-arranging equation (11.13) and noting that (by definition)
R−1

0 S0 = 1, we obtain

Kτ =
∫ τ

0
dKt = −

∫ τ

0
d(R−1

t St ) +
∫ τ

0
R−1

t σ(St , t)St dBt

= 1 − R−1
τ Sτ +

∫ τ

0
R−1

t σ(St , t)St dBt . (11.14)

So the discounted value of the insurance /derivative fee up to a stopping
time τ is 1 − R−1

τ Sτ plus an integral term whose expectation is zero. This
implies that

E[Kτ ] = 1 − E[R−1
τ Sτ ]. (11.15)

In specific cases, equation (11.14) can be solved to provide the entire distri-
bution of the discounted value of fees. More importantly, equation (11.15)
can be easily applied to a variety of stochastic maturities. Here are some
examples of different maturities.
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If τ is deterministic, rt = r, σ(St , t) = σ, and kt = k, then the stochastic
differential equation in (11.9) can be solved to yield

St = exp
{(

r − k − 1
2σ 2
)
τ + σBτ

}; (11.16)

hence (11.15) can be simplified to

E[Kτ ] = 1 − E
[
exp
{(−k − 1

2σ 2
)
τ + σBτ

}] = 1 − e−kτ. (11.17)

Notice that the interest rate r and the volatility σ drop out of equation (11.17),
so that the risk-neutral expected discounted value of fees is invariant with
respect to both parameters. For example, an insurance risk charge of k =
0.02 (2%) with τ = 20 yields E[K20 ] = 0.329, which implies that an in-
vestor with a 20-year horizon is implicitly paying 33% of the initial account
value. In contrast, if k = 0.002 (20 basis points) then E[K20 ] = 0.039,
which is less than 4% of the initial account value.

If τ is stochastic but independent of St , equation (11.15) leads to expecta-
tions with respect to both random variables. In many cases τ = Tx , where
Tx is the remaining lifetime random variable with probability density func-
tion fx(t). Once again, with rt = r, σ(St , t) = σ, and kt = k, we condition
on age x to obtain

Ex[KTx
] = 1 − Ex

[
exp
{(−k − 1

2σ 2
)
Tx + σBTx

}]
= 1 − Ex

[
E
[
exp
{(−k − 1

2σ 2
)
Tx + σBTx

} | T = t
]]

= 1 − Ex[e−kT ] = 1 −
∫ ∞

0
e−ktfx(t) dt, (11.18)

which some readers might identify as (1minus) the Laplace transform of the
remaining lifetime random variable evaluated at k. In fact, when fx(t) =
λe−λt, which is the exponential remaining lifetime, (11.18) leads to

Eλ[KT ] = 1 − λ

∫ ∞

0
e−(k+λ)t dt = k

λ + k
. (11.19)

The λ subscript replaces the current age (x) as the “conditioning” variable.
For a 65-year-old with an expected future lifetime of Eλ[T ] = λ−1 = 20
years, using k = 0.02 as a proportional asset-based insurance /derivative
fee leads to a present value of Eλ[KT ] = 0.2857, or about 28% of the initial
account value. But if k = 0.002 then Eλ[KT ] = 0.038, which is less than
4% of the account value. Notice that both values are strictly lower than (a
naïve application of ) 1− ek/λ. This is a consequence of Jensen’s inequality,
according to which 1 − Eλ[e−kT ] < 1 − ekEλ[T ].
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Table 11.2. Discounted value of fees

Time (years)

Charge k 10 20 30

25 b.p. 2.47% 4.87% 7.22%
50 b.p. 4.87% 9.51% 13.92%

150 b.p. 13.92% 25.92% 36.23%

Notes: b.p. = basis points. Interest rates, expected
returns, and volatility are irrelevant.

Finally, under the more realistic GoMa specification of the function fx(t),
by (11.18) we have

Ex[KT ] = 1 −
∫ ∞

0
e−ktfx(t) dt

= kb�(−bk, bλ(x)e−(m−x)k+bλ(x)), (11.20)

where λ(x) = GoMa force of mortality at age x and �(a, b) is the incom-
plete Gamma function (see Chapter 3). The quantity 1 − Ex[KT ] can also
be identified as the net single premium for a life insurance policy under a
force of interest k and future lifetime density fx(t).

The reader should now have a collection of formulas that can be used to
compute the (risk-neutral) present value of a random series of cash flows
that result from charging k% of the account value in continuous time. This
is what you pay for living and death benefits.

The key insight, once again, is that equation (11.17) does not contain any
mention of the interest rate in the market. This is most counterintuitive.
Normally one expects that some sort of interest rate or term structure is
needed to arrive at the present discounted value of cash flows. However,
when these cash flows are stated in proportional terms of an account value,
the discounted value is no longer a function of the interest rate.

Table 11.2 should make this point clearly; it displays the result of paying
proportional fees of 25, 50, and 150 basis points on an investment account
for the next 10, 20, and 30 years. According to the table, if you plan to invest
$100 in a variable annuity (or in any investment account, for that matter)
for the next 20 years and if the company holding the funds charges 50 basis
points per year, then the discounted value of this fee at time 0 is 9.51% of the
current value of the account, or $9.51. If the fee charged is 150 basis points,
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then the discounted value of this fee during the next 20 years is 25.92% of
the account.

Some readers might wonder how I can make this assertion without any
consideration of interest rates or projected growth rates for the account.
This is a legitimate concern, and let me offer the following numerical ex-
ample to explain. Imagine that Mr. Pay invests $100 for the next 20 years
in a portfolio that is charging 150 basis points per year while Mrs. Free in-
vests $74.08 in an identical investment portfolio that does not charge any
management fee. Mrs. Fee starts off with much less than Mr. Pay, yet both
are invested in the same underlying financial instruments. After 20 years,
Mrs. Free’s portfolio grows to a random 74.08eg20, while Mr. Pay’s port-
folio grows to a random 100eg20−(0.015)20, where the extra (0.015)20 in the
exponent denotes the 150 basis points subtracted in management fees. Ob-
serve that 100e−(0.015)20 = 74.08182, whence you can confirm that Mr. Pay
and Mrs. Free have the exact same amount of money after 20 years even
though Mr. Pay started off with much more. This is precisely why it is jus-
tifiable to say that the present value of 150 basis points for the next 20 years
is (100 − 74.08) = 25.92%, regardless of interest rates or growth rates.

11.3 A Simple Guaranteed Minimum Accumulation Benefit

Returning now to the topic of guarantees inside variable annuities: one type
of guarantee that is commonly selected when purchasing a VA is the guaran-
teed minimum accumulation benefit (GMAB). In a simple scenario, assume
that today (t = 0) you invest $1 in a variable annuity. The random market
value of the VA at maturity is

ST = S0e
g̃T, (11.21)

where g̃ is the random annualized return during time [0, T ]. The guaran-
teed minimum accumulation benefit is then

S ∗
T = max[ST , S0e

gT ] (11.22)

= ST + max[0, S0e
gT − ST ], (11.23)

where g is a guaranteed growth rate. The GMAB is equivalent to a long
position in the asset supporting the VA plus a put option struck at the ini-
tial investment level plus the minimal interest guarantee. This put can be
valued using the BSM formula from Section 11.1.
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Table 11.3. Annual fee (in basis points) needed to
hedge the death benefit—Female

Type of death benefita

Age Money-back 5% roll-up Look-back

30 0.30 1.77 15.10
40 0.80 4.45 18.90
50 2.00 10.84 24.60
60 5.00 21.60 32.80
65 7.60 22.50 36.10

a Based on maturity at x = 75 years.
Note: GoMa mortality based on Tables 3.6 and 3.7; r = 6%,
σ = 20%.

11.4 The Guaranteed Minimum Death Benefit

Next we examine the principal protection offered to beneficiaries upon
the policyholder’s death—namely, the guaranteed minimum death bene-
fit (GMDB). In order to determine the value of this embedded option, I
must first state that the no-arbitrage value of a put option that matures at a
random time Tx is

E[E[max[S0e
gT − S0e

g̃T, 0] | T ]]. (11.24)

This is equivalent to

�x =
∫ τ

0
fx(t) BSP(t) dt, (11.25)

where τ is the termination date of the VA death benefit guarantee. Note that
fx(t) is the probability density function of the time of death and BSP(t) is
the Black–Scholes/Merton put formula. Finally, we locate a value of k in
equation (11.18) such that E[KTx

] = �x.

When purchasing an annuity contract, one would typically be faced with a
choice of different death benefit types; Table11.3 displays several numerical
examples. A 60-year-old female who purchases an annuity contract is en-
titled to a basic “money-back” guaranteed death benefit, where all invested
funds would be returned to her beneficiaries in the event of her death. Under
the usual GoMa parameters from Chapter 3, the annual fee that should be
paid to the company for offering this option is 5 basis points. Alternatively,
she may choose an enhanced death benefit with a 5% “roll-up,” where the
death benefit is guaranteed to consist of at least the original premium paid,
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Table 11.4. Annual fee (in basis points) needed to
hedge the death benefit—Male

Type of death benefita

Age Money-back 5% roll-up Look-back

30 0.40 3.24 25.00
40 1.30 7.96 31.60
50 3.50 19.20 41.80
60 8.70 37.50 56.40
65 13.00 39.30 62.50

a Based on maturity at x = 75 years.
Note: GoMa mortality based on Tables 3.6 and 3.7; r = 6%,
σ = 20%.

grown by an annual rate of 5%. In this case, her fee would rise to 21.6 basis
points. Finally, in this example she may actually prefer a “look-back” op-
tion, where the payout to her beneficiaries would depend on the highest
account value of past contract “anniversaries.” This is the most valuable
option, for which she must pay 32.8 basis points per year. Of course, the
older the individual purchasing the annuity the more she must pay for the
guarantee, since she has fewer remaining lifetime years to compensate the
company for the option.

Table 11.4 displays comparable values for a male annuitant. Although
our observations concerning the previous table still apply, mortality differ-
ences result in the male paying more than the female for the same guarantee.

11.5 Special Case: Exponential Mortality

For general mortality it is very difficult to obtain a closed-form solution for
the GMDB option expressed in equation (11.25). However, when Tx is ex-
ponentially distributed (so that fx(t) = λe−λt ), we have

�x = λ

2(r − g + λ)

(
1 − b2√

b2
2 + 2(r − g + λ)

)

− λ

2(k + λ)

(
1 − b1√

b2
1 + 2(k + λ)

)
, (11.26)

where

b1 = r − g − k + 1
2σ 2

σ
, b2 = r − g − k − 1

2σ 2

σ
. (11.27)
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Figure 11.2

Equation (11.26) is the analogue of the BSM equation for the value of a put
option, with the option’s maturity now at a random (exponentially distrib-
uted) time T instead of at a fixed (deterministic) time T. The equation itself
involves all the usual suspects from option pricing: the risk-free (valuation)
rate r, the underlying security’s investment volatility σ, the growth rate of
the strike price g, the continuous insurance fees k, and the instantaneous
mortality rate λ. The constants b1 and b2 are used as shorthand notation to
simplify the main formula. Note that the subscript x in �x indicates that the
Titanic put option value is dependent on the purchaser’s age—though only
to the extent that the instantaneous force of mortality λ is higher or lower.

To better understand the intuition and properties of the Titanic option
value �x under exponential mortality—as defined by equation (11.26)—I
offer Figure 11.2. It displays the price of a Titanic option that expires or
matures at a random time Tx as compared to a generic European-style put
option that matures at a deterministic time T.

Both options give the holder the right (but not the obligation) to sell an
underlying security—that is currently trading for $100—at a fixed price of
$100. This is an at-the-money put option in a 25% volatility environment,
with a dividend yield (insurance fee) of 1.2% and a valuation rate of 6%.
Using the symbols in equation (11.16), we have σ = 0.25, r = 0.06, k =
0.012, and g = 0, since the strike price does not change over time.
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The law of mortality governing the Titanic put option gives us Pr[Tx > t] =
e−λt, which implies that E[Tx] = 1/λ. In the same figure, the European-
style put option is constructed so that T = 1/λ as well. In other words,
the Titanic option is expected to mature at 1/λ whereas the European-style
(vanilla) put option will mature at time T = 1/λ. For example: a European-
style put option that matures in 3 years is worth approximately 9.7% of the
underlying security value, whereas a Titanic put option—which is expected
to mature in E[Tx] = 3 years under a λ = 1/3 mortality rate—is worth only
8.11% on the underlying security. As the graph illustrates, the European-
style option is worth more. In fact, when T = 5 years, the European-style
put is worth approximately10% of the underlying account value whereas the
Titanic option (with mortality rate λ = 1/5) is worth only 8.3%. Note the
hump-shaped structure of the option value as a function of T (and of E[Tx]).
As the (expected) maturity horizon increases from zero to approximately
four years, the option value increases. Then, as the horizon increases, both
option values decline toward zero. The European put’s value declines more
rapidly than the Titanic put’s.

The intuition for this result is as follows. First, a European-style put op-
tion that promises only to return your $100 at maturity should not be worth
much if that maturity is 30 or 40 years from now. In contrast, the Titanic
option can be viewed as a weighted average—see equation (11.15)—of the
generic option value. The weighting is exponential, so some (small) weight
is attached to the long horizon and some (larger) weight is attached to the
short horizon. Add all these weights up and you should get the total picture.
At a crude approximation, a Titanic option that matures in 5 years on aver-
age is the weighted average of a European option that matures in 1, 2, 3, . . .
years.

If r = g and k = 0, then the basic formula in (11.26) further collapses to

�x = 1√
1 + 8λ/σ 2

. (11.28)

This represents the case where the risk-free valuation rate is precisely equal
to the rate at which the strike price is increasing over time. Thus, if r = 5%
then the Titanic put option is assumed to have a strike price of $1 at time
zero, of $1e0.05 at time t = 1, of $1e(0.05)2 at time t = 2, and so on. The
owner of a Titanic put option can sell (put) the investments back to the in-
surance company at progressively higher values, which are determined by
the valuation rate r. Guaranteeing a risk-free return might sound too good
to be true, but you must wait until death to “cash in.” And, if λ = 0 and the
holder never dies, �x = 1.



262 Options within Variable Annuities

Table 11.5. Value of exponential Titanic option

Volatility σ

Mortality 5% 10% 15% 20% 25% 30%

λ = 2% 12.40% 24.25% 35.11% 44.72% 53.00% 60.00%
λ = 4% 8.80% 17.41% 25.63% 33.33% 40.42% 46.85%
λ = 6% 7.20% 14.29% 21.16% 27.74% 33.94% 39.74%
λ = 8% 6.24% 12.40% 18.43% 24.25% 29.83% 35.11%
λ = 10% 5.58% 11.11% 16.54% 21.82% 26.92% 31.80%
λ = 12% 5.10% 10.15% 15.13% 20.00% 24.72% 29.28%
λ = 14% 4.72% 9.41% 14.03% 18.57% 22.99% 27.27%
λ = 16% 4.42% 8.80% 13.14% 17.41% 21.58% 25.63%

Notes: r = g, k = 0. Value given as percentage of initial account value.

Using equation (11.28), Table 11.5 illustrates how the value of the expo-
nential Titanic option is affected by varying values of λ and σ. As you can
see, when λ is held constant, the value of the option increases with a grow-
ing volatility. Conversely, for any constant σ, the option decreases in value
as λ increases. Thus, for instance, an x-year-old individual with an expected
remaining lifetime of E[T ] = 10 (which implies a λ = 10% mortality rate)
who invests in a collection of mutual funds with a risk-free rate-of-return
guarantee at death has an option that is “worth” $21.82 for each $100 invest-
ment. This assumes a portfolio volatility of σ = 20%, which is reasonable
for equity-based portfolios.

11.6 The Guaranteed Minimum Withdrawal Benefit

Another type of guarantee that has become very popular lately is the guaran-
teed minimum withdrawal benefit (GMWB), which is available as a “rider”
to a VA policy. The GMWB rider promises to pay an annual dividend of G

dollars per $100 of original investment, regardless of how the actual account
performs. (Recall that the investments within the variable annuity account
can move up and down depending on actual market performance.) Further-
more, this dividend or payment of G per year will continue until the entire
$100 has been returned to the policyholder. So even if the VA account value
collapses from $100 to nothing (say) one day after the policy is acquired,
the insurance company guarantees to continue making payments of G per
year until the $100 has been “paid back.” Of course, as with any other VA
policy, the contract holder can surrender or lapse the policy and receive the
market value (minus any surrender charges).
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Here is the mathematics of how to understand this unique guarantee. Let
Wt denote the market value of the underlying variable annuity at any future
time t ≥ 0, with an arbitrary (but innocuous) assumption that W0 = 100
dollars. Under a typical GMWB structure, the policyholder is guaranteed
to be able to withdraw at most G = 7 dollars per annum. The guarantee re-
mains in effect until the entire $100 has been disbursed, which is a period of
at least 100/7 = 14.28 years. Even in the extreme scenario where the initial
W0 = 100 collapses to a zero value one day after the policy is purchased,
the investor will be made whole—albeit over an extended period of 14.28
years. Of course, in any year the policyholder may withdraw an amount
of less than G = 7 dollars, which would extend the life of the guarantee;
conversely, withdrawing an amount greater than G = 7 dollars would re-
duce the value and life of the guarantee. I shall proceed by assuming the
policyholder withdraws no more and no less than the G = 7 dollars per
annum; this is called the passive or static approach. Most (if not all) insur-
ance companies assume this type of behavior on the part of policyholders.

Following the same setup as before, I assume that the actual dynamics
of the assets underlying the VA policy (i.e., prior to deduction of any insur-
ance fees) obeys the basic stochastic differential equation

dSt = µSt dt + σSt dBt . (11.29)

The value Wt of the VA subaccount incorporates two additional effects: pro-
portional insurance fees and withdrawals. The account value satisfies

dWt = (µ − k)Wt dt − Gdt + σWt dBt , (11.30)

at least while Wt > 0. If the account value Wt ever reaches zero, it remains
there. That is: equation (11.30) holds for t < τ0, and Wt = 0 for t ≥ τ0.

The solution to the SDE (11.30) can be written as

WT = exp
{(

µ − k − 1
2σ 2
)
T + σBT

}
× max

[
0,

(
W0 − G

∫ T

0
exp
{−(µ − k − 1

2σ 2
)
t − σBt

}
dt

)]
.

(11.31)

The first thing to note about the dynamics in equations (11.30) and (11.31)
is that—since G > 0, which means that the process includes forced con-
sumption of some dollar(s)—the value of Wt can in fact hit zero at some
point t > 0. As soon as the integral term in (11.31) exceeds W0/G, the quan-
tity within brackets will become negative. This is in contrast to a standard



264 Options within Variable Annuities

geometric Brownian motion, which is the term multiplying the bracketed
portion of (11.31) that can never hit zero in finite time. The guaranteed abil-
ity to withdraw G per annum until time T = W0/G is of value if and only
if the process Wt hits zero prior to T. Indeed, for those sample paths for
which the ruin time occurs after T, the insurance option has a zero payout
because the minimum withdrawal would have been satisfied endogenously,
even without an explicit guarantee provided by the insurance company.

Given the importance of the ruin time in the classification and under-
standing of this financial guarantee, here I introduce an expression for the
probability of ruin of the process Wt within the time period [0, t]:

Pr
[

inf
0≤s≤t

Ws = 0
]

= Pr

[ ∫ t

0
exp
{−(µ − α − 1

2σ 2
)
s − σBs

}
ds ≥ W0

G

]

= Pr

[
Xt ≥ W0

G

]
, (11.32)

where the new term Xt is defined as equal to the integral in the middle
of (11.32). Note the analogy between the probability of ruin and the inte-
gral of the (inverse) of the geometric Brownian motion. This is yet another
manifestation of the stochastic present value, which was at the core of our
approximations in Chapter 9. As mentioned in the appendix of that chap-
ter, the seemingly counterintuitive relationship between the infimum of a
process and the integral of an exponential Brownian motion follows because
equation (11.31) cannot reach zero until the integral Xt exceeds W0/G. Note
also that Xt is monotonically increasing in t. Thus, once Xt exceeds W0/G

we have Wt = 0, and it can never recover and go back above zero. It is
quite easy to demonstrate that the probability of ruin is increasing in the
withdrawal rate G and likewise that, the greater the time t, the higher the
probability of ruin.

Assume the arithmetic average return (after money management fees but
before insurance guarantee fees) is expected to be µ = 9% per annum with
a historical market volatility of σ = 18%. Also, we let the insurance fee for
this particular GMWB rider be set to k = 0.40% per annum, which is con-
sistent with current market pricing for these products. In this case, while
Wt > 0 the parameterized dynamics of the investment is

dWt = ((0.086)Wt − 7)dt + 0.18Wt dBt , W0 = 100. (11.33)

Using numerical methods to obtain the ruin probability during the first T =
14.28 years yields a ruin probability of 11.7% (see Section 11.7 for refer-
ences). In other words, there is approximately an 88.3% chance that the
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Table 11.6. GMWB payoff and the probability of ruin
within 14.28 years

Expected return µ of subaccounts

Volatility σ 4% 6% 8% 10% 12%

10% 19.0% 7.0% 1.7% 0.3% 0.04%
15% 31.4% 18.5% 9.3% 4.1% 1.60%
18% 37.8% 25.5% 15.5% 8.6% 4.40%
25% 49.9% 39.6% 30.5% 22.2% 15.50%

Note: k = 40-basis-point fee.

policy will survive to the end of the guaranteed horizon even if the policy-
holder withdraws the maximum allowable amount each year. But if we
increase the investment return volatility to σ = 25% per annum, the ruin
probability increases to 26.2%. If we reduce the expected (arithmetic av-
erage) return to µ = 6% and maintain a high σ = 25% volatility then the
probability of ruin increases to 39.9%; these are clearly nontrivial amounts.
Table11.6 displays the probabilities under various risk–return combinations.

Observe that, if the expected investment return is increased to µ = 12%
with a volatility of σ = 10%, then the probability that the withdrawals of
G = 7 dollars per annum will actually exhaust (ruin) the policy prior to
time T = 14.28 is less than half of a percent. Thus, an overly optimistic in-
surance actuary focused on real-world payout probabilities risks ignoring
this event altogether.

In any case, the probability of ex ante guarantee usage ranges from 0.5%
to 50%, depending on our assumptions about asset characteristics and re-
turns, and these usage probabilities will affect the setting of traditional in-
surance reserves. The relevant question to a financial economist interested
in the fair value of liabilities is: How much does it cost the insurance com-
pany to hedge this guarantee in the capital market?

I now illustrate how to bifurcate the product into a collection of strip
bonds (or a term-certain annuity) and a complex option in the form of a so-
called Quanto Asian put (QAP). Note that by definition T = W0/G (since
the product terminates or matures when all the funds have been returned),
so (11.31) can be written as

WT = W0 exp
{(

µ − k − 1
2σ 2
)
T + σBT

}
× max

[
0,

(
1 − 1

T

∫ T

0
exp
{−(µ − k − 1

2σ 2
)
s − σBs

}
ds

)]
;
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here the

[QAP option payoff ] := WT , (11.34)

since the holder of the variable annuity policy is guaranteed to receive any
remaining funds in the account at time T = W0/G. Remember that the
policyholder is also entitled to the periodic income flow in addition to the
(possibly zero) maturity value of the account. The maturity value of the
periodic income is

G

∫ T

0
ert dt = G

r
(erT − 1). (11.35)

The no-arbitrage, time-0 present value of the GMWB cash-flow package is
therefore

e−rTE∗ [WT ] + G

r
(1 − e−rT ), (11.36)

where E∗ [·] denotes the expectation under the option pricing measure, for
which the real-world drift µ is replaced by the risk-free rate r .

Finally, for the GMWB to be fairly priced, at inception we must have that
the amount invested in the product W0 is equal to the value of the cash-flow
package, where T = W0/G:

W0 = e−rTE∗ [WT ] + G

r
(1 − e−rT ). (11.37)

Equation (11.37) is one of our main results. It states that, for the product
to be fairly structured, the initial purchase price must equal the cost of the
term-certain annuity plus the exotic option. For any given (r, σ) pair we
can locate the (k, G) curve across which the product is fairly priced, and
this implies the equality of (11.37).

I further claim that the option component is effectively a Quanto Asian
put defined on the inverse of the account price process. To see this, define
a new (reciprocal) process as follows:

Yt = S−1
t = exp

{−(r − k − 1
2σ 2
)
t − σBt

}
, Y0 = 1. (11.38)

One can think of Yt as the number of VA subaccount units that one dollar
can buy, similar to the number of euros or yen that one dollar can purchase
in the currency market. The inverse, St = Y−1

t , is the value of one VA sub-
account unit in dollars, analogous to the price of one euro or one yen in U.S.
dollars. Now let

AT := 1

T

∫ T

0
Yt dt, (11.39)
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which is an average of the reciprocal account value. The payoff from this
option at maturity can now be written as

[QAP option payoff ] := W0
max[1 − AT , 0]

YT

. (11.40)

This represents W0 units of a Quanto (fixed-strike) Asian put option. In
sum, scaling everything by the initial premium, a fairly priced product at
inception implies the relationship

e−rTE∗
[

max[1 − AT , 0]

YT

]
+ G

r
(1 − e−rT ) = 1. (11.41)

Given values of the other parameters, the fair insurance fee k can be ob-
tained by solving this equation.

Thus, our main qualitative insight is that, under a static perspective, this
product can be decomposed into the following items:

1. a term-certain annuity paying G per annum for a period of T = W0/G

years; plus
2. a Quanto Asian put on the aforementioned reciprocal variable annuity

account.

For example: with an initial deposit of W0 = $100, a guaranteed withdrawal
amount of G = 7 dollars per annum, and an interest rate of r = 0.06, the
time-0 cost of the term-certain annuity component is $67.15. The remaining
$32.85 would be used to purchase the option, and k is determined so that
this represents the fair option value. One can think of a VA with a GMWB
as consisting of 67% term-certain annuity and 32% QAP option. In con-
trast, at a (lower) interest rate of r = 0.05, the cost of the term-certain
annuity would be (a higher) $71.46 and only $28.54 would be used to pur-
chase the required option.

Table 11.7 displays the required insurance fee that would lead to equality
in equation (11.36) or (11.41) under a number of different volatility values.
Note the fixed-point nature of the problem. Once the volatility σ, interest
rate r, and guarantee rate G have been selected, we must numerically search
for a fee value k that yields equality in (11.41). We price the QAP option
using techniques referenced in Section 11.7. For example, if the VA guar-
antees a 7% withdrawal and if the pricing volatility is σ = 20%, then the
fair insurance fee would be approximately k = 73 basis points of assets
per annum. Stated differently, a financial package that includes a stream
of $7-per-annum income (in continuous time) plus a Quanto Asian put that
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Table 11.7. Impact of GMWB rate and
subaccount volatility on required fee k

Investment volatilityGuarantee Maturity
rate (years)

W0/G T = 1/g σ = 20% σ = 30%

4% 25.00 23 b.p. 60 b.p.
5% 20.00 37 b.p. 90 b.p.
6% 16.67 54 b.p. 123 b.p.
7% 14.29 73 b.p. 158 b.p.
8% 12.50 94 b.p. 194 b.p.
9% 11.11 117 b.p. 232 b.p.

10% 10.00 140 b.p. 271 b.p.
15% 6.67 272 b.p. 475 b.p.

Notes: b.p. = basis points. Assumes valuation rate of
r = 5%.

matures in exactly T = 14.29 years is a package worth precisely W0 =
100 when the investment on which the option is struck is “leaking” a divi-
dend yield of 73 basis points per annum. If the guarantee is reduced to G =
4%—which implies that the product matures in T = 25 years—then the
fair insurance fee is only 23 basis points. Likewise, if the guarantee is in-
creased to W0/G = 9%—which implies that the product matures in T =
11.11 years—then the fair insurance fee is 117 basis points. The most com-
mon GMWB guarantee being offered on variable annuities is W0/G = 7%,
which even under a conservative σ = 15% volatility implies an insurance
fee of 40 basis points.

Our equating of the GMWB with a term-certain annuity plus a QAP is
useful from several points of view. First of all, though I used numerical
techniques to value the embedded option, this is not essential because there
are a variety of other well-studied approaches to the valuation of Asian op-
tions. Second, there is an established over-the-counter market for Asian
options, which raises the possibility of hedging via these products (instead
of dynamic hedging). Finally, there is a body of practical experience with
the hedging of Asian options, which means that the QAP and hence the
GMWB are both more familiar products than they may first appear.

11.7 Further Reading

I have examined some of the derivative securities within deferred variable
annuities that are associated with pension annuity policies in the United



11.8 Notation 269

States. The objective of this chapter was to give the reader a flavor of the
types of models and issues being explored by researchers in the field, not to
provide a definitive guide or reference on the embedded options. The mate-
rial in this chapter draws heavily from Milevsky and Posner (2001) and from
Milevsky and Salisbury (2006). Additional recommended sources on the
topic of guaranteed annuity options include Ballotta and Haberman (2003)
and Boyle and Hardy (2003) as well as Milevsky and Promislow (2001).
The numerical solution to the ruin probability of the GMWB and the pricing
of the QAP are described in Huang et al. (2004). Of course, the “bible” on
derivative pricing remains the classic book by John Hull (2002); for those
readers who want to “learn” option pricing, there is no better place (at least
in my opinion). In their 1976 paper, Brennan and Schwartz were the first to
conduct a rigorous treatment of options inside insurance contracts, which
is the basis for (11.24).

In the last ten years there has been an explosion of scholarly research
and academic papers that have focused on the financial options embedded
within pension plans and insurance policies. It is, of course, impossible to
do justice to each citable author in the field, and clearly this chapter has
been biased by my own interests and research work. However, if you are
interested in learning much more about pricing these types of options, I rec-
ommend Investment Guarantees (Hardy 2003); that book contains a much
more detailed examination of alternative models to the simple Brownian
motion framework used in this chapter. The merging of mortality and in-
vestment derivatives is just getting started.

11.8 Notation

�x —value of a Titanic put option that promises a money-back guarantee
at death, where the guarantee level (strike price) increases each year by
g%

BSM(t)—value of a generic put option that promises a money-back guar-
antee at time t

k—instantaneous fee that is paid for the insurance guarantee
K— discounted value of the fee that is paid for the insurance
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The Utility of Annuitization

12.1 What Is the Protection Worth?

A few months ago I was annoyed by a phone call at home during my fam-
ily dinner. The person on the other end of the line wanted to sell me an
insurance policy to cover a medium-sized sailboat. For less than $200 per
month, I would be protected for up to $1,000,000 in damages over the next
five years. According to this salesperson, the quote was a “bargain” because
insurance premiums were normally twice this amount. The reason his rates
were so cheap was that the company was trying to clear out unused insur-
ance “inventory” by the end of the year. I told him that I did not own a boat
and thus had no reason to buy the insurance. But the salesperson did not
give up. He went on to tell me that insurance prices were going up within a
few months and that I’d better hurry before it was too late . . . . What did this
fellow expect me to do? Buy a boat just so I could get cheap insurance?

This might sound like an odd story to tell, but my point here is that pro-
tection—whether pension annuity or life insurance policy—is worth noth-
ing to me, regardless of the discounted or present value of the probability-
adjusted cash flows, if I have no need for the protection. In this chapter I will
pursue and apply this line of thinking to pension annuities and annuitization.

Allow me to make a similar point in another direction. As this is writ-
ten I carry more than $1,000,000 of (term) life insurance, for which I pay
premiums of a bit more than $100 per month. If anything fatal happens
to me, my family will receive a lump-sum payment of $1,000,000 from a
well-known and reputable life insurance company. Obviously, a million
dollars could never remedy the loss of a spouse or a parent, but at least my
family will not face financial ruin. I have estimated that the face value of
this policy should be enough to provide them with a reasonable standard of
living. Owning this insurance policy gives me a great level of comfort—or,

270
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Figure 12.1. Expected loss

as the economists call it, utility. To be quite honest, I would be willing to
pay much more than $100 per month (which is probably less than what I
spend on coffee) to gain this level of utility. My personal utility of life insur-
ance and human capital protection is very high, especially since I have four
young children to support and maintain. Luckily, my insurance premiums
are determined in a (relatively) free market where the various manufactur-
ers are competing against each other to sell me their products. This drives
down the premiums to very near their cost of production, as reflected in the
premium factors used in previous chapters. To sum up, my utility of life
insurance is much larger than my disutility of paying $100 per month.

12.2 Models of Utility, Value, and Price

I believe there are three ways to determine what a guarantee (i.e. insurance)
is worth. There is the value or utility of the guarantee (How much com-
fort does it give me?), the cost of the guarantee (How much does it cost to
manufacture?), and the price of the guarantee (What did you pay?).

Allow me to focus more carefully on the difference between these metrics
by way of a numerical example. Assume that your net worth is $100,000
and you’re worried about the possibility that the antique vase in your living
room—which you bought a few years ago for $5,000—will break. Suppose
the probability that this vase will break in any given year is exactly 1%. As
you can see from Figure 12.1, on average your expected loss in any given
year is $50. An insurance company that sells a large number of these policies
to a large group of people, charging each one of them $50, can manufac-
ture just enough reserves to cover their exposure. If it sells a hundred such
policies and collects a total of $5,000 in premiums, then the one out of a
hundred who breaks a vase will get the $5,000 in compensation. Think of
$50 as the cost of manufacturing the protection or the guarantee to replace
the vase.
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However, the market price might differ from this $50 owing to a variety
of competitive factors. For example, the insurance company might decide
to sell these policies at a loss (for less than $50) in order (it hopes) to also
sell you another, more profitable policy. Or the company might simply be
trying to increase policy sales in order to offset other risks. The market
price that you observe could be very different from the manufacturing cost.
In most cases you pay more than the manufacturing cost, but in some cases
you pay less.

Finally, from a utility perspective, protecting the vase’s value could be
worth (much) more to you than $50. You might be willing to pay consid-
erably more for the peace of mind that comes from knowing it is insured.
Of course, those who do not own such a vase will see absolutely no utility
value in having vase insurance: to them, a $50 insurance premium is $50
too much. Returning to my initial anecdote, I can again say with certainty
that a sailboat insurance policy is not worth a cent to me.

12.3 The Utility Function and Insurance

Is there a way of actually quantifying the utility, satisfaction, or comfort that
an insurance policy (guarantee) provides? The answer is Yes, and this has
actually been done by economists in a formal way for many years. They
start by modeling the potential magnitude of loss as well as the probability
of loss and then combine them using a mathematical representation called a
utility function. And though the topic of utility functions properly deserves
a book of its own, here are the highlights.

One of the better-known utility functions is called the constant relative
risk aversion functional form, which can be written as

U(w) = 1

1 − γ
w(1−γ ), w > 0, (12.1)

when γ = 1or defined as the logarithmic utility function ln[w] when γ = 1.
The function U(·) maps or transforms monetary values w into utility val-

ues U(w). For example, if the coefficient of relative risk aversion is γ =
0.5 then w = 100 dollars provides you with 20 units of utility or satisfac-
tion, whereas w = 10000 dollars leads to 200 units, which is only ten times
more utility even though your wealth was multiplied by a hundred. Thus,
although the utility function is increasing in the wealth argument w, the rate
of increase “slows down” with wealth.

Plugging in different values of γ = 3, 4, 5 into the utility function leads
to the following functional forms:
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U(w) = 1

−2w2
, U(w) = 1

−3w3
, U(w) = 1

−4w4
.

Utility functions can have negative values. The γ coefficient reflects the in-
dividual’s personal level of economic risk aversion. When γ = 0 we have
risk-neutral behavior; when γ > 0, risk-averse. Finally, γ < 0 characterizes
risk-loving behavior. You will soon see a real-world connection between
γ and risk aversion. For now, think of it as a free parameter in the utility
function.

So that we may better understand the rate at which the utility value
changes for increasing levels of wealth, take the following derivatives:

U ′(w) = w−γ, U ′′(w) = −γw−(γ+1).

Because w > 0, it follows that U ′(w) > 0 and U ′′(w) < 0. The Arrow–
Pratt measure of relative risk aversion (RRA) is defined using the first and
second derivatives of the utility function in the following way:

−w
U ′′(w)

U ′(w)
= −w

−γw−(γ+1)

w−γ
= γ. (12.2)

The RRA measures the curvature or concavity of the utility function U(w).

The larger is the value of γ, the more curved is the utility function. Let
us now return to the broken vase example (recall Figure 12.1) and demon-
strate how utility functions can help us understand the consumer’s desire to
insure.

Remember, the pure (manufacturing) premium you would pay to insure
against this risk is $50. But how much more of your wealth (assumed to
total $100,000) would you willingly part with in order to avoid an L =
$5,000 loss with probability p = 0.01? To answer this question we must
compute and compare utilities. More precisely, I will solve for the the sub-
jective insurance premium (or the “willingness to pay,” as this is referred to
by economists) Iγ under a coefficient of relative risk aversion γ that satisfies

U(w − Iγ ) = E[U(w̃)] = pU(w − L) + (1 − p)U(w). (12.3)

The intuition for this equation is as follows. The left-hand side (LHS) of
the equation represents the utility of wealth after purchasing the insurance
to protect the vase, assuming you pay Iγ in premiums. The right-hand side
(RHS) captures the utility of wealth if you do not purchase the insurance.
There is a p chance that your vase will break and you will be left with only
w−L dollars of net worth. The utility of this outcome is U(w−L). On the
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other hand, there is a 1 − p chance that you will not experience a loss and
so will end the year with the same w in wealth; the utility of this outcome
is simply U(w). Average the two utilities together to obtain the expected
utility. The subjective insurance premium Iγ is the insurance premium that
would make you indifferent between having or not having insurance. If the
company charges you less than Iγ then you are willing to acquire the insur-
ance because it provides you with more utility than taking a chance and not
insuring. On the other hand, if the insurance company charges you more
than Iγ then you are willing to take a chance and not purchase coverage.

Let me perform a specific calculation. If w = 100000 of initial wealth,
L = 5000 is the potential loss (cost of the replacing the vase), and p =
0.01 is the chance of breaking the vase, then we can use (12.1) and obtain
the subjective insurance premium by solving

1

1 − γ
(100000 − Iγ )1−γ

= (0.01)
(100000 − 5000)1−γ

1 − γ
+ (0.99)

(100000)1−γ

1 − γ
. (12.4)

The first term on the RHS is the utility of wealth after loss (of the vase) and
the second term on the RHS is the utility of wealth when there is no loss;
the utility of your after-loss wealth is a probability-weighted average—
adjusted for risk aversion—of the two conditions. Substituting in values of
γ = 1, 2, 3 leads to the following solutions: I3 = $53.97 for γ = 3, I2 =
$52.60 for γ = 2, and I1 = $51.28 for γ = 1 (using the ln[w] function).
Notice the markup above the fair actuarial premium of pL = 50 as the risk
aversion increases. Table 12.1 displays a spectrum of γ -values and the cor-
responding subjective premiums; the positive relationship between the two
variables should be obvious.

The main point is this. Depending on how risk-averse you are—as mea-
sured by the coefficient γ —you are willing to pay more or less for the
insurance protection. As long as γ > 0 you are willing to pay more than
the actuarial fair value (or expected loss) of the insurance policy. This is
the difference between the subjective utility of insurance and the manu-
facturing cost or market price of that insurance. In the next section I will
illustrate how this kind of utility modeling can be applied to retirement in-
come (spending) planning and annuitization during retirement.

12.4 Utility of Consumption and Lifetime Uncertainty

I will now provide a simple two-period example that illustrates the gains
in utility from having access to a life annuity market. Assume you have $1
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Table 12.1. Relationship
between risk aversion γ
and subjective insurance

premium Iγ

γ Iγ

11.0 66.772
5.0 56.853
4.5 56.114
4.0 55.388
3.5 54.674
3.0 53.972
2.5 53.282
2.0 52.603
1.0a 51.280
0.5 50.634
0.0 50.000

−1.0 48.761

a Function defined as log utility.

in net worth that you can consume (or spend) during the next two periods.
The consumption amounts, denoted by C1 and C2 , will be assumed to take
place at the end of the period. Assume there is a p1 (resp. p2) probability
that you will survive to, and consume at, the end of the first (resp. second)
period. Obviously p2 ≤ p1, since I do not allow for resurrections in my
simple model.

The one-period interest rate is denoted by R. My objective is to maxi-
mize my discounted utility of consumption over these two possible periods.
The question is: How much of my $1 should I consume at the end of the
first period versus the end of the second period? If I consume too much at
the end of the first period and I end up living (with probability p2) to the
end of the second period, then I might regret not having enough to con-
sume because I overspent in the first period. On the other hand, if I spend
too conservatively in the first period, then there might be money left over
(wasted) if I don’t survive to the end of the second period. Does this ques-
tion sound familiar?—it was at the heart of the sustainable spending rate
discussion from Chapter 9. In this chapter I will focus on how utility func-
tions and annuities interact with each other in this context.

Toward that end, I postulate logarithmic preferences, which means that
individuals evaluate the interaction between risk and return by maximizing
a utility function of the form U(w) = ln[w]. In the absence of annuities,
the objective function and budget constraints are given by:
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max{C1,C2}
E[U ] = p1

1 + ρ
ln[C1] + p2

(1 + ρ)2
ln[C2 ] (12.5)

s.t. 1 = C1

1 + R
+ C2

(1 + R)2
, (12.6)

where “s.t.” abbreviates “subject to” and where ρ is a new symbol that in
this chapter denotes a subjective discount rate. Think of this number as a
biological interest rate that determines how much (more) you value con-
sumption today versus consumption tomorrow. The higher the value of ρ,
the more you would like to “front end” your retirement benefits.

In other words, in this system I am trying to maximize expected utility
but am constrained by a particular time line and limited funds. Clearly, this
model does not incorporate any utility or desire for bequest, since only the
“live” states are given weight in the objective function. The solution to this
consumption–investment problem is obtained by creating the Lagrangian,
which is an artificial “tool” that is used in order to optimize the objective
function:

max{C1,C2,λ} L = p1

1 + ρ
ln[C1] + p2

(1 + ρ)2
ln[C2 ]

+ λ

(
1 − C1

1 + R
− C2

(1 + R)2

)
. (12.7)

Technically, I do not need the Lagrangian since I can always write C2 =
(1 + R)2 − C1(1 + R) and convert the problem to one free variable with
no constraints. Yet in the general N -period problem, this is how one would
proceed, which is why I adopt the generality. The first-order condition is:

∂L

∂C1
= p1

(1 + ρ)C1
− λ

1 + R
= 0,

∂L

∂C2
= p2

C2(1 + ρ)2
− λ

(1 + R)2
= 0, (12.8)

∂L

∂λ
= − C1

1 + R
− C2

(1 + R)2
+ 1 = 0.

Solving this system of three equations and three unknowns, I obtain the op-
timal values for the choice variables as

C∗
1 = p1(ρR + R + ρ + 1)

p2 + p1ρ + p1
, C∗

2 = p2(1 + 2R + R2)

p2 + p1ρ + p1
. (12.9)

The optimal consumption is given by equation (12.9). The ratio of con-
sumption between period 1 and period 2 is C∗

1/C
∗
2 = p1(1 + ρ)/p2(1 + R).



12.4 Utility of Consumption and Lifetime Uncertainty 277

If the subjective discount rate is equal to the interest rate (ρ = R) then
C∗

1/C
∗
2 = p1/p2 , which is the ratio of the survival probabilities; this ratio

exceeds 1. Stated differently, the individual consumes less at higher ages.
This result can be generalized to a multiperiod setting. When life annuities
are not available, rational utility maximizers are forced to consume less as
they age, even though their time preference is equal to the market rate.

However, in the presence of an actuarially fair life annuity market (or
more precisely, in this case, two one-year tontines), the budget constraint
in equation (12.6) must change to reflect the probability-adjusted discount
factor. This greatly expands the opportunity set for the consumer and so
will increase utility. In this case the optimization model becomes

max{C1,C2}
E[U ] = p1

1 + ρ
ln[C1] + p2

(1 + ρ)2
ln[C2 ] (12.10)

s.t. 1 = p1C1

1 + R
+ p2C2

(1 + R)2
. (12.11)

Notice the difference between equation (12.11) and equation (12.6). In the
first model the budget constraint has no probabilities in the numerator. In
the second model—which includes the availability of annuities—the budget
constraint is relaxed by having probabilities in the numerator. The intuition
is that you can consume more, conditional on survival, if you are willing to
give up the assets in the event of death.

In this case the Lagrangian becomes

max{C1,C2,λ} L = p1

1 + ρ
ln[C1] + p2

(1 + ρ)2
ln[C2 ] (12.12)

+ λ

(
1 − p1C1

1 + R
− p2C2

(1 + R)2

)
, (12.13)

and the first-order condition is

∂L

∂C1
= p1

C1(1 + ρ)
− λp1

1 + R
= 0,

∂L

∂C2
= p2

C2(1 + ρ)2
− λp2

(1 + R)2
= 0, (12.14)

∂L

∂λ
= − p1C1

1 + R
− p2C2

(1 + R)2
+ 1 = 0.

The optimal consumption is denoted by C∗∗
1 , C∗∗

2 and is equal to

C∗∗
1 = ρR + R + ρ + 1

p2 + p1ρ + p1
, C∗∗

2 = 1 + 2R + R2

p2 + p1ρ + p1
. (12.15)
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The important point to notice is that C∗∗
1 = C∗

1/p1 and C∗∗
2 = C∗

2/p2 , which
implies that—in the presence of life annuities—the optimal consumption
is greater in both periods. Specifically, at time 0, the individual would pur-
chase a life annuity that pays C∗∗

1 at time 1 and C∗∗
2 at time 2. The present

value of the two life annuities (as per the budget constraint) is $1. In this
case, the ratio of consumption between period 1 and period 2 is C∗∗

1 /C∗∗
2 =

(1 + ρ)/(1 + R). If the subjective discount rate is equal to the interest rate
(ρ = R) then C∗∗

1 /C∗∗
2 = 1, which is the “smoothing” effect of annuities

discussed earlier.
Here is a numerical example that should help illustrate the simple model.

Let R = ρ = 10%, and let p1 = 0.75 and p2 = 0.40. The individual has
a 75% chance of surviving to the end of the first period and a 40% chance
of surviving to the end of the second period. Hence, according to equation
(12.9), the optimal consumption is C∗

1 = 0.741 and C∗
2 = 0.395 in the ab-

sence of annuities. The maximum utility is E[U ∗ ] = −0.5115. However,
in the presence of life annuities, the optimal consumption becomes C∗∗

1 =
0.987 and C∗

2 = 0.987 with a maximal utility of E[U ∗ ] = −0.01247, which
is clearly greater than the no-annuity case. To develop a sense of the ben-
efit from annuitizing, solving equation (12.12) with a budget constraint of
0.61 instead of 1 would yield an optimal annuitized consumption of C∗∗

1 =
0.603 and C∗∗

2 = 0.603. In this case, the maximal utility would be the same
as in the no-annuity case. Stated differently, if one were to take away 0.39
from the individual but give him access to a fairly priced life annuity, then
his utility would be the same.

The model presented here obviously abstracts from many of the real-
world issues that affect the decision to annuitize. For instance, the individ-
ual would be willing to give up less income (in the presence of annuities)
if lower probabilities of survival were assumed. Nevertheless, I believe
that the intuitive implications are worth the price in assumptions. Annuities
allow individuals to consume more than they otherwise could during their
retirement years. In our model, a person would be willing to forgo up to
39% of his initial wealth in order to gain access to a fair life annuity.

12.5 Utility and Annuity Asset Allocation

The same utility-based ideas can be applied to asset allocation between
fixed and variable tontines (which, recall, pay a random sum upon survival
depending on investment returns), as I now demonstrate. Assume the fol-
lowing utility function of wealth:

U(W ) = Au(WA) + Du(WD), (12.16)
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where WA is the end-of-period wealth of the individual, conditional on be-
ing alive, and WD is the end-of-period wealth of the individual, conditional
on being deceased. The function u(·) is a strictly increasing and concave
utility function in wealth—with no specific functional form—while D is
the weight assigned by the individual to bequest motives. By assumption,
A + D = 1. This particular utility function allows for a difference in be-
quest motives across individuals.

At the beginning of the period, the retiree will allocate her initial wealth,
denoted by w, among four different instruments in order to maximize ex-
pected end-of-period utility. The expectations are taken with respect to
(i) the retiree’s subjective probability of survival, p̄, and (ii) the agreed-
upon payoff distribution of the risky asset. The end-of-period wealth in the
alive and dead states can thus be represented as

WA = α1wR + α2wX + α3wR/p + α4wX/p;
WD = α1wR + α2wX.

(12.17)

Combining equations (12.16) and (12.17), we find that the expected utility
is of the form

E[U(W )] = p̄AE[u(WA)] + (1 − p̄)DE[u(WD)], (12.18)

where E(·) denotes consensus expectation with respect to the distribution
of the risky payoff. This leads to

E[U(W )] = p̄AE[u(α1wR + α2wX + α3wR/p + α4wX/p)]

+ (1 − p̄)DE[u(α1wR + α2wX)]. (12.19)

Although I have not yet specified the functional form of u(·), I can still
make some statements regarding the general decision to purchase life an-
nuities. Specifically, I answer this question: How strong must the bequest
motive be in order to avoid life annuities? Under the setup described so far,
no individual will hold either a fixed or a variable tontine if the following
condition is satisfied:

D >

(
p̄/p − p̄

1 − p̄

)
A. (12.20)

In other words, tontines are completely avoided for a strong enough bequest
motive.

A trivial and intuitive illustration of this claim is when the individual’s
subjective probability of survival p̄ is equal to the objective probability of
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survival p. In this case, the no-tontine condition becomes D > A, im-
plying that the tontines are avoided by individuals who weigh the dead
state more heavily than the alive state (i.e., who have a strong utility of be-
quest). Alternatively, if (say) the objective probability of survival is 75%
and the individual believes that he is 10% less healthy than average, then
p̄ = (0.9)(0.75) = 0.675. Then, per (12.20), if the preference for income
after death is greater than 0.692 times the preference for income while alive,
tontines are avoided. The less healthy an individual feels relative to the pop-
ulation, the lower the weight on the utility of bequest needed to shun the
tontines.

The proof can be achieved by means of simple algebra. The no-tontine
condition in (12.20) can be restated as

p >
p̄A

p̄A + (1 − p̄)D
= p∗, (12.21)

where the variable p∗ is now denoted as a normalized weight for the states.
The utility functions u(·) are concave, which implies that U(·) is concave as
well. By definition, if f is a concave function then p∗f(x)+(1−p∗)f(y) ≤
f(p∗x + (1−p∗)y) for any p∗ ≥ 0. This constrains E[U(W )] by an upper
bound as follows:

E[U(W )] ≤ E[U(α1wR + α2wX + p∗α3wR/p + p∗α4wX/p)]

≤ U(E[α1wR + α2wX + p∗α3wR/p + p∗α4wX/p])

= U(α1wR + α2wµ + p∗α3wR/p + p∗α4wµ/p). (12.22)

If p∗ < p then the RHS of the equality (last line) in (12.22) is maxi-
mized for α3 = α4 = 0. Since this value is attainable for E[U(W )], we
have our result that if p∗ < p then there is no demand for tontines, prov-
ing my claim. For completeness, in the trivial case that µ < R, we have
E[U(x)] ≤ U(E[x]) and obtain that E[U(W )] is less than or equal to
U(α1wR +α2wµ+p∗α3wR/p+p∗α4wµ/p). This is maximized for α2 =
α4 = 0 and, since this value is attainable for E[U(W )], our result follows.

Inequality (12.20) is a sufficient condition for there to be no demand for
tontines. There are two other cases of interest. The first is when (a) the
retiree’s subjective probability of survival is the same as the objective prob-
ability and (b) the weights on the utility function are the same (i.e. A =
D). In this case, there is no difference in utility between the states of “alive”
and “dead”; the expected payoff of the fixed tontine is equal to that of the
risk-free asset, while the expected payoff of the variable tontine is equal to
that of the risky asset. Because the utility function used here is concave,
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the agent will always prefer the risk-free and risky assets (nontontines) to
the fixed and variable tontines, respectively.

A second case of interest is when the individual has no utility of bequest—
in other words, D = 0. In this case, an examination of (12.19) shows that,
since wR/p > wR and wX/p > wX for all p < 1, it follows that tontines
“stochastically dominate” regular assets. Therefore, individuals with no
utility of bequest will always hold the annuities. This result—in the context
of fixed annuities—is a well-known result in the insurance literature.

12.6 The Optimal Timing of Annuitization

In the remaining portion of this chapter, I will pursue a slightly different
approach to the issue of when people should annuitize. Specifically—and
as motivated by the financial option pricing paradigm—the focus of atten-
tion now is on what I shall call the “real option” embedded in the decision
to annuitize. Heuristically, owing to the irreversibility of annuitization, the
decision to purchase a life annuity is akin to exercising an American-style,
mortality-contingent claim. It is optimal to do so only when the remain-
ing time value of the option becomes worthless. Options derive their value
from the volatility of the underlying state variables. Therefore, if one ac-
counts for future mortality and investment uncertainty, the embedded option
provides an incentive to delay annuitization until the option value has been
eliminated. The option is real in the sense that it is not directly separable
or tradeable.

Indeed, as illustrated in our discussion of utility theory, the availability of
a (fair) life annuity relaxes the budget constraint, which then induces greater
consumption and utility. Therefore, all else being equal, consumers annu-
itize wealth as soon as they are given the (fair) opportunity to do so. How-
ever, these classical arguments are predicated on the existence of a single
financial asset, whose value is the basis for annuity pricing. This frame-
work assumes de facto that the budget constraint will not improve over time.
In practice, however, a risky asset is an alternative to the risk-free invest-
ment; by taking a chance in the risky asset, the future budget constraint
may improve. In other words, it might be worth waiting, since tomorrow’s
budget constraint may allow for a larger annuity flow and greater utility.
In the meantime, of course, the individual is assumed to withdraw con-
sumption from liquid wealth, so as to mimic the life annuity. Clearly, if
the volatility in the model is set equal to zero, then the option to delay has
no value. Likewise, uncertainty about future interest rates, mortality, insur-
ance loads, and product design all increase the value of the option to delay.
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Stated differently, my main argument is that retirees should refrain from
annuitizing today, because they may get an even better deal tomorrow.

So that we may price this option to wait, I propose a methodology that
defines the value of the real option to defer annuitization (RODA) as the
percentage increase in wealth that would substitute for the ability to defer.
I answer the question: How much would the consumer require in compen-
sation for losing the opportunity to wait? This number is clearly dependent
on individual preferences, especially since there is no secondary market for
this real option. Furthermore, the RODA option value may actually be neg-
ative, in which case I argue that the consumer is better off annuitizing right
now because waiting can only destroy wealth. Of course, the availability of
(low-cost) variable immediate annuities reduces the option value of wait-
ing and should increase annuitization arrangements in the future.

12.7 The Real Option to Defer Annuitization

I illustrate the option value of deferring annuitization with a simple three-
period example. Our problem starts at time 0 with a consumer who has an
initial endowment or wealth of w. All consumption takes place at the end
of the period, and the probabilities of dying during these periods are q0 <

q1 < q2. If the individual is fortunate to survive to the end of the third period,
she consumes and immediately dies. For simplicity, I assume that both the
consumer and the insurance company are aware of (and agree upon) these
probabilities of death. Also for simplicity, assume that the consumer’s sub-
jective rate of time preference is set equal to the risk-free rate (we ignore
income taxes).

Let c1, c2 , c3 denote the consumption that takes place at the end of each
respective period. The variable R denotes the (risk-free) interest rate “off”
which the annuities are priced. Now the optimization problem is

max{c1,c2,c3}
E[U3 | w] = (1 − q0)u(c1)

1 + R
+ (1 − q0)(1 − q1)u(c2)

(1 + R)2

+ (1 − q0)(1 − q1)(1 − q2)u(c3)

(1 + R)3
(12.23)

s.t. w = (1 − q0)c1

1 + R
+ (1 − q0)(1 − q1)c2

(1 + R)2

+ (1 − q0)(1 − q1)(1 − q2)c3

(1 + R)3
, (12.24)
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where u(c) is a twice differentiable utility function that is positive, increas-
ing, and strictly concave. Specifically, I will assume the same functional
form that exhibits constant relative risk aversions with u(c) = c(1−γ )/(1−γ )

and −cu′′(c)/u′′(c) = γ ; remember that this is the coefficient of RRA. In
the event that γ = 1, the function is defined as u(c) = ln[c]. Also, a utility
of bequest is ignored in this material, since it could only increase the value
of not annuitizing. The annuity contract is part of (12.24) by virtue of the
(expected) mortality-adjusted discounting of consumption. All else being
equal, higher values of qi increase the consumption attainable in the annu-
ity market. The same initial w can be used to finance a higher consumption
stream. Likewise, setting all qi = 0 in (12.24) will tighten the budget con-
straint and reduce the feasible consumption set. This is akin to solving the
problem without annuity markets.

The Lagrangian of problem (12.23)–(12.24) is

max{c1,c2,c3,λ} L3 = (1 − q0)u(c1)

1 + R
+ (1 − q0)(1 − q1)u(c2)

(1 + R)2

+ (1 − q0)(1 − q1)(1 − q2)u(c3)

(1 + R)3

+ λ

(
w − (1 − q0)c1

1 + R
− (1 − q0)(1 − q1)c2

(1 + R)2

− (1 − q0)(1 − q1)(1 − q2)c3

(1 + R)3

)
, (12.25)

and the first-order condition is

∂L3

∂ci

= 0, i = 1, 2, 3,
∂L3

∂λ
= 0. (12.26)

This leads to an optimal (constant) consumption of

c∗
i = c∗ = w

a3
, i = 1, 2, 3, E[U ∗

3 | w] = u

(
w

a3

)
a3. (12.27)

Here a3 is the initial price of a $1 life annuity that is paid over three periods
and is contingent on survival:

a3 = 1 − q0

1 + R
+ (1 − q0)(1 − q1)

(1 + R)2
+ (1 − q0)(1 − q1)(1 − q2)

(1 + R)3
. (12.28)

This is a classical annuity result, stating that all retirement wealth is an-
nuitized (i.e., held in the form of actuarial notes) and that consumption is
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constant across all (living) periods. As mentioned earlier, in the absence
of annuity markets the budget constraint in (12.24) is tightened to equate
present value of consumption and initial wealth; hence optimal consump-
tion decreases in proportion to the probability of survival.

The constant consumption result is predicated on (a) symmetric mortal-
ity beliefs and (b) the time preference being set to the risk-free rate. If these
numbers are different then the optimal consumption stream might not be
constant; in some cases, it might even induce holdings of nonannuitized
assets.

As an example, assume w = 1, q0 = 0.10, q1 = 0.25, q2 = 0.60, R =
0.10, and γ = 1.5. Then u(c) = −2/

√
c, and

a3 = 1.5789, c∗ = 1

a3
= 0.63336, E[U ∗

3 | 1] = u

(
1

a3

)
a3 = −3.9679.

If γ = 1 (log utility) then consumption remains the same because all assets
are annuitized, but ln[1/a3]a3 = −0.7211 “utiles.”

My main idea is to allow the individual to consume c∗ at the end of the
period and then reconsider annuitization at that time. This is called self-
annuitization. Meanwhile, the assets are invested and subjected to the risky
return. The risky return can fall in one of two states: up (denoted with the
subscript u) or down (subscript d). There is a probability p of a good return
Xu and a probability 1 − p of a bad return Xd. So, if we wait to annuitize,
then the next period’s optimization problem will be one of two types.

Should the liquid assets earn a “good” return, the optimization problem
will be

max{cu2,cu3}
E[Uu2 | wXu − c∗ ]

= (1 − q1)u(cu2)

1 + R
+ (1 − q1)(1 − q2)u(cu3)

(1 + R)2
(12.29)

s.t. wXu − c∗ = (1 − q1)cu2

1 + R
+ (1 − q1)(1 − q2)cu3

(1 + R)2
. (12.30)

In the event of a “bad” return, the second-period optimization problem be-
comes

max{cd2,cd3}
E[Ud2 | wXd − c∗ ]

= (1 − q1)u(cd2)

1 + R
+ (1 − q1)(1 − q2)u(cd3)

(1 + R)2
(12.31)

s.t. wXd − c∗ = (1 − q1)cd2

1 + R
+ (1 − q1)(1 − q2)cd3

(1 + R)2
. (12.32)
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As before, the optimal consumption is constant:

c∗
d = wXd − c∗

a2
, E∗ [Ud2 | wXd − c∗ ] = u

(
wXd − c∗

a2

)
a2 , (12.33)

c∗
u = wXu − c∗

a2
, E∗ [Uu2 | wXu − c∗ ] = u

(
wXu − c∗

a2

)
a2 , (12.34)

where the two-period annuity factor is

a2 = 1 − q1

1 + R
+ (1 − q1)(1 − q2)

(1 + R)2
= a3

(
1 + R

1 − q0

)
− 1. (12.35)

We have now arrived at the main expression:

E∗ [Uwait | w] = 1 − q0

1 + R

(
pu

(
wXu − c∗

a2

)
a2

+ (1 − p)u

(
wXd − c∗

a2

)
a2 + u(c∗)

)
. (12.36)

The utility of deferral captures the gains from taking a chance on the next
period’s budget constraint. Specifically, the utility of deferral weighs the
next period’s utility of consumption by the probability of either return state
{u, d} occurring and the probability of survival, and it then discounts for
time. Hence, as long as

E∗ [Uwait | w] > E∗ [U3 | w], (12.37)

one is better-off waiting. Finally, the value of the option to delay for one
period is defined as equal to the quantity I that equates both utilities:

E∗ [Uwait | w] = E∗ [U3 | w + I ]. (12.38)

Our intuition for this result will be aided by a numerical example. I use
the same parameters as in the previous example, namely: w = 1, q0 =
0.10, q1 = 0.25, q2 = 0.60, R = 0.10, and u(c) = −2/

√
c. In this case,

c∗ = 0.6333 and E[U ∗
3 | 1] = −3.9679. If the individual is faced with a

one-time decision, then the optimal consumption is 0.6333 units per period
and the maximum utility is −3.9679. Now assume that the individual can
defer this decision by investing w in an asset earning a stochastic return
with two possible outcomes, Xu and Xd. Specifically, let p = 0.70 denote
the probability that the nonannuitized investment factor will be Xu = 1.45
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(which is a 45% return), so 1 − p = 0.30 is the probability that the non-
annuitized investment factor will be Xd = 1.00 (a 0% return). The expected
investment return is therefore 31.50%.

If Xu occurs then the investor has 1.45 units at the end of the first pe-
riod, from which she consumes c∗ = 0.6333 in order to mimic the annuity.
This leaves her with 0.8166 for the second-period budget constraint. How-
ever, if Xd occurs then the investor has 1.00 units at the end of the first
period, from which she consumes c∗ = 0.6333 and leaves only 0.3666 for
the second-period budget constraint. Assuming she will annuitize at the
end of the first period, her discounted expected utility from the decision to
defer is

E∗ [Uwait | w] = −3.9193 > −3.9679 = E∗ [U3 | w].

Furthermore, giving this individual I = 0.02491 at time 0 would make her
indifferent between annuitizing immediately and deferring for one period.
I conclude that the value of the option to delay one period is worth 2.49%
of initial wealth.

A few technical comments are in order. For the deferral to make finan-
cial sense, the stochastic return from the investable asset must exceed the
mortality-adjusted risk-free rate in at least one state of nature. In our con-
text of three periods and two states of nature, Xu must be greater than
(1+ R)/(1− q0), since otherwise E∗ [Uwait | w] will never exceed E∗ [U3 |
w] regardless of how high p is or how low q0 is.

One does not require abnormally high investment returns in order to jus-
tify deferral. In fact, the entire analysis could have been conducted with a
stochastic interest rate R instead of a stochastic investment return (or both,
for that matter). The key insight is that waiting might change the budget
constraint in the consumer’s favor. The budget constraint might change on
the left-hand side, representing an increase (or decrease) in initial wealth,
or on the right-hand side, with an increase (or decrease) in the interest rate
off which the annuity is priced. As long as the risk-adjusted odds of a favor-
able change in the budget constraint are high enough, the option to wait
has value. This insight is important because any possible change in the fu-
ture price of the annuity provides an option value. This would include any
changes in design, liquidity, or pricing that might improve tomorrow’s bud-
get constraint.

If γ = 1 (log utility) then the value of the one-period option is 4.26%,
which is higher than if γ = 1.5. As one would expect, the lower is the level
of risk aversion γ, the higher is the (utility-adjusted) incentive to take some
financial risk and defer the decision to annuitize. This increases the value
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of the option. The same is true in the other direction. A higher aversion
to risk decreases the value of the option. For a high enough value—which
in our case is γ = 2.1732—the individual should not defer annuitization
because the risk is too high.

Although we have not addressed this issue in our formal analysis, if the
consumer has a less favorable view of her own mortality then the option to
defer is even more valuable. Specifically: if qO

0 , which is used in the bud-
get constraint to price the annuity, is lower than the subjective qS

0 used in
the objective function, then the maximum utility will be reduced at time 0,
which increases the value of I that yields equality in (12.38). This might
go a long way toward explaining why individuals who believe themselves
to be less healthy than average are more likely to avoid annuities, despite
having no declared bequest motive. In our context, the individual might be
speculating on next period’s budget constraint in the (risk-adjusted) hope
that it will improve.

Our annuities {a3, a2} are priced in a profitless environment where loads
and commissions are set to zero. Indeed, some studies find values per pre-
mium dollar in the 0.75–0.93 region depending on the relevant mortality
table, yield curve, gender, and age. In our context, the absence of such fees
would imply another incentive to defer, since Xu is then more likely to ex-
ceed the mortality-adjusted risk-free rate. This would hold true as long as
the proportional insurance loads do not increase as a function of age.

Finally, although I have christened I the “option value,” one must be care-
ful to note that it is the value of the option to defer (and consume) for one
period. In theory, the individual might also defer for two periods and then
annuitize. To be absolutely precise, one should think of I as a lower bound
on the option value, since one might consider deferring for many periods.
Having considered the basic intuition in a simple three-period example, I
now move on to report the results of a similar analysis in a continuous-time
(multiperiod) model in which estimates are developed for the option value.

12.8 Advanced RODA Model

Without delving into much technical detail (but see Section 12.11 for refer-
ences), Table 12.2 provides the results of a full-blown analysis that general-
izes the results of equation (12.38) to a multiperiod framework. It displays
the optimal age of annuitization and the value of the option to delay as a per-
centage of initial wealth, as well as the probability of consuming less at the
optimal time of annuitization than if one had annuitized one’s wealth im-
mediately. I refer to this latter measure as the probability of deferral failure.
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Table 12.2. When should you annuitize in order to
maximize your utility of wealth?

Probability
Optimal Value of of deferral

Age age delay (%) failure

γ = 1, female [male]
60 84.5 [80.3] 44.0 [32.0] 0.311 [0.353]
65 84.5 [80.3] 33.4 [21.9] 0.346 [0.391]
70 84.5 [80.3] 22.7 [12.3] 0.385 [0.431]
75 84.5 [80.3] 12.3 [4.2] 0.429 [0.470]
80 84.5 [80.3] 3.7 [0.02] 0.473 [0.500]
85 Now [Now] Neg. [Neg.] N/A [N/A]

γ = 2, female [male]
60 78.4 [73.0] 15.3 [8.9] 0.268 [0.321]
65 78.4 [73.0] 10.3 [4.3] 0.310 [0.372]
70 78.4 [73.0] 5.2 [0.8] 0.362 [0.435]
75 78.4 [Now] 1.2 [0.0] 0.428 [N/A]
80 Now [Now] Neg. [Neg.] N/A [N/A]
85 Now [Now] Neg. [Neg.] N/A [N/A]

Here is how to read and interpret the results. If you are a 75-year-old
female whose coefficient of relative risk aversion is γ = 1, then the op-
timal age at which to annuitize is 84.5. The value of the option to delay
annuitization—which, you recall, is equivalent to the payment you would
demand in exchange for being forced to annuitize at age 75—is 12.3% of
your wealth. For a male with the same level of risk aversion, the optimal
age at which to annuitize is 80.3, and the value of the option to annuitize
is worth only 4.2% of his wealth. Quite intuitively, since the male has a
higher probability of death (or higher mortality credits) at age 75, it follows
that the value of waiting is not as high. In general, females annuitize at
older ages than males because the mortality rate of females is lower at any
given age. Also, observe that individuls who are more risk averse wish to
annuitize sooner, an intuitively pleasing result. Finally, our pedagogically
appealing value of the option to delay annuitization—which is, in effect,
equivalent to the welfare loss from annuitizing immediately—decreases as
one approaches the optimal age of annuitization, as we would expect.

The probability of deferral failure, although seemingly high, is balanced
by the probability of consuming more than the original annuity amount.
On a utility-adjusted basis this is obviously a worthwhile trade-off, as evi-
denced by the behavior of the value function.
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Table 12.3. Real option to delay annuitization for a 60-year-old male
who disagrees with insurance company’s estimate of his mortality

Consumption rate (%)

Optimal age of Value of Before After
f annuitization delay (%) annuitization annuitization

−1.0 78.28 13.79 7.55 13.38
−0.8 74.58 10.54 7.95 11.79
−0.6 73.71 9.68 8.18 11.47
−0.4 73.29 9.23 8.37 11.33
−0.2 73.09 8.99 8.54 11.26

0.0 73.03 8.87 8.70 11.24
0.2 73.08 8.84 8.85 11.26
0.5 73.31 8.93 9.06 11.33
1.0 74.04 9.34 9.38 11.59
1.5 75.21 10.00 9.68 12.03
2.0 76.96 10.89 9.98 12.76
2.5 79.71 12.01 10.26 14.12
3.0 85.38 13.38 10.55 18.01

Note: Assumes that λS
x = (1 + f )λO

x .

12.9 Subjective vs. Objective Mortality

The setup in the previous section—as well as the simple three-period nu-
merical example of Section12.7—assumed that both the insurance company
and the individual agreed on mortality probabilities. In other words, the in-
surance company used the exact same probability of survival when pricing
the annuity as the individual did when discounting personal utility. In this
section I will display the results from modifying the symmetric mortality
assumption while maintaining the financial market assumptions from the
previous example.

To create such a model, imagine that the individual’s subjective force of
mortality is a multiple of the company’s objective force of mortality; specif-
ically, λS

x = (1 + f )λO
x , in which f ranges from −1 (immortal) to ∞ (at

death’s door). In actuarial science this is known as the proportional hazard
transformation. I then run through the exact same calculations as before,
but with different mortality curves and rates depending on whether we are
pricing annuities (λO

x) or computing utility (λS
x). Table 12.3 presents, for a

60-year-old male, the imputed value of the option to delay annuitization,
the optimal age of annuitization, the optimal rate of consumption before an-
nuitization (as a percentage of current wealth), and the rate of consumption
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after annuitization (also as a percentage of current wealth). For compar-
ison, if he were to annuitize his wealth at age 60, the rate of subsequent
consumption would be 8.34%.

Thus, for example, if you think you are 20% healthier than the group to
whom the insurance company is selling annuities, then for you λS

x = 0.8λO
x

at all ages and you should annuitize at age 73.09 (as opposed to 73.03).
This difference in age might seem tiny and irrelevant, but as your health as-
sessment deteriorates further the optimal age does increase. Notice that, if
you disagree with objective mortality, you delay annuitization whether you
are healthier or less healthy. It seems that the optimal age of annuitization
will be a minimum when the subjective and objective forces of mortality
are equal. Also, the consumption rate before annuitization increases as the
individual becomes less healthy, as we would expect.

12.10 Variable vs. Fixed Payout Annuities

Finally, in this section I report on the results from modeling the optimal age
at which to annuitize when there are variable as well as fixed payout annu-
ities available to retirees. Remember that the earlier sections all (implicitly)
assumed that one of the reasons it was worthwhile to delay annuitization
was the possibility of earning better investment returns in the open market.
However, when variable payout annuities are readily available at a low cost,
the so-called option value to delay is not so great. Table 12.4 illustrates this
fact. More specifically, it compares the optimal ages of annuitization (and
the imputed value of delaying when the individual can only buy a fixed an-
nuity) to when the individual can buy a money mix of variable and fixed
annuities.

I assume that the financial market and mortality are as previously de-
scribed except as follows. For the variable annuity, the insurer has a 100-
basis-point “mortality and expense risk charge” load on the return, so that
the modified arithmetic return from risky assets is µ′ = 0.11 compared to an
original µ of 0.12; and for the fixed annuity, the insurer has a 50-basis-point
spread on the return, so that the modified rate of return is r ′ = 0.055 when
r = 0.06. Assume that the individual’s coefficient of RRA is γ = 2, from
which it follows that 75.0% will be invested in the risky stock before annu-
itization and 68.7% in the variable annuity after annuitization.

Now, if you are a 65-year-old female with liquid wealth currently invested
in a diversified portfolio of (68.7%) stocks and (31.3%) bonds, then the op-
timal age at which to annuitize is age 80.2—assuming the pension annuity
does not offer a variable payout linked to the same portfolio of stocks and



12.11 Further Reading 291

Table 12.4. When should you annuitize?—Given the choice of
fixed and variable annuities

Fixed annuity only, Mixturea of annuities,
female [male] female [male]

Optimal age of Value of Optimal age of Value of
Age annuitization delay (%) annuitization delay (%)

60 80.2 [75.2] 21.0 [13.4] 70.8 [64.1] 3.40 [0.6]
65 80.2 [75.2] 14.8 [7.5] 70.8 [Now] 1.30 [Neg.]
70 80.2 [75.2] 8.5 [2.5] 70.8 [Now] 0.04 [Neg.]
75 80.2 [75.2] 2.9 [0.003] Now [Now] Neg. [Neg.]

a 68.7% variable annuities and 31.3% fixed annuities.

bonds. However, if the pension annuity can be linked to the performance
of those stocks and bonds (as described in Chapter 6), then the optimal age
at which to annuitize is reduced to age 70.8. Note that gaining access to
a variable payout annuity makes the irreversible decision relatively more
appealing, since you retain more flexibility than if you are locked in to a
fixed-payout product. For males this effect is even more pronounced, as the
optimal age is reduced from approximately age 75 to age 65. Of course,
these numbers are based on a risk-aversion level of γ = 2. If the risk aver-
sion is only γ = 1 then the optimal age will be delayed, but if the risk
aversion is increased then the RODA value (and the corresponding “best
age”) will be reduced.

12.11 Further Reading

The classical references on utility, life-cycle consumption, and asset alloca-
tion with lifetime uncertainty are Pratt (1964), Arrow (1965), Yaari (1965),
Samuelson (1969), Merton (1971), Fischer (1973), and Richard (1975). The
application of utility theory to the demand for life insurance and protection
of human capital can be traced to Campbell (1980) and has recently been ap-
plied within the context of asset allocation by Chen and colleagues (2006).
See Gerber and Pafumi (1999) for a comprehensive review of utility theory
within the context of insurance pricing.

The application of utility theory to the demand for life annuities started
with Yaari (1965). Additional references are Kotlikoff and Spivak (1981),
Williams (1986), Lewis (1989), Bodie (1990), Bernheim (1991), Hayashi,Al-
tonji, and Kotlikoff (1996), Mitchell et al. (1999), Brown and Poterba (2000),
Ehrlich (2000), Brown (2001), Jousten (2001), and Davidoff, Brown, and



292 The Utility of Annuitization

Diamond (2003). Also note that a review of the Lagrangian technique can
be found in Salas, Hille, and Etgen (1998).

The basic utility-based consumption approach to annuitization in a sim-
ple two-period model was presented in Milevsky (2001). The application of
utility theory to optimal allocation within variable and fixed payout annu-
ities is explored from a theoretical perspective in Charupat, Milevsky, and
Tuenter (2001) and is applied within the context of asset allocation in Chen
and Milevsky (2003).

The advanced material in this chapter draws heavily from my joint work
with Jenny Young, which is formally referenced as Milevsky and Young
(2004). This chapter takes a discrete-time approach to the issue, whereas
that reference extended the analysis to continuous time. The concept of
an option to annuitize—which is irreversible and possibly regrettable, and
hence worth delaying—can be traced to the paper by Stock and Wise (1990),
who coined the phrase “option to retire.” Of course, their implementation
is quite different given that this chapter discusses neither labor income nor
the utility of leisure, but the analogy is appropriate. The “real option” liter-
ature started with Ingersoll and Ross (1992) but likely can also be traced to
the ideas of Merton (1971). The concept of an optimal time (age) at which
to annuitize—and the optimality of delaying annuitization—has also been
investigated by Brugiavini (1993), Yagi and Nishigaki (1993), Kapur and
Orszag (1999), Dushi and Webb (2004), and Kingston and Thorp (2005).
For a detailed derivation of the optimal asset allocation within the variable
payout annuity, see Charupat and Milevsky (2002).

12.12 Notation

γ — coefficient of relative risk aversion
U(W )—utility function of wealth or consumption
λO

x — objective mortality rate used by the insurance company to price pen-
sion annuities

λS
x —subjective mortality rate used by the individual to determine personal
utility from pension annuities
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Final Words

During the year 2002, I was a firsthand witness to a historically unprece-
dented pension experiment that took place in the state of Florida. Every one
of that state’s more than 500,000 public employees—in addition to every
new employee joining the state’s payroll—was given the option of convert-
ing their traditional defined benefit (DB) pension plan into an individually
managed defined contribution (DC) account. The DC investment plan was
similar to a corporate-style 401(k) plan, under which the employee has full
control over asset allocation and investment decisions. Florida’s new Public
Employee Optional Retirement Program (PEORP) was the focus of intense
scrutiny by local and national media. This is because it was the largest such
pension conversion in the history of the United States and was viewed by
many observers as a potential laboratory for Social Security reform. Al-
though at first the take-up rate for the DC plan was low, it is now estimated
that over half of the state’s new employees have decided to forgo the tradi-
tional DB pension and instead enroll in the DC investment plan.

This large-scale transition from DB pension to DC accounts is not limited
to the state of Florida or the United States alone. A number of other states—
including a failed attempt by California Governor Schwarzenegger—have
proposed converting their public employee DB plan into either a mandatory
or optional DC plan. Several countries around the world—starting most
prominently with Chile in the mid-1980s—have introduced DC-style pen-
sion savings accounts as an alternative to traditional DB pensions. The
impetus for this massive global shift can be attributed to a wide variety
of factors, but it is primarily due to an actuarial funding crisis and demo-
graphic forces, both of which have been brewing for many years. Indeed,
the economic cost of funding and maintaining DB pensions has reached un-
precedented levels, driven by low interest rates, poor performance of the
equity markets, and the uncertainty of increasing life spans.

293
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Private-sector corporate pension plans have not been immune to this trend,
either. As I write this in late 2005, DB pension plans in the United States
have a collective funding deficit in the hundreds of billions of dollars, de-
pending on which assumptions are used to discount these liabilities. They,
too, have suffered from the same increasing longevity patterns, declining
interest rates, and poor equity returns, as well as a cumbersome regulatory
environment. So it is no surprise that, according to the U.S. Department
of Labor, the number of private-sector DB plans in the United States has
fallen from 112,208 in 1980 to 29,512 in 2003. Likewise, the number of
private-sector employees covered by a DB plan fell from 30.1 million in
1980 to 22.6 million in early 2000. More telling is that the percentage of
private-sector employees covered by a DB plan fell from 28% in 1980 to
7% in early 2000. In sum, defined benefit pension plans are dying. For the
most part, the vacuum created by the demise of DB pension coverage has
been taken up by DC-style accounts, where individuals must create their
own retirement income.

Against this institutional backdrop is the fact that, beginning in 2006, the
first of roughly 78 million American Baby Boomers will reach the age of
60; in fact, a Baby Boomer will be turning 60 every ten seconds. This will
likely be the largest group ever to move from accumulating wealth during
their working years to spending it in their retirement years.

Thus, as responsibility for generating a sustainable retirement income
shifts away from governments and corporations toward individuals and their
financial advisors, there is a pressing need for an underlying set of quantita-
tive tools to assist in making informed decisions. These tools must explicitly
account for the uncertainty surrounding investment returns, lifetime hori-
zons, and the real cost of retirement income.

I hope that this book will help quantitatively inclined financial advisors—
as well as the college and university instructors who train them—to develop
the necessary techniques for explaining the rewards and risks of retirement
income planning. Although the underlying mathematical tools may appear
to be as daunting as they are beautiful, I believe that the benefits of this
journey far outweigh the cost.
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Appendix

This chapter contains some extended mortality and statistics tables that were
referred to throughout the book.

Tables 14.1 and 14.3 are mortality tables listing qx values, male and fe-
male, for ages 50–120; Table 14.2 offers an international comparison of qx

values at age 65.
Note the difference between the “annuitant” mortality Table 14.1 and the

“insurance” mortality Table 14.3. For the most part, the qx rates at any fixed
age are lower in a mortality table that is used for pricing and valuing pension
annuities than in the table used for life insurance. This difference is due to
adverse selection—healthier individuals tend to purchase pension annuities
rather than life insurance. Of course, individuals who have actually quali-
fied for life insurance might be relatively healthier than those who simply
wanted to purchase life insurance but did not qualify. For more informa-
tion about what actuaries call “ultimate” and “select” mortality tables, see
Bowers et al. (1997).

Table 14.4 provides values for the CDF of the normal distribution under a
zero mean (µ) and standard deviation of sigma (σ). If you want to compute
the probability Pr[X ≤ x] under a nonzero µ, then use the numbers given
x − µ. For example, with µ = 0 and σ = 20% we have Pr[X ≤ 10%] =
69.15%, but when µ = 5% we have Pr[X ≤ 10%] = 59.87%. Intuitively,
increasing the mean should reduce the probability of earning less than any
given threshold. For a refresher on the CDF of the normal random variable,
see Section 3.18.

Table 14.5 displays CDF values for the reciprocal Gamma distribution,
assuming that β = 1. If β = 1 then multiply the x-value by β and use the
table with β times x. For example: if you want to compute Pr[X ≤ 10] when
β = 0.25, then use Table 14.5 with x = 2.5. Thus, if α = 1.5 and β = 1 then
Pr[X ≤ 10] = 97.76%, but if β = 0.25 then Pr[X ≤ 10] = 84.95%.
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Table 14.1(a). RP2000 healthy (static) annuitant mortality table—
Ages 50–89

Age Female qx Male qx Age Female qx Male qx

50 0.002344 0.005347 70 0.016742 0.022206
51 0.002459 0.005528 71 0.018579 0.024570
52 0.002647 0.005644 72 0.020665 0.027281
53 0.002895 0.005722 73 0.022970 0.030387
54 0.003190 0.005797 74 0.025458 0.033900
55 0.003531 0.005905 75 0.028106 0.037834
56 0.003925 0.006124 76 0.030966 0.042169
57 0.004385 0.006444 77 0.034105 0.046906
58 0.004921 0.006895 78 0.037595 0.052123
59 0.005531 0.007485 79 0.041506 0.057927
60 0.006200 0.008196 80 0.045879 0.064368
61 0.006919 0.009001 81 0.050780 0.072041
62 0.007689 0.009915 82 0.056294 0.080486
63 0.008509 0.010951 83 0.062506 0.089718
64 0.009395 0.012117 84 0.069517 0.099779
65 0.010364 0.013419 85 0.077446 0.110757
66 0.011413 0.014868 86 0.086376 0.122797
67 0.012540 0.016460 87 0.096337 0.136043
68 0.013771 0.018200 88 0.107303 0.150590
69 0.015153 0.020105 89 0.119154 0.166420

Table 14.1(b). RP2000 healthy (static) annuitant mortality table—
Ages 90–120

Age Female qx Male qx Age Female qx Male qx

90 0.131682 0.183408 106 0.307811 0.400000
91 0.144604 0.199769 107 0.322725 0.400000
92 0.157618 0.216605 108 0.337441 0.400000
93 0.170433 0.233662 109 0.351544 0.400000
94 0.182799 0.250693 110 0.364617 0.400000
95 0.194509 0.267491 111 0.376246 0.400000
96 0.205379 0.283905 112 0.386015 0.400000
97 0.215240 0.299852 113 0.393507 0.400000
98 0.223947 0.315296 114 0.398308 0.400000
99 0.231387 0.330207 115 0.400000 0.400000

100 0.237467 0.344556 116 0.400000 0.400000
101 0.244834 0.358628 117 0.400000 0.400000
102 0.254498 0.371685 118 0.400000 0.400000
103 0.266044 0.383040 119 0.400000 0.400000
104 0.279055 0.392003 120 1.000000 1.000000
105 0.293116 0.397886
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Table 14.2. International comparison (year 2000)
of mortality rates qx at age 65

Country Male Female Total

Austria 0.020751 0.008131 0.014009
Belgium 0.019045 0.008699 0.013608
Bulgaria 0.033951 0.016861 0.024662
Czech Republic 0.028256 0.014499 0.020679
Denmark 0.022158 0.013749 0.017788
East Germany 0.021510 0.010463 0.015632
Finland 0.019603 0.008126 0.013487
France 0.018649 0.006992 0.012446
Hungary 0.039530 0.017426 0.026788
Italy 0.017419 0.008051 0.012439
Japan 0.015900 0.006356 0.010906
Latvia 0.040380 0.015573 0.025326
Lithuania 0.037630 0.012893 0.022918
Netherlands 0.019589 0.009383 0.014308
New Zealand 0.016402 0.012824 0.014586
Norway 0.017685 0.009270 0.013337
Russia 0.050080 0.019815 0.031868
Spain 0.017548 0.006824 0.011887
Sweden 0.015217 0.008734 0.011852
Switzerland 0.014703 0.007070 0.010653
United States 0.020470 0.012929 0.016446
West Germany 0.019653 0.009085 0.014181

Source: Watson Wyatt and World Bank.
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Table 14.3(a). 2001 CSO (ultimate) insurance mortality table—
Ages 50–89

Age Female qx Male qx Age Female qx Male qx

50 0.003080 0.003760 70 0.017810 0.025770
51 0.003410 0.004060 71 0.019470 0.028150
52 0.003790 0.00447 72 0.021300 0.031320
53 0.004200 0.004930 73 0.023300 0.034620
54 0.004630 0.005500 74 0.025500 0.038080
55 0.005100 0.006170 75 0.027900 0.041910
56 0.005630 0.006880 76 0.030530 0.046080
57 0.006190 0.007640 77 0.033410 0.050920
58 0.006800 0.008270 78 0.036580 0.056560
59 0.007390 0.008990 79 0.040050 0.063060
60 0.008010 0.009860 80 0.043860 0.070140
61 0.008680 0.010940 81 0.049110 0.078190
62 0.009390 0.012250 82 0.054950 0.086540
63 0.010140 0.013710 83 0.060810 0.095510
64 0.010960 0.015240 84 0.067270 0.105430
65 0.011850 0.016850 85 0.074450 0.116570
66 0.012820 0.018470 86 0.080990 0.128910
67 0.013890 0.020090 87 0.090790 0.142350
68 0.015070 0.021850 88 0.101070 0.156730
69 0.016360 0.023640 89 0.112020 0.171880

Table 14.3(b). 2001 CSO (ultimate) insurance mortality table—
Ages 90–120

Age Female qx Male qx Age Female qx Male qx

90 0.121920 0.187660 106 0.443330 0.482220
91 0.126850 0.202440 107 0.476890 0.506690
92 0.136880 0.217830 108 0.510650 0.532690
93 0.151640 0.234040 109 0.545810 0.560310
94 0.170310 0.251140 110 0.581770 0.589640
95 0.193660 0.269170 111 0.616330 0.620790
96 0.215660 0.285640 112 0.649850 0.653840
97 0.238480 0.303180 113 0.680370 0.688940
98 0.242160 0.321880 114 0.723390 0.726180
99 0.255230 0.341850 115 0.763410 0.765700

100 0.275730 0.363190 116 0.804930 0.807610
101 0.297840 0.380080 117 0.850440 0.852070
102 0.322210 0.398060 118 0.892440 0.899230
103 0.349060 0.417200 119 0.935110 0.949220
104 0.378610 0.437560 120 1.000000 1.000000
105 0.410570 0.459210
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Table 14.4. Cumulative distribution functiona for a normal random variable

Value of x

σ −30% −20% −10% 5% 10% 20% 35%

1% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00%
5% 0.00% 0.00% 2.28% 84.13% 97.72% 100.00% 100.00%
8% 0.01% 0.62% 10.56% 73.40% 89.44% 99.38% 100.00%

10% 0.13% 2.28% 15.87% 69.15% 84.13% 97.72% 99.98%
12% 0.62% 4.78% 20.23% 66.15% 79.77% 95.22% 99.82%
15% 2.28% 9.12% 25.25% 63.06% 74.75% 90.88% 99.02%
18% 4.78% 13.33% 28.93% 60.94% 71.07% 86.67% 97.41%
20% 6.68% 15.87% 30.85% 59.87% 69.15% 84.13% 95.99%
23% 9.61% 19.23% 33.19% 58.60% 66.81% 80.77% 93.60%
25% 11.51% 21.19% 34.46% 57.93% 65.54% 78.81% 91.92%
30% 15.87% 25.25% 36.94% 56.62% 63.06% 74.75% 87.83%
40% 22.66% 30.85% 40.13% 54.97% 59.87% 69.15% 80.92%
50% 27.43% 34.46% 42.07% 53.98% 57.93% 65.54% 75.80%

a Pr[X ≤ x] = ∫ x

−∞
(
1/σ

√
2π
)

exp
{− 1

2 (y/σ)2
}

dy.

Table 14.5. Cumulative distribution functiona for a reciprocal
Gamma random variable

Value of x

α 0.25 0.50 1.50 2.00 2.50 5.00 10.00 E[X]

5.00 62.88% 94.73% 99.94% 99.98% 99.99% 100.00% 100.00% 0.25
4.50 53.41% 91.14% 99.82% 99.94% 99.98% 100.00% 100.00% 0.29
4.00 43.35% 85.71% 99.51% 99.82% 99.92% 99.99% 100.00% 0.33
3.50 33.26% 77.98% 98.75% 99.48% 99.74% 99.97% 100.00% 0.40
3.00 23.81% 67.67% 96.98% 98.56% 99.21% 99.89% 99.00% 0.50
2.50 15.62% 54.94% 93.15% 96.26% 97.70% 99.53% 99.00% 0.67
2.00 9.16% 40.60% 85.57% 90.98% 93.84% 98.25% 99.00% 1.00
1.95 8.62% 39.13% 84.52% 90.20% 93.24% 98.01% 99.00% 1.05
1.90 8.09% 37.66% 83.42% 89.35% 92.58% 97.74% 99.00% 1.11
1.85 7.59% 36.19% 82.25% 88.45% 91.87% 97.44% 99.00% 1.18
1.80 7.11% 34.73% 81.01% 87.48% 91.09% 97.10% 99.11% 1.25
1.75 6.64% 33.27% 79.71% 86.45% 90.25% 96.72% 98.96% 1.33
1.70 6.20% 31.82% 78.34% 85.34% 89.35% 96.30% 98.79% 1.43
1.65 5.77% 30.38% 76.89% 84.16% 88.37% 95.82% 98.58% 1.54
1.60 5.36% 28.96% 75.38% 82.89% 87.31% 95.28% 98.35% 1.67
1.55 4.97% 27.54% 73.79% 81.55% 86.17% 94.69% 98.07% 1.82
1.50 4.60% 26.15% 72.12% 80.13% 84.95% 94.02% 97.76% 2.00
1.25 3.01% 19.48% 62.66% 71.62% 77.38% 89.42% 95.30% 4.00
1.05 2.04% 14.66% 53.74% 63.05% 69.34% 83.68% 91.71% 20.00

a Pr[X ≤ x] = ∫ x

0 (y−(α+1)e−(1/y)/�(α)) dy.
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