
Financial Analytics with R
Building a Laptop Laboratory for Data Science

MARK J. BENNETT
University of Chicago

D IRK L. HUGEN
University of Iowa

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

www.cambridge.org
Information on this title: www.cambridge.org/9781107150751

© Mark J. Bennett and Dirk L. Hugen 2016

First published 2016

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Bennett, Mark J. (Mark Joseph), 1959– author. | Hugen, Dirk L., author.
Title: Financial analytics with R : building a laptop laboratory for data

science / Mark J. Bennett, University of Chicago, Dirk L. Hugen,
University of Iowa.

Description: Cambridge, UK : Cambridge University Press, 2016.
Identifiers: LCCN 2016026635 | ISBN 9781107150751
Subjects: LCSH: Finance–Mathematical models–Data processing. |

Finance–Databases. | R (Computer program language)
Classification: LCC HG104 .B46 2016 | DDC 332.0285/513--dc23
LC record available at https://lccn.loc.gov/2016026635

ISBN 978-1-107-15075-1 Hardback

Contents

Preface page xiii
Acknowledgments xvii

1 Analytical Thinking 1
1.1 What Is Financial Analytics? 2
1.2 What Is the Laptop Laboratory for Data Science? 3
1.3 What Is R and How Can It Be Used in the Professional Analytics World? 5
1.4 Exercises 6

2 The R Language for Statistical Computing 7
2.1 Getting Started with R 7
2.2 Language Features: Functions, Assignment, Arguments, and Types 10
2.3 Language Features: Binding and Arrays 13
2.4 Error Handling 17
2.5 Numeric, Statistical, and Character Functions 18
2.6 Data Frames and Input–Output 19
2.7 Lists 20
2.8 Exercises 22

3 Financial Statistics 23
3.1 Probability 23
3.2 Combinatorics 24
3.3 Mathematical Expectation 31
3.4 Sample Mean, Standard Deviation, and Variance 35
3.5 Sample Skewness and Kurtosis 36
3.6 Sample Covariance and Correlation 36
3.7 Financial Returns 39
3.8 Capital Asset Pricing Model 40
3.9 Exercises 42

4 Financial Securities 44
4.1 Bond Investments 45
4.2 Stock Investments 48

4.3 The Housing Crisis 49
4.4 The Euro Crisis 50
4.5 Securities Datasets and Visualization 52
4.6 Adjusting for Stock Splits 55
4.7 Adjusting for Mergers 61
4.8 Plotting Multiple Series 62
4.9 Securities Data Importing 64
4.10 Securities Data Cleansing 71
4.11 Securities Quoting 74
4.12 Exercises 75

5 Dataset Analytics and Risk Measurement 77
5.1 Generating Prices from Log Returns 77
5.2 Normal Mixture Models of Price Movements 80
5.3 Sudden Currency Price Movement in 2015 86
5.4 Exercises 90

6 Time Series Analysis 92
6.1 Examining Time Series 92
6.2 Stationary Time Series 97
6.3 Auto-Regressive Moving Average Processes 98
6.4 Power Transformations 98
6.5 The TSA Package 99
6.6 Auto-Regressive Integrated Moving Average Processes 109
6.7 Case Study: Earnings of Johnson & Johnson 110
6.8 Case Study: Monthly Airline Passengers 114
6.9 Case Study: Electricity Production 117
6.10 Generalized Auto-Regressive Conditional Heteroskedasticity 120
6.11 Case Study: Volatility of Google Stock Returns 121
6.12 Exercises 128

7 The Sharpe Ratio 130
7.1 Sharpe Ratio Formula 131
7.2 Time Periods and Annualizing 131
7.3 Ranking Investment Candidates 132
7.4 The Quantmod Package 136
7.5 Measuring Income Statement Growth 141
7.6 Sharpe Ratios for Income Statement Growth 144
7.7 Exercises 155

8 Markowitz Mean-Variance Optimization 157
8.1 Optimal Portfolio of Two Risky Assets 157
8.2 Quadratic Programming 160
8.3 Data Mining with Portfolio Optimization 162

8.4 Constraints, Penalization, and the Lasso 165
8.5 Extending to High Dimensions 171
8.6 Case Study: Surviving Stocks of the S&P 500 Index from 2003 to 2008 179
8.7 Case Study: Thousands of Candidate Stocks from 2008 to 2014 182
8.8 Case Study: Exchange-Traded Funds 186
8.9 Exercises 195

9 Cluster Analysis 197
9.1 K-Means Clustering 197
9.2 Dissecting the K-Means Algorithm 204
9.3 Sparsity and Connectedness of Undirected Graphs 208
9.4 Covariance and Precision Matrices 211
9.5 Visualizing Covariance 215
9.6 The Wishart Distribution 221
9.7 Glasso: Penalization for Undirected Graphs 225
9.8 Running the Glasso Algorithm 225
9.9 Tracking a Value Stock through the Years 226
9.10 Regression on Yearly Sparsity 231
9.11 Regression on Quarterly Sparsity 235
9.12 Regression on Monthly Sparsity 236
9.13 Architecture and Extension 238
9.14 Exercises 239

10 Gauging the Market Sentiment 240
10.1 Markov Regime Switching Model 241
10.2 Reading the Market Data 244
10.3 Bayesian Reasoning 247
10.4 The Beta Distribution 250
10.5 Prior and Posterior Distributions 250
10.6 Examining Log Returns for Correlation 253
10.7 Momentum Graphs 255
10.8 Exercises 259

11 Simulating Trading Strategies 261
11.1 Foreign Exchange Markets 261
11.2 Chart Analytics 263
11.3 Initialization and Finalization 264
11.4 Momentum Indicators 265
11.5 Bayesian Reasoning within Positions 266
11.6 Entries 268
11.7 Exits 269
11.8 Profitability 270
11.9 Short-Term Volatility 270
11.10 The State Machine 271

11.11 Simulation Summary 278
11.12 Exercises 280

12 Data Exploration Using Fundamentals 281
12.1 The RSQLite Package 281
12.2 Finding Market-to-Book Ratios 283
12.3 The Reshape2 Package 285
12.4 Case Study: Google 288
12.5 Case Study: Walmart 289
12.6 Value Investing 290
12.7 Lab: Trying to Beat the Market 294
12.8 Lab: Financial Strength 295
12.9 Exercises 296

13 Prediction Using Fundamentals 297
13.1 Best Income Statement Portfolio 298
13.2 Reformatting Income Statement Growth Figures 298
13.3 Obtaining Price Statistics 300
13.4 Combining the Income Statement with Price Statistics 306
13.5 Prediction Using Classification Trees and Recursive Partitioning 308
13.6 Comparing Prediction Rates among Classifiers 314
13.7 Exercises 316

14 Binomial Model for Options 318
14.1 Applying Computational Finance 318
14.2 Risk-Neutral Pricing and No Arbitrage 322
14.3 High Risk-Free Rate Environment 322
14.4 Convergence of Binomial Model for Option Data 324
14.5 Put–Call Parity 327
14.6 From Binomial to Log-Normal 328
14.7 Exercises 330

15 Black–Scholes Model and Option-Implied Volatility 331
15.1 Geometric Brownian Motion 332
15.2 Monte Carlo Simulation of Geometric Brownian Motion 333
15.3 Black–Scholes Derivation 335
15.4 Algorithm for Implied Volatility 338
15.5 Implementation of Implied Volatility 339
15.6 The Rcpp Package 345
15.7 Exercises 348

Appendix Probability Distributions and Statistical Analysis 350
A.1 Distributions 350
A.2 Bernoulli Distribution 350

A.3 Binomial Distribution 351
A.4 Geometric Distribution 352
A.5 Poisson Distribution 352
A.6 Functions for Continuous Distributions 354
A.7 The Uniform Distribution 356
A.8 Exponential Distribution 357
A.9 Normal Distribution 359
A.10 Log-Normal Distribution 359
A.11 The tν Distribution 360
A.12 Multivariate Normal Distribution 361
A.13 Gamma Distribution 361
A.14 Estimation via Maximum Likelihood 362
A.15 Central Limit Theorem 364
A.16 Confidence Intervals 366
A.17 Hypothesis Testing 366
A.18 Regression 367
A.19 Model Selection Criteria 369
A.20 Required Packages 370

References 372
Index 376

Preface

In 1994 the Channel Tunnel opened between England and France, allowing high-speed
Eurostar trains to whisk passengers from the continent to the United Kingdom and back
on a grand scale. What an amazing engineering feat it was for the time (beyond many
people’s earlier imaginations), yet we take it for granted today. In 1994, Grumman
Aerospace Corporation, the chief contractor on the Apollo Lunar Module, was acquired
by Northrop Corporation to form the new aerospace giant, Northrop Grumman. It was
the prime contractor of the newly deployed advanced technology B-2 Stealth Bomber.
On a much more mundane and personal scale, also in 1994, in a townhouse just outside
the City of Chicago, I was performing a tedious daily exercise: looking up daily closing
prices each evening in a stack of Investor’s Business Daily newspapers for the two stock
investments that were about to be purchased. This was not only to find out their running
rate of return but also to find out their historical volatility relative to other stocks before
entering into the positions. Doing this manual calculation was slow and tedious. The
World Wide Web was introduced in the form of the Mosaic browser the next year. It was
not long before Yahoo! was posting stock quotes and historical price charts, as well as
technical indicators on the charts, available on demand for free in just a few seconds via
the new web browsers.

The advent of spreadsheet software took analysts to a new level of analytical think-
ing. No longer were live, human-operated calculations limited to a single dimension.
Each row or column could present a time dimension, a production category, a business
scenario. And the automated dependency feature made revisions quite easy. Now spread-
sheets can be used for a prototype for a more sophisticated and permanent analytical
product: the large-scale, analytical computer program.

With modern programming languages like R and Python�, a skilled analyst can now
design their analytic logic with significantly less effort than before, using resources such
as Yahoo! or other free services for historical quotes. It has been said that Python’s terse
syntax allows for programs with the same functionality as their Java equivalents, yet
four times smaller, and we suspect that R is similar. A small financial laboratory can be
built on a laptop costing less than $200 in a matter of weeks, simulating multiple market
variables as required. Or, by obtaining a higher-end laptop model with more drive space,
the entire market can be loaded with 10 to 20 years’ worth of historical data on a scale
never before possible.

Once that laboratory is built, one can start to gain insights. Knowledge discovery
was once a term for a human process. Now we’re talking about computer automation.

Knowledge discovery seems like a bold term, a little too ambitious for anything a
computer program could create. For example, the computer science professional society,
the Association for Computing Machinery (ACM), has a special interest group called
Knowledge Discovery and Data Mining (KDD). Hardly anyone would challenge the
“data mining” part of that. After all, statisticians and computer scientists having at it
with data is what they do. But discovering knowledge with a machine? Really? Auto-
matically? Now that seems a little too exaggerated to be true. Then again, experiencing
firsthand the algorithms that will be described in this book, we soon realized that the
programs, using data science techniques, can not only automate very tedious calcula-
tions but then very positively yield insights into the human thinking level: insights that
would otherwise not be found.

Perhaps one can view the experience with a sports analogy. In many sports we have
defense to protect our current position and prevent the opponents from scoring further
points. Offense is the ability to piece together athletic feats sequentially to put more
points on the scoreboard. The data mining portion of KDD can be thought of as defense:
the more disciplined, regimented side of the sport. Single achievements can be effective:
thrusting up one’s hand to block a pass, throwing a curve ball to prevent a hitter from
connecting on the pitch. On the other hand, knowledge discovery is the offensive skill
set, going beyond the required and expected data analysis and into the creative side. On
offense, an entire series of events needs to be successful to yield progress: a full-field
soccer scoring drive or a series of three successive baseball base hits before three outs
to score a run. The likelihood of a success on offense is less.

So in the KDD model and sports analogy, data mining is the defense and knowl-
edge discovery is the offense. Achieving knowledge discovery is a rare event with
amazing impact. The discovery can be as powerful as human-made ideas, and can cer-
tainly enhance them. For example, we may discover that there is a publicly traded stock
with uniquely desirable properties. The KDD domain touches the limits of what these
machines can do with all the advancements in computer science.

In 1968, a Hollywood movie and novel by author Arthur C. Clarke, 2001: A Space
Odyssey, predicted automated reasoning, natural language speech recognition, video
calls, and face recognition. The HAL9000 computer controls the flight to Jupiter while
conversing and playing chess with astronaut Dr. Frank Poole and monitoring life con-
ditions of over 300 astronauts. Since then, computer science, specifically simulation,
has greatly impacted the research and discovery process in many fields and effectively
achieved many of these science fiction goals now. Among others, there are fields of com-
putational biology, computational cosmology, and computational linguistics. Images
from these fields are shown in Figure 1.

Throughout this book we are concerned with computer simulation. Computer sim-
ulation has become so successful that it is now widely accepted that, after theory and
physical experimentation, it is a third scientific method. As the subtitle says, this book
can be used to build a simulation laboratory for finance. The book was developed as
study material for the graduate Financial Analytics course in the Graham School at the
University of Chicago Master of Science in Analytics program and from the undergrad-
uate Investments course in the Department of Finance in the Tippie College of Business

(S (NP) (VP (V) (NP)))

(VP (V) (NP) (PP (P) (NP))) (NP (PP (P) (NP)))

(PP (P) (NP))

(P)(NP)

(VP (V) (NP))

(V)

(S (NP) (VP (V) (NP) (PP (P) (NP)))) (S (NP (PP (P) (NP))) (VP (V) (NP) (PP (P) (NP))))

(PP (PP (P) (NP)) (PP (P) (NP)))

start

KRAS

Figure 1 Sample images from computational biology, computational cosmology, and computational
linguistics.

at the University of Iowa. It is recommended as a graduate textbook when used at a
college or university. With the proper mathematical and computer science background,
it could also be used at the advanced undergraduate level.

It is best to have taken a course in statistical analysis, probability and statistics, or,
ideally, mathematical statistics for the material in the book, but much of the required
material is introduced within the main text and the Appendix. It is best to have an
undergraduate-level background in calculus, linear algebra, and enough computer sci-
ence to be familiar with array manipulation with one or more scientifically based
programming languages such as C, C++, Java, C#, Python, or Matlab�. A finance
background is not necessary. Any experience with R is, of course, useful.

Financial computer simulation in the R language can be more intricate and challeng-
ing than building a spreadsheet. A quantitative optimizer can be better controlled and
tailored when its logic is immediately apparent from the surrounding program code.
More computer science knowledge is required by our reader to build more robust and
sophisticated platforms, and more goes into the compiler and run-time system behind the
scenes. But as the pieces are completed, the builder, or operator, or student of financial
analytics begins to realize the benefits of simulation performed in a language designed

for statistical simulation. The insights that can be gained from building simulators and
from observing the simulations will help deepen understanding for upcoming profes-
sional venues. Just as it is now for machines, for people it has always been about
learning.

Regarding the exercises at the end of each chapter, data science involves the study of
statistical and computational models. In this book, that means that we are unlocking the
economic value which exists in the financial markets. Data engineering is the process
of implementing models on computers as applied to large datasets, using files, program
logic, testing, and continuous improvement. With these exercises, we take advantage
of the data science principles of the prior chapters to build and engineer our financial
laboratory.

As the reader performs these exercises, they may need to install various R pack-
ages from time to time. Various pages found by internet searching will steer the reader
to proper instructions for loading R packages and troubleshooting any failed attempts.
There are too many packages, conditions, and cases to repeat those instructions here.

The exercises focus individually on the various components so that we obtain an
understanding of the logic and data. Each new component builds upon prior components
in order to provide the level of sophistication required to answer our financial analytics
inquiries.

1 Analytical Thinking

As an investor, there is no more immediate feeling of excitement than a stock split
during a bull market or an acquisition that can bid one’s stock up by 20 percent in a
day. Maybe it is something like the feeling a soccer forward gets after completing a kick
into the goal. Even though semi-random events can risk the desired outcome (specif-
ically, actions by the defenders between the goal and the forward), all of the practice
and preparation for the offense is being applied quickly, and the result of success is
appreciated by the fans. In a nutshell, when faced with risks, preparation makes success
more probable.

This book is all about that preparation. Being one step closer to paying for one’s
child’s college education, or replacing one’s employment income as the prospect of
retirement looms, makes us feel more financially secure. Financial analytics involves,
among other analysis, the creation of forecasted scenarios based upon historical data
using simulations. When amateur investors talk about stocks in a qualitative sense – for
example, “Hey, Qualcomm is really rocking lately, bud!” or “Hey, I bought some Intu-
itive Surgical and it’s really on a roll!” – this is the way we naturally interact: informal
advice. We are human and need to feel our way through many situations. But the ques-
tion to ask one’s self quietly is: “Sure, that sounds like a good investment that you are
telling me about, but is there an alternative investment that will do better than that based
on historical evidence?” What would a financial analytics approach tell us from a purely
objective perspective? As we practice financial analytics, like the soccer forward practic-
ing goal kicking, we are trained, informed, and more prepared for unexpected situations.

Along with robust and accurate data, designing models is a key component of the
professional practice of analytics. This book focuses on mastering some of the most
important applied models so that they can be adapted, relied upon, and expanded. Mod-
els are presented using hand-written code in the R language, using historical market
datasets to gain a deeper understanding of the behavior.

Coined from “Big Science,” “Big Data” is a term used to describe datasets that are too
large to fit into common memory and disk hardware and traditional files and relational
databases. Sophisticated algorithms and processing are often required to analyze Big
Data. Analytics are applied to Big Data in order to take advantage of the large sample
sizes. Insights and discovery are simply more realistically possible with large datasets.
This book is intended to foster an individual and classroom software laboratory for
performing financial analytics. It serves as a resource for models, program logic, and
datasets for stocks and other common securities as we tackle Big Data.

2 Analytical Thinking

1.1 What Is Financial Analytics?

Since the 2008 financial crisis, market practitioners are realizing that reliance on models
which are mathematically pure but fundamentally inaccurate is no longer acceptable. A
more practical approach is needed. The markets where the instruments reside have many
more tail events than most of the market models of the 2000 decade would acknowledge.
These tail events have contributed to the flash crash, tech bubble, and mortgage-based
crisis with more to come. Practitioners are in need of tools for quick discovery and
simulation to complement and calibrate the mathematics.

Meanwhile, the emerging new field of Analytics, also known as Data Science, is pro-
viding computational intelligence to businesses in ways many had never envisioned.
Analytical computer programs are recommending everything from medical diagnoses
to automobile routes to entertainment contents. Analytics is a practical and pragmatic
approach where statistical rules and discrete structures are automated on the datasets
as outcomes are observed in the laboratory and in the business world. Corporations are
able to mine transactional data and predict future consumer buying patterns. Health
professionals can mine health records to help with decision analysis for diagnosing
diseases.

In today’s world, businesses as well as consumers are affected by fluctuations in con-
sumer prices, industrial production, interest rates, and the price of natural gas. These
changes let us know that risk is ever-present. Now that large datasets are widely avail-
able, market practitioners are stepping up their efforts to use algorithms to measure
econometric patterns and examine their expected trends.

Analytics has become the term used for describing the iterative process of proposing
models and finding how well the data fit the models, and how to predict future outcomes
from the models. Financial analytics describes our subject: a domain where contribu-
tions have been made by scholars and industry professionals for decades, and where the
latest technology advancements have made recent discoveries possible. Financial ana-
lytics involves applying classic statistical models and computerized algorithms to the
financial market data and investment portfolios. Analytics applied in this area address
relationships that occur in practice every day in time-critical fashion as investors, specu-
lators, and producers of valued securities and commodities trade across the country and
the globe.

Investment firms like PIMCO and Vanguard have helped investors meet retirement
goals or send their children to college by carefully delivering positive market exposure.
This book will provide the tools for being able to understand better what firms like these
and other financial entities do.

While many business intelligence books have been written to describe what is hap-
pening in Big Data, this book is specifically focused on how to achieve detailed results.
The book is multidisciplinary in its combining of statistics, finance, and computer
science.

Businesses are looking for profitability and financial risk reduction. Optimization is
an important aspect of financial analytics. Any business intelligence approach makes
appropriate use of data to attempt to optimize outcomes.

1.2 What Is the Laptop Laboratory for Data Science? 3

These are the kinds of issues to be tackled by financial analytical simulations. What
is the optimized return and what is the level of risk assumed? What kinds of financial
metrics can become good random variables and how are they distributed? What datasets
are available to sample these random variables analytically? Which financial metrics are
highly correlated? Which are relatively independent? Can analytical thinking give an
algorithm an edge over a simple holding strategy when generating transactions? These
are questions we explore in this book.

1.2 What Is the Laptop Laboratory for Data Science?

Professional data scientists are not purely statisticians. Yes, applied statistical skills
are important, but they must also possess practical software engineering skills and be
able to build reliable and testable models that run rapidly, repeatably. They must under-
stand data types in order to implement analytical algorithms, so that their employers and
clients will gain a competitive advantage from the robust models they produce. Our aim
here is not to treat one financial instrument at a time, but rather in mass. In essence, clus-
ters and structures of instruments are needed so that comparisons can be made. Investing
is a matter of decision-making, and the more stock candidates, the better the chances of
success.

Regarding the subtitle, “Building a Laptop Laboratory for Data Science,” this book
guides the reader on how to build a software simulation laboratory on which significant-
sized working modules can answer analytics inquiries. Laptops are fast becoming
pervasive. When using the R language, any operating system will do. As evidence of
how inexpensive powerful computing has become, the laptop on which all of the book’s
simulations were run can be found for less than $200. After installing Crouton, a variant
of Ubuntu Linux� found for free online, and RStudio, an analyst can soon be download-
ing datasets and analyzing away with millions of rows from freely available financial
datasets.

Our own laptop computer is called AL, short for Analytics Laboratory. (In some fam-
ilies, cars are given names: Betsy, Handsome, Chester, Venom, and Myles are typical. If
cars can be named, why not name a device that is at one’s side most days?) AL’s hard-
ware and operating system was purchased from a Groupon coupon for the nominal price
of $139. Your version of AL could run on an Apple or Windows PC: any computer that
can run RStudio and hold a large set of flat files and a small portion of a database will
do.

For the flat files, one of the coded modules downloads and caches six million rows
of prices for subsequent analysis. While many books have included code, in this book,
when we include the code, the pieces build upon each other, providing an increasing
level of sophistication as readers follow along with the option to try running the code on
their own computers. The reader can use R on any type of computer operating system for
which R is available, which covers most of them. When running the Analytics Library
on a higher-performance Apple or Windows laptop with a large internal hard drive, one
can literally load the “whole market” and perform queries at will.

4 Analytical Thinking

0 50 100 150 200 250

0.
9

1.
0

1.
1

1.
3

1.
2

1.
4

Out-of-sample performance

Days

G
ro

ss
 R

et
ur

n Pa 1.226Pa 1.226Pa 1.226

Pb 1.165Pb 1.165Pb 1.165
S&P 1.14S&P 1.14S&P 1.14

Figure 1.1 An out-of-sample calibration (2014 to 2015) of the S&P benchmark portfolio (green) and two
optimized portfolios of NASDAQ and NYSE stocks (purple and red).

It has been a successful year for AL, the laptop laboratory for data science. On the
data mining side of things, through the analytical programs presented herein, AL was
able to find choice stock candidates for the portfolio optimizer. By using classic mean–
variance optimization, the R program was able to deliver a stock portfolio that beat the
S&P 500 Index return: not in sample in the laboratory, but in the actual stock market.
This was accomplished by putting together a portfolio that had higher volatility than the
S&P 500 Index, but not substantially higher. In fact, when measuring the return over
risk of the portfolio from AL compared to the Index, it was better. This means more
return for the amount of risk we are taking. Figure 1.1 shows the in-sample performance
of two optimized portfolios against this benchmark.

> logRetPortf = diff(log(indexRecentPrices1))
> mean(logRetPortf)/(sd(logRetPortf)*sqrt(252))
[1] 0.006083248
> logRetBench = diff(log(benchPrices/benchPrices[1]))
> mean(logRetBench)/(sd(logRetBench)*sqrt(252))
[1] 0.00497942

You may ask why we think the recommendations of AL were successful. Well, by
making use of R’s functional and vectored expressive notation and packages, AL gives
us an ability to process hundreds or even thousands of possible stocks and select the
best one based upon the most consistent past performance. With R this can be done
more correctly and with less code than with many other platforms.

Those of us who invest often receive emails from investment advisors, web sites and
might pick stocks qualitatively. SeekingAlpha.com is one such web site we can read

1.3 What Is R and How Can It Be Used in the Professional Analytics World? 5

for information in decision-making. MotleyFool.com is another. These are good sites.
They focus on a particular stock in the articles, and they can be quite entertaining when
reading about why they think that the Google CFO resigned, or why they think a travel
web site company is overvalued. Of course, AL does not need to be entertained; in
fact, AL cannot be entertained, and it therefore does not get distracted with pieces of
qualitative information. Unlike people who brag about certain winning picks they found
by conversing with the right folks, AL is a system and can only look at datasets and
statistics. Using AL with R enforces a rigorously quantitative decision approach which
is worth considering.

1.3 What Is R and How Can It Be Used in the Professional Analytics World?

Since the financial crisis of 2008 there has been a need for professionals in the banking,
insurance, fund management, and corporate treasury sectors who are more knowledge-
able about statistics and data analysis and can discuss and measure the various risk
metrics, especially those involving extreme events. While quantitative finance programs
appeared at various universities in the 1990s, these programs are more mathematical in
nature and students spend more of their time constructing proofs and deriving formulas
and less of their time with datasets from the markets. While deriving the formulas helps
the understanding of the models, on an opportunity cost basis, that time could be used
building an operating data analysis platform.

People can enter the financial analytics profession through a combination of experi-
ence and education. Professionals with an extensive math background can find it easier
to make the transition to the field. Those with a less formal math background, and
those lacking some financial vocabulary, will find this book quite helpful in making
the transition. This book provides the intuition and basic vocabulary as a step toward the
financial, statistical, and algorithmic knowledge needed to resolve the industry prob-
lems and issues. For more experienced readers, the book presents the latest techniques,
leveraging new packages which meld traditional finance metrics with modern data min-
ing and optimization subjects. Professionals who are making the transition to analytics,
professional quantitative finance analysts, and students who want to supplement their
background with financial analytics, would find this book of interest.

This book presents a systematic way of developing analytical programs for finance
in the statistical language R. R has become the language of choice for use in academic
analytics circles because of its sophisticated expressibility for statistical algorithms. It
is open source and freely available via download for all common computer operating
systems. And thousands of previously contributed and available packages eliminate the
need for redeveloping common algorithms from scratch.

Since financial analytics is the application of statistical and economic rules with com-
putational logic in ways that can solve problems, the role of the analytical computer
program is expanding: to tie together models which would previously have been iso-
lated. These computer programs can be constructed more efficiently using specialized
programming languages.

6 Analytical Thinking

This book presents the reader, both the practitioner and the scholar, with many
solutions in financial analytics. For individual investors and investment firm analysts, as
shown in this book, the results can be obtained by a reference model and a manageable-
sized R program. The book begins with a background in probability and statistics for
markets, basic algorithms in R for finding price vector characteristics, including returns,
split adjustments for quotes, and also comparing performance of securities, measuring
volatility and risk, direction, skew, and market tail weight with examples. Finding opti-
mal portfolios and using unsupervised machine learning techniques using graphs and
clustering algorithms to connect related securities within portfolios are ways to gain
insight. The acceleration of the speed of the financial markets means that quantitative
analysis and financial engineering are no longer exclusively focused on minute details
of a single instrument but on the big picture of thousands of prices and transactions
happening nearly simultaneously. This book presents a new step in this direction.

1.4 Exercises

1.1. Examine Figure 1.1. What is the return of the S&P 500 Index in percent for the
252-day or one-year period, assuming it is adjusted so that it begins the period at
1.0, as in the figure?

2 The R Language for Statistical
Computing

Like so many innovations in computing, including the Unix operating system and the
C and C++ languages, the R language has its roots at AT&T Bell Laboratories during
the 1970s and 1980s in the S language project (Becker, Chambers, and Wilks, 1988).
People think that the S language would not have been designed in the way it was if it
had been designed by computer scientists (Morandat, Hill, Osvald, and Vitek, 2012).
It was designed by statisticians in order to link together calls to FORTRAN packages,
which were well known and trusted, and it flourished in the newly developed Unix and
C environment. R is an open source variant of S developed at the University of Auckland
by Ross Ihaka and Robert Gentleman, first appearing in 1993 (Ihaka, 1998). The cho-
sen rules for scoping of variables and parameter passing make it hard for interpreter and
compiler writers to make R run fast. In order to remedy this, packages such as Rcpp have
been developed for R, allowing R programs to call pre-compiled C++ programs to opti-
mize sections of the algorithms which are bottlenecks in terms of speed (Eddelbuettel
and Sanderson, 2014). We discuss the Rcpp package toward the end of the book.

Clearly the recent popularity of R, fueled by its open source availability and the need
for statistical and analytical computing tools, shows that the benefits of R far outweigh
the negatives. Overall, R is based upon the vector as a first class item in the language.
R shares this attribute with LISP, Scheme, Python, and Matlab. This and the prevalence
of over 4,000 publicly available packages are two of the many strengths of R. In this
book, we will focus on R packages that revolve around financial analytics.

It is our intention to introduce R at this point for those readers who need or are inter-
ested in a summary. Feel free to skip this chapter if you are experienced in R. For those
who are not, many of the examples are worth trying out in an R environment to get a
feel for the language. By including this section, this book is self-contained and we make
no assumption that the reader arrives at this book having an R background. Covering
this chapter as an introduction to R or as an R refresher will position the reader for the
upcoming analytical programs which will slice and dice market datasets to uncover what
is happening.

2.1 Getting Started with R

One of the great things about R is how easy it is to install. In your browser, head
to the web site for the Comprehensive R Archive Network (CRAN), http://cran.
r-project.org and, whether running an Apple Mac, a Linux system, or a Windows

8 The R Language for Statistical Computing

PC, the basic R interpreter is available for download. R began as a command line
interface (CLI), but, once downloaded and installed, there is a basic graphical user
interface (GUI) available via the

R --gui=Tk

command on an Apple or Linux operating system, and that will display a GUI window
as shown in Figure 2.1. For Windows, this same R GUI can be launched from an icon.

Figure 2.1 The basic R user interface window and a second pop-up window showing the result of the plot()
command.

2.1 Getting Started with R 9

Just as a basic test, we can create a vector of prices and plot it with this block of code:

> x = c(1.3,1.2,1.3,NA,1.4,1.5)
> plot(x,ylab="EUR prices")
> is.na(x)
[1] FALSE FALSE FALSE TRUE FALSE FALSE

The c() operator creates a vector of elements. This is the basic vector operator in R. Note
the “not available” (NA) element appearing as the fourth item of the vector. R’s ability to
handle NAs, infinite values (Inf), and not a number (NaN) is one of its many strengths.
Three Boolean-valued functions can be used to interrogate a variable for these respective
values: is.na(), is.infinite(), and is.nan(). In data science, we certainly do encounter these
erroneous values as inputs or results from algorithms.

Back on the subject of R interpreters, a later development is the RStudio GUI avail-
able from the web site www.rstudio.com. RStudio is a commercially developed GUI
allowing management of plot windows, variable contents, and better debugging than the
basic R interpreter. Figure 2.2 shows how the plotting window, variable contents, and
workbench are all integrated into one view. People have spent years being productive in
the basic R interpreter from CRAN, but those who have used interactive development
environments for C++ or Java will find that the syntax highlighting, options for execu-
tion, and multiple source file handling of RStudio are more like what they are used to.
Projects like RStudio and the Oracle Big Data Appliance are evidence of the growing
popularity and commercialization of R (Ora, 2011).

Figure 2.2 RStudio is a second-generation R user interface with integrated code, execution, variable
inspection, and plotting windows, and expression completion.

10 The R Language for Statistical Computing

A very important initial task in order to use the code from this book with an R lan-
guage tool is to be sure to always have the current directory path defined by setting the
homeuser variable. We reserve this variable to set the base directory where all the code
for the book will reside. If, every time we use R, we set the homeuser variable as follows:

homeuser="<basedir>"

where <basedir> is something such as /home/<myuserid> or c:/Users/<myuserid>,
which is specific to your computer system, then <basedir>/FinAnalytics/<dir> is where
the input and output will occur from the R code. <dir> is typically ChapII for this
chapter or another working directory name and is stored in the R variable dir. The
publisher’s web site for this book, www.cambridge.org/financialanalytics, contains a
downloadable archive file with the code and datasets set up in directories so that FinAn-
alytics/<dir> will be ready once unpacked. The file is called FinAnalytics.zip. Download
it and unpack it to obtain the book code, and remember to define the homeuser each time
you use it.

Any time a library statement is encountered, R will check that the package is avail-
able. If not, it must be downloaded. As an example, to download the ggplot2 package,
use the following command:

update.packages()
install.packages("ggplot2",dependencies=TRUE)
library(ggplot2)

Packages can be dependent upon other packages: hence the “dependencies=TRUE”
setting. This flag is very important in order to avoid chasing down all the dependent
packages and loading them one-by-one. Packages do not always succeed in loading.
The best way to troubleshoot package installation is using your favorite browser and
search engine to locate a helpful page on the World Wide Web by entering the error
message into a good search engine.

2.2 Language Features: Functions, Assignment, Arguments, and Types

For many use cases, R provides a computational statistics platform. Mathematical func-
tions are readily available. The basic log() function provides a natural logarithm. Of
course, executing log() on a vector, x, results in a vector of natural logarithms, y. Unlike
many imperative languages, no looping is required. The last line computes the simple
expression, y, and prints its contents, rounded to three digits. Note how the NA value
was preserved. The computation of log() on NA is NA as expected.

> #Filter prices:
> x[x > 1.3]
[1] NA 1.4 1.5
> #Keeps the NA intact:
> y <- diff(log(x))
> round(y,3)
[1] -0.080 0.080 NA NA 0.069

2.2 Language Features: Functions, Assignment, Arguments, and Types 11

In R, not only vectors but also functions are first-class objects. It shares this attribute
with the functional languages LISP and Scheme. Assigning a function to a variable is
the usual way to define it. If g is assigned to the function definition, then g(4) will eval-
uate it and g, without parentheses, will return its definition. Arguments can be matched
positionally and by name. Defaults for arguments can be specified. In the case below,
matching the arguments by name allows the arguments to be supplied in a different order
than that in the definition.

> #g(x,y) is a power function:
> g <-function(x,y=5) { return(x^y) }
> g(4)
[1] 1024
> g(4,6)
[1] 4096
> g(4,y=7)
[1] 16384
> g(y=8,x=4)
[1] 65536
> g
function(x,y=5) { return(x^y) }

R has four assignment operators. The most basic operator is “<-”. This is the one we
use in the first assignment in the code block below. R’s functional nature is so strong that
even this can be replaced by the function call assign(“x”,1). The arrow assignment oper-
ator of R came from the APL language. Over time, because people were used to other
languages that use “=” instead, and even though “=” was used to assign parameter values
in function calls (g(x, y = 7), for example), it was also made available for assignment in
R. So using “<-” or “=” is now really a matter of preference. Each of these three ways of
assignment is for local assignment: they do not affect other variables with the same name
which are in the outer layer of scope. To see this, the following R output shows how x
being assigned a value of 3 is not affected by the assignment of 4 to x in the function f ().

> x <- 1
> assign("x",2)
> x
[1] 2
> x = 3
> x
[1] 3
> f <-function(x)
+ {
+ x = 4
+ x
+ }
> f(x)
[1] 4
> x
[1] 3

12 The R Language for Statistical Computing

R’s fourth assignment operator, with two “<”s, is known as the “super-assignment”
operator. Executing it will look outside the current frame for x, which is global to the
function f , and assign to that x. If there is no x in the global environment, it will create
one and assign the value to it. Since arguments to functions are passed by value, the
super-assignment operator is a way to get results back to the calling environment.

> #The fourth type is "<<-"
> x = 3
> x
[1] 3
> f <-function(x)
+ {
+ x <<- 4
+ x
+ }
> f(x)
[1] 4
> x
[1] 4
> typeof(f)
[1] "closure"
> typeof(x)
[1] "double"

We can see that the result in the above output with super-assignment is different from
the result in the earlier code output using assignment. There are two “x”s: one outside
the function and one within it. The super-assignment operator looks outside the function
and side-affects the x declared outside the function.

R is dynamically typed so that variables do not have types. Instead, values have types.
So we can see that the type of a variable is determined by the type of its current value.
The function typeof() can be used to return the type of the value assigned to a variable.
We can see its use in the output block above: typeof(f) is a “closure” for a function while
typeof(x) is a “double.”

In keeping with R’s dynamic nature, evaluation can occur dynamically using the
eval() function. Let’s look at an example of using eval() to execute one of two pos-
sible functions. In order to evaluate strings as R expressions or programs, the parse()
function is used in conjunction with eval().

> #Classic if-else:
> call_type = 2
> if(call_type == 1) {
+ str = "f(2)"
+ } else {
+ str = "g(2)"
+ }
> eval(parse(text=str))
[1] 32

2.3 Language Features: Binding and Arrays 13

As long as we are also discussing if–else, there is also an ifelse() function which takes
three arguments, evaluates the first one, and then supplies either the second in the TRUE
case or the third in the FALSE case.

> #Not so classic if-else function:
> call_type = 2
> ifelse(call_type == 1,
+ eval(parse(text="f(2)")),
+ eval(parse(text="g(2)")))
[1] 32

In Chapter 9, we make the case for needing this language feature. For more details on
this feature, the reader can consult R Development Core Team (2011).

If it can be deduced how to apply a function to a vector or matrix, R will
do that. For example, if vec = c(1:3), then sqrt(vec) is the three-element vector
(1.000000,1.414214,1.732051). Another feature of R is the functional programming
primitive known as apply().

> #Functional nature:
> set.seed(1)
> vec = c(1:3)
> sapply(vec,rnorm)
[[1]]
[1] -0.6264538

[[2]]
[1] 0.1836433 -0.8356286

[[3]]
[1] 1.5952808 0.3295078 -0.8204684

The first line contains the set.seed() function, which is described in Section 2.5. In one
of its simplest forms, we can see above that sapply() can be used to imply iteration,
avoiding a for loop to iterate, over a vector and apply a function: rnorm() in this case,
the normal variate generator. The result is a list of vectors. We discuss lists in more detail
in Section 2.7.

2.3 Language Features: Binding and Arrays

Binding scalars or vectors together is one way to return aggregate results from functions.
(Another way, introduced in Section 2.3, is by side-affecting new variables submitted
back to the environment outside the function with the super-assignment operator.) For
binding, cbind() binds items into two columns and rbind() binds items into two rows. If
the two items are scalars then the two operations are equivalent. rep() is a very common
function to create a vector of repeated items. For example, rep(4, 5) == c(4, 4, 4, 4, 4)
is TRUE and states to repeat 4 five times. We illustrate the use of these functions below.

14 The R Language for Statistical Computing

> #Create two column matrix:
> A = cbind(rep(x,length(y)),y)
> A

y
[1,] 4 -0.08004271
[2,] 4 0.08004271
[3,] 4 NA
[4,] 4 NA
[5,] 4 0.06899287
> B = rbind(rep(x,length(y)),y)
> B

[,1] [,2] [,3] [,4] [,5]
4.00000000 4.00000000 4 4 4.00000000

y -0.08004271 0.08004271 NA NA 0.06899287
> t(A) == B

[,1] [,2] [,3] [,4] [,5]
TRUE TRUE TRUE TRUE TRUE

y TRUE TRUE NA NA TRUE
> sum(t(A) == B)
[1] NA

In the output frame above, rep() forms five instances of the scalar x before binding
into two columns and then two rows. A and B have now become arrays or matrices. The
common matrix operator to transpose a matrix, t(), is then used to make A have the shape
of B (2 by 5). Comparing them with “==” reveals how R determines that the results of
two 2 by 5 arrays are being compared with the equality operator. The resulting 2 by 5
array is almost all Boolean TRUE except for the NA values, originally from the y vector,
which, when compared to anything, returns NA.

R is very powerful when it comes to shorthand array notation. If we want just the
fourth column of B, we can write that as B[, 4]. This provides an array slice of B with
two values:

> #Subscripting: positive and negative
> B[,4]

y
4 NA

> B[,-4]
[,1] [,2] [,3] [,4]

4.00000000 4.00000000 4 4.00000000
y -0.08004271 0.08004271 NA 0.06899287
> t(A)[,-4] == B[,-4]

[,1] [,2] [,3] [,4]
TRUE TRUE TRUE TRUE

y TRUE TRUE NA TRUE
> sum(t(A)[-2,-4] == B[-2,-4])
[1] 4

We can also take away the fourth column by the expression to include all other columns
by preceeding the column index by the negative sign (−). So we take away the fourth

2.3 Language Features: Binding and Arrays 15

column for both matrices and check how many of the items match in the last line of code
above.

Ranges in R can be created independently or as part of a for loop. A range is indicated
with the “:” operator and evaluates to a vector as seen below.

> #Ranges and looping:
> n <- 12
> z <- 1:n
> z
[1] 1 2 3 4 5 6 7 8 9 10 11 12

> z <- c(1:n)
> z
[1] 1 2 3 4 5 6 7 8 9 10 11 12

> z <- vector(length=n)
> for(i in 1:n)
+ z[i] <- i
> z
[1] 1 2 3 4 5 6 7 8 9 10 11 12

While vectors are one-dimensional, matrices in R are two-dimensional, and arrays
have two or more dimensions. Matrices use the nrow and ncol arguments to set the
bounds.

> #Matrices and arrays:
> mat2by4 <- matrix(1:8, nrow=2, ncol=4)
> mat2by4

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

Arrays use the dim parameter as seen in this second example, a three-dimensional array.

> arr3by4by2 <- array(1:24, dim=c(2,4,3))
> arr3by4by2
, , 1

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
...
, , 3

[,1] [,2] [,3] [,4]
[1,] 17 19 21 23
[2,] 18 20 22 24

One of the handiest features of R is the negative subscript. Historically, many com-
puter programming languages forbade negative subscripts. In R, they are used to form
the vector, matrix, or array with the positive version of those negative subscript values
removed. If arr3by4by2 is our three-dimensional array from before, the arr2by4by3[1, ,]
is a 4 by 3 matrix fixed at first dimension element 1. Using a negative subscript, such

16 The R Language for Statistical Computing

as −4 in the second dimension in the second line of code below, eliminates the fourth
element.

> arr2by4by3[1,,]
[,1] [,2] [,3]

[1,] 1 9 17
[2,] 3 11 19
[3,] 5 13 21
[4,] 7 15 23
> arr2by4by3[1,-4,]

[,1] [,2] [,3]
[1,] 1 9 17
[2,] 3 11 19
[3,] 5 13 21
> arr2by4by3[1,c(-3,-4),]

[,1] [,2] [,3]
[1,] 1 9 17
[2,] 3 11 19

An even better R feature is that including a vector of negative subscripts, c(−3, −4)
above, eliminates an entire set of elements from a dimension. In this case, the last matrix
above shows this vector of negative subscripts feature eliminates two rows.

Length and dimensions are important for vectors, matrices, and arrays. The length()
and dim() functions are seen being used below.

> length(c(-3,-4))
[1] 2
> dim(arr2by4by3[1,c(-3,-4),])
[1] 2 3

Matrix multiplication is important in the optimization material of Chapter 8. This can
be accomplished in R using the %*% operator. We assign a matrix A first. Then we find
its transpose matrix AT and multiply A and AT .

> A <- arr2by4by3[1,c(-3,-4),]
> t(A)

[,1] [,2]
[1,] 1 3
[2,] 9 11
[3,] 17 19
> A <- arr2by4by3[1,c(-3,-4),]
> A

[,1] [,2] [,3]
[1,] 1 9 17
[2,] 3 11 19
> t(A)

[,1] [,2]
[1,] 1 3
[2,] 9 11
[3,] 17 19
> A%*%t(A)

2.4 Error Handling 17

[,1] [,2]
[1,] 371 425
[2,] 425 491
> 1+9*9+17*17
[1] 371

In our last step above we check the element at [1, 1].

2.4 Error Handling

Error handling is an important part of data science, in order to keep erroneous data
from making its way into the variables and to keep the dataset as clean as possible.
When calling certain packages, it is common to have errors returned. R has a tryCatch()
feature which is implemented as a function. There is the original main block expression,
followed by an argument which is the code for the handling of warnings, followed by
the code for the handling of errors, followed by any common clean-up code. In this
example, we use division by zero as the type of error handled.

#Exception handling:
fh <- 0
tryCatch({

#main block
fh <<- file("file1.txt", open="r")

}, warning = function(w) {
#warning-handler-code
print(w)
fh <<- NA

}, error = function(e) {
#error-handler-code
print(e)
fh <<- NA

}, finally = {
#cleanup-code

})
if(!is.na(fh)) readLines(fh)

Running the code block above detects the lack of file1.txt in the current directory and
produces this following warning message:

<simpleWarning in file("file1.txt", open = "r"):
cannot open file 'file1.txt': No such file or directory>
> fh
[1] NA

As we obtain market data from the R series package in upcoming chapters, not having
the requested market data is common outcome, so tryCatch() is utilized.

18 The R Language for Statistical Computing

2.5 Numeric, Statistical, and Character Functions

To set the mode of calculations, options(digits = n) sets the number of digits to round
to in calculations.

> #Setting precision:
> options(digits=10)
> pi = 3.1415926535897932384626
> pi
[1] 3.141592654

Distributions of random variates are available readily within the language with runif()
for the Uniform Distribution, rnorm() for the Normal Distribution, and rbinom() for the
Binomial Distribution, to name just three. Histograms and density plots are also native
to the language with hist() and density(). Inspecting the density of the variates from the
Binomial distribution can be done by plotting the density() function results as shown in
Figure 2.3 as follows:

#Random sampling:
plot(density(rbinom(50,50,1/2))

Setting the random seed is supported by the set.seed() function. When this is used, the
subsequent calls the statistical functions will produce the same results in different runs.
A related statistical function is called sample(). It returns a vector of random integers
which can be used directly or as indexes. Sampling with and without replacement is
possible.

> options(digits=6)
> set.seed(99)
> sample(10, replace = TRUE)
[1] 6 2 7 10 6 10 7 3 4 2

10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

density.default(x = rbinom(50, 50, 1/2))

N = 50 Bandwidth = 1.459

D
en

si
ty

Figure 2.3 R plot window containing a density plot for the Binomial distribution.

2.6 Data Frames and Input–Output 19

Character strings are supported via a set of utility functions. One of the most common
is the paste() function, which performs concatenation. Setting the current directory can
be accomplished by pasting together the pieces of the path. The parameter sep is used
to determine the separator, which defaults to a space.

> #String concatenation:
> print(paste("PCLN","UNP","IBM","MCD","PFE",sep=","))
[1] "PCLN,UNP,IBM,MCD,PFE"

The common substr() function takes as arguments the string variable and the beginning
and end position of the substring.

> #Date and string functions:
> date <- as.Date("2014-02-01")
> substr(date,9,11)
[1] "01"

The match() function works on a character string array and returns the position of the
key in the array.

> #String array:
> tickers <- c("PCLN","UNP","IBM","MCD","PFE")
> match('MCD',tickers)
[1] 4

2.6 Data Frames and Input–Output

Data frames are one of R’s more unusual and handy features. A data frame is a sequence
of rows where the columns are heterogeneously typed. A common way of loading data
frames is from the Excel .csv files. There are several R packages that use data frames as
the primary mechanism to transmit data to the primary algorithm, especially in the case
of the machine learning packages. The $ operator is used to reference columns of a data
frame as depicted in the last line of code below.

> #Data frame:
> L3 <- LETTERS[1:3]
> fac <- sample(L3, 10, replace = TRUE)
> d <- data.frame(x = 1, y = 1:10, fac = fac)
> d[1:4,]
> d[1:4,]

x y fac
1 1 1 B
2 1 2 B
3 1 3 A
4 1 4 B
> d$fac
[1] B B A B C B B A A A

Levels: A B C

20 The R Language for Statistical Computing

Now that this data frame has been created, we can use the write.csv() utility to write it
to a file.

> #Input-ouput:
> write.csv(d,file="d.txt",row.names=FALSE)
> e <- read.csv("d.txt",header=TRUE)
> e[1:4,]

x y fac
1 1 1 B
2 1 2 B
3 1 3 A
4 1 4 B

Data frame columns can be displayed and modified. Below, we keep the first two column
names of the data frame e, but reassign the third column name to “factor.”

> names(e)
[1] "x" "y" "factor"
> names(e) <- c(names(e)[1:2],"factor")
> e[-c(2:dim(e)[1]),]

x y factor
1 1 1 B
> typeof(e)
[1] "list"

We can also see that a data frame is considered a list by typeof().
Setting the proper directory in the file system is important for reading and writing

with success. R must be in the proper directory when running the code in the book, and
we use R’s setwd() and getwd() as required. Typically we always prepend the homeuser
portion of the file path so that setwd() succeeds.

setwd(paste(homeuser,"/FinAnalytics/ChapXI",sep=""))

If you encounter an error such as

Error in file(file, "rt") : cannot open the connection

that error often occurs because homeuser is not set for your R session. Use getwd() at
the R command prompt to discover the current directory path.

2.7 Lists

Lists are ordered aggregates like vectors, which are constructed by c(. . .). How-
ever, lists differ from the basic vectors, in that they are recursively formed, using
list(. . .). Lists can contain lists. We can see the difference in the code output sequence
below.

2.7 Lists 21

> #Lists:
> c(1,c(1,2),3,"A",c(4,5))
[1] "1" "1" "2" "3" "A" "4" "5"
> list(1,c(1,2),3,"A",list(4,5))
[[1]]
[1] 1

[[2]]
[1] 1 2

[[3]]
[1] 3

[[4]]
[1] "A"

[[5]]
[[5]][[1]]
[1] 4

[[5]][[2]]
[1] 5

If l is assigned to our list above, referencing elements can be done in two ways. l[2]
yields a list of the vector c(1, 2), whereas l[[2]] yields just the vector c(1, 2) itself.

> l <- list(1,c(1,2),3,"A",list(4,5))
> l[2]
[[1]]
[1] 1 2

> l[[2]]
[1] 1 2

We can see that our data frame, e, from earlier can be treated as a list in the following
sequence.

> e[[1]]
[1] 1 1 1 1 1 1 1 1 1 1

> e[[2]]
[1] 1 2 3 4 5 6 7 8 9 10

> e[[3]]
[1] B A B A C C B B B C

Levels: A B C

In this book, our main use of lists is to help us return a structure of items from a func-
tion. Unlike forming a vector with the c() operator, using the list() operator to construct
the return value for a function keeps all the list items of differing types separated and
ready to be indexed by the calling routine with the [[]] list indexing operator. Lists are
very handy in this case.

22 The R Language for Statistical Computing

If we have a vector A of symbols and a corresponding vector B of their current prices,
we may want to return both of these to the calling code sequence.

> obtainPrices <- function() {
+ A <- matrix(c("VRSN","UNP","HPQ","NSC"),nrow=1)
+ B <- matrix(c(37.61,125.62,50.48,50.44),nrow=1)
+ list(A,B)
+ }
> res <- obtainPrices()
> res[[1]]

[,1] [,2] [,3] [,4]
[1,] "VRSN" "UNP" "HPQ" "NSC"
> res[[2]]

[,1] [,2] [,3] [,4]
[1,] 37.61 125.62 50.48 50.44

Note that if we try to use the vector constructor, c(), or the rbind() or the cbind() opera-
tors, we quickly run into limitations. For example, if we are binding together two vectors
which are not of the same length, the calling program code needs to unpack the items and
figure out the length of each one separately. It gets rather tedious quickly. Fortunately,
lists take care of things automatically, as each element can be of a different dimension
and a different length.

This concludes our brief introduction to and survey of R.

2.8 Exercises

2.1. Run all the code presented in Chapter 2 to gain familiarity with, and as a test of,
your R environment.

2.2. Use seq(–2,2,.1) to obtain a range of x values for input to the probability function
f (x) which is defined as

f (x) =
{

2x for 0 ≤ x ≤ 1

0 elsewhere.
(2.1)

Write R code to define f (x) and code to apply f (x) to the vector of x values and
code to plot the results of f (x) against the x values.

2.3. Write R code to find the squares of the numbers from 1 to 25 and plot the numbers
on the x axis and their squares on the y axis. Hint: you can use the c() operator to
append an element to a vector.

3 Financial Statistics

Statistics is a mathematical science which is concerned with collecting and organizing
data and conducting experiments involving random variables which represent the data.
These random variables can represent natural or simulated events. The amazing attribute
of statistics is its ability to explain the organization of the data we observe. In this chapter
we will cover some basic formulas that will lay a foundation for the subsequent analytics
framework.

A discussion of statistics is necessary for any treatment of financial analytics. In order
to discuss investments in financial instruments from a quantitative perspective, a cer-
tain amount of preliminary background is needed. This will provide a higher level of
accuracy. We will not be able to do our job well without it. This background will be
conveniently stated in terms of formulas, beginning here and continuing throughout the
book. Formulas provide crisp specifications for the computer instructions in R.

We begin with probability with discrete outcomes. After completing the first three
sections, the reader is invited to visit the Appendix for a review of the many potential
probability distributions and statistical analysis concepts that are used in analytics.

3.1 Probability

In probability we are concerned with the likelihood of events. An event A is defined such
that ∅ ⊆ A ⊆ S, where ∅ is defined as the null space or empty set and S is defined as the
sample space or set of all possible outcomes. We also set that the probability of event
A occurring as 0 ≤ P(A) ≤ 1, where the probability of the null space is P(∅) = 0 and
the probability of the sample space is P(S) = 1. We define the complement Ac as the set
satisfying 1) A ∪ Ac = S and 2) A ∩ Ac = ∅. While they might seem superfluous, these
two conditions simply make mathematically rigorous the requirement that (1) an event
must either happen or not happen, and (2) an event may not both happen and not happen.

Let us now consider two events A and B. We define the joint probability as the prob-
ability of the intersection of the two events, i.e. the probability that both events happen:
P(A ∩ B). We also define the union probability as the probability that either event hap-
pens: P(A ∪ B). We often write P(A, B) as a shorthand for P(A ∩ B). We relate the
probability of the union of the two events to the probability of intersection of the two
events as

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

24 Financial Statistics

A B

S

Figure 3.1 The four regions for the event sets A and B.

Bayes’ Rule
We define the conditional probability of A given B as the joint probability of A and B
divided by the probability of A:

P(B|A) = P(A|B)P(B)

P(A)
= P(A ∩ B)

P(A)
. (3.1)

Similar to the partitioning of the sample space, above, we may also partition events:
P(A) = P(A, B) + P(A, Bc). This is to say that if we have two events A and B, then A
must happen either with B or without B as shown in Figure 3.1. Dividing through by
P(A) states the same result in the language of conditional probabilities, specifically that
given event A has happened, then event B has either happened or not happened:

P(A) = P(A, B) + P(A, Bc) (3.2)

1 = P(A, B)

P(A)
+ P(A, Bc)

P(A)
(3.3)

1 = P(B|A) + P(Bc|A). (3.4)

Extending Bayes’ Rule
Bayes’ Rule of Equation 3.1 can be extended to many events that depend upon event A:

P(Bi|A) = P(A|Bi)P(Bi)∑n
j=1 P(A|Bj)P(Bj)

. (3.5)

3.2 Combinatorics

In discrete (i.e. finite state) probability we must often count outcomes to arrive at proba-
bilities. The probability of the sum of the roll of two fair dice, for example, can be solved
by counting. The probablility of a full house in poker can also be solved by counting.
We need two tools: permutation and combination.

Permutation
Say we have a set of n distinct objects and wish to calculate the number of all possible
orderings. There are n objects from which we can choose to fill the first slot, n − 1

3.2 Combinatorics 25

objects from which we can choose the second slot, n − 2 objects from which we can
choose to fill the third slot, and so on until there is only one object to choose to fill the
last slot. The number of possible orderings is then

n! = n × (n − 1) × (n − 2) × · · · × 2 × 1. (3.6)

Consider the case where we want to count the number of possible orderings of r
objects from a set of n distinct objects. Similar to the above reasoning, there are n objects
from which we can choose to fill the first slot, n − 1 objects from which we can choose
the second slot, n − 2 objects from which we can choose to fill the third slot, and so on
until there are n − r + 1 objects from which to fill the rth slot. This is denoted as P(n, r)
and is defined as

P(n, r) = n!
(n − r)! . (3.7)

Combination
Now consider the case where we are interested in the number of possible sets of size r
objects from a set of n distinct objects. In permutation we are interested in the order of
the objects in the set, whereas in combination we are not interested in the order. Back
to the poker example: the presence of the cards in the hand is what defines the hand.
The order in which the cards were dealt is irrelevant. Accounting for this reduction we
simply divide the number of permutations by r! to arrive at the definition of combination.
This quantity is so often used that it has its own shorthand name: “n choose r”:

C(n, r) =
(

n

r

)
= n!

r!(n − r)! . (3.8)

This makes sense because, to arrive at the number of sets of size r, we need only to
account for the permutation of set size r for each unique set. Hence, we have the number
of permutations of size r divided by the permutation of each set of size r. Seen another
way,

P(n, r) = C(n, r)r!. (3.9)

that is, if we multiply the number of unique sets of size r by the number of permutations
of each of those sets, we arrive again at the number of permutations of r objects drawn
from a set of n unique objects.

Example
Poker Let’s look at some examples from poker to get familiar with the logic behind
discrete probability. To calculate the probability of any given poker hand we must know
how many poker hands there are. The deck has 52 cards, and a player is dealt a hand of
five cards. Since the order of the cards dealt in the hand does not matter, we calculate
the number of unique poker hands as 52 choose 5:

N =
(

52

5

)
= 52!

5!(52 − 5)! = 2, 598, 960. (3.10)

26 Financial Statistics

Now that we know the total number of poker hands, we can calculate the probability
of a given hand. Let’s calculate the probability of four aces. Since the four aces account
for four out of the five cards in the deck, we have 52 − 4 = 48 cards left in the deck to
deal, any of which will result in a four-ace hand:

P(four aces) = 48

2, 598, 960
. (3.11)

Let’s now calculate the probability of a four-of-a-kind. In this case we are interested
not only in the four aces, but in four of any single face. There are 13 faces and one way
to get any of the 13. After the four equal face cards are dealt, we have 48 leftover cards
from which to choose the fifth card for the hand.

P(four of a kind) = (13)(48)

2, 598, 960
. (3.12)

With a basic intuition developed, we can turn toward to the calculation of more com-
plex hands; say, a hand with a single pair. Now, for a hand to have a single pair it must
have one pair and only one pair: we have the pair face and the other three cards must be
of different faces and not the pair face. So it follows that we have 13 possibilities for the
pair face,

(4
2

)
ways of choosing the pair,

(12
3

)
ways of choosing the non-pair faces, and 43

ways of choosing those three cards from the non-pair faces. This gives the probability
of a pair hand as

P(one pair) = 13
(4

2

)(12
3

)
43(52

5

) , (3.13)

and we can calculate the probability of a hand having a single pair as

> 13*choose(4,2)*choose(12,3)*4^3 / choose(52,5)
[1] 0.422569

So the chance of a player getting a pair is pretty high: 42.26%. A two-pair occurs when
we observe two pairs of two different face cards. There are

(13
2

)
possibilities for the

two-pair faces,
(4

2

)2
ways of choosing the two pairs, 11 ways of choosing the last non-

two-pair face, and four ways of choosing the suit of the non-two-pair faces. This gives
the probability of a two-pair as

P(two-pair) =
(13

2

)(4
2

)2
(11)(4)(52

5

) , (3.14)

which can be calculated as

> choose(13,2)*choose(4,2)^2*11*4 / choose(52,5)
[1] 0.04753902

A three-of-a-kind has three of a single face with the last two card faces not matching
the three faces and not matching each other. So there are 13 possibilities for the pair
face,

(4
3

)
ways of choosing the pair,

(12
2

)
ways of choosing the non-pair faces, and 42

3.2 Combinatorics 27

ways of choosing those two cards from the non-three faces. This gives the probability
of a three-of-a-kind as

P(triple) = 13
(4

3

)(12
2

)
42(52

5

) . (3.15)

Building on the pair and three-of-a-kind, let’s calculate the probability of a full house.
A full house is a hand with three matching faces of one suit and two matching faces of
another suit. There are 13 possibilities for the three face,

(4
3

)
ways of choosing the three,

12 ways of choosing the pair face, and
(4

2

)
ways of choosing those two cards from the

pair. This gives the probability of a four of a kind as

P(full house) = 13
(4

3

)
12
(4

2

)
(52

5

) . (3.16)

While we have already the probability of a four-of-a-kind, we include it here for
completeness. A four-of-a-kind has four of a single face with the last card face not
matching the four face. We have 13 possibilities for the pair face,

(4
4

)
ways of choosing

the pair,
(12

1

)
ways of choosing the non-pair faces, and 41 ways of choosing those two

cards from the non-four faces. This gives the probability of a four-of-a-kind as

P(four) = 13
(4

4

)(12
1

)
4(52

5

) . (3.17)

In a straight we have five faces in order, of any suit. There are 10 ways to pick the
sequence of faces and 45 ways of picking the suits of the straight. From (10)45 we must
subtract the number of straight flushes to prevent double counting:

P(straight) = (10)45 − (4)(10)(52
5

) . (3.18)

A flush has all five cards of the same suit. There are four suits to choose from, and for
each suit there are

(13
5

)
possible combinations. From 4

(13
5

)
we must subtract the number

of straight flushes to prevent double counting:

P(flush) = 4
(13

5

) − (4)(10)(52
5

) . (3.19)

In a straight flush we have a sequence of face cards all of the same suit. There are
ten such sequences for a given suit, and four suits, which yields the probability of
a straight flush. Again, from (4)(10) we must subtract the number of royal flushes to
prevent double counting:

P(straight flush) = (4)(10) − 4(52
5

) . (3.20)

A royal flush is a straight with face cards of 10, J, Q, K, A. There only four such
hands: one for each suit. This gives us the probability of a royal flush as

P(royal flush) = 4(52
5

) . (3.21)

28 Financial Statistics

No hand:

P(no hand) =
[(13

5

) − 10
]

(45 − 4)(52
5

) . (3.22)

Conditional aces:

P(4 aces in 4 cards|i aces in i cards) = P({4 aces in 4 cards} ∩ {i aces in i cards})
P(i aces in i cards)

(3.23)

= P({4 aces in 4 cards})
P(i aces in i cards)

. (3.24)

P(i aces in i cards) =
(4

i

)
(52

i

) . (3.25)

P(4 aces in 4 cards|i aces in i cards) (3.26)

= 1(52
4

) (4
i)

(52
i)

=
(52

i

)
(52

4

)(4
i

) (3.27)

= (4 − i)48!
(52 − i)! = 1(52−i

4−i

) . (3.28)

Example
Independence Want to show for two events A and B

P(A|B) = P(A|Bc)

if and only if A and B are independent? First some intuition. Say event A is “I get hit
by a truck” and event B is “I am wearing khakis.” If we can show that the probability
that I get hit by a truck given I am wearing khakis is equal to the probability that I get
hit by a truck given I am not wearing khakis, then it follows that getting hit by a truck
has nothing to do with wearing khakis, both intuitively and statistically (independence).
Conversely, say the events are independent; then it must follow that the probability of
getting hit by a truck is the same regardless of whether or not I am wearing khakis.

To demonstrate this more formally, we must first recall the law of conditional
probability, namely that

P(A|B) = P(A, B)

P(B)
.

Also, recall that events A and B are defined to be (statistically) independent if

P(A, B) = P(A)P(B).

From basic probability we know that

P(Bc) = 1 − P(B),

3.2 Combinatorics 29

which says that the probability that I am not wearing khakis is one minus the probability
that I am wearing khakis.

We also know from basic probability that

P(A) = P(A, B) + P(A, Bc),

which says that if hit by a truck, then either I am wearing khakis or I am not wearing
khakis.

So back to our problem. By hypothesis we know that

P(A|B) = P(A|Bc).

By conditional probabilities we have

P(A, B)

P(B)
= P(A, Bc)

P(Bc)
,

so then by cross multiplying

P(A, B)P(Bc) = P(A, Bc)P(B)

and substituting

P(A, B)[1 − P(B)] = [P(A) − P(A, B)]P(B)

we have

P(A, B) − P(A, B)P(B) = P(A)P(B) − P(A, B)P(B)

with cancellation yielding

P(A, B) = P(A)P(B),

which is the definition of independence.

Example
Birthday Paradox Question: How large must a group be to have a 50 percent chance of
at least one birthday match? Recall that

P(at least one match) + P(no matches) = 1,

which then implies

P(at least one match) = 1 − P(no matches),

so we are interested in the group size n such that

P(no matches) = 0.5,

since P(no matches) = 0.5 is easier to calculate.
Recall that since

P(A, B, C) = P(C|A, B) · P(A, B)

= P(C|A, B) · P(B|A) · P(A)

30 Financial Statistics

0.0 0.1 0.2 0.3 0.4 0.5
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0
x

1/
x,

ex
p(

−
x)

Figure 3.2 Approximating e−x with 1 − x.

we have

P(no matches) = P(no match in two) · P(no match in three|no match in two),

and since there are 365 days in the year, the above becomes

= 365

365
· 365 − 1

365
· 365 − 2

365
· · ·

= (1) · (1 − 1/365) · (1 − 2/365) · · · .

Now recall the Taylor expansion of ex:

ex =
∞∑

n=0

1

n!xn

= 1 + x + 1

2
x2 + 1

3 · 2
x3 + · · ·

so that for small x:

e−x ≈ 1 − x.

We can see that this is true in Figure 3.2.
So then

P(no match) ≈ e0 · e− 1
365 · e− 2

365 · · ·
= e− 1

365

∑n
i=1 i = e− 1

365 · n(n+1)
2 = 0.5,

since
n∑

i=1

i = n(n + 1)

2
,

3.3 Mathematical Expectation 31

which in turn is true since
n∑

i=1

i = Area = n2

2
+ n

2
= n2 + n

2
= n(n + 1)

2
.

So we have

P(no matches) = e− n(n−1)
2·365 .

Set equal to 1
2 :

e− n(n−1)
2·365 = 1

2

and solve for n:

n2 − n = −2 · 365 · ln

(
1

2

)

using the quadratic formula.
Solving for n gives us 23. That is, a group size of only 23 gives a 50 percent chance

of having at least one birthday match in the group. This is much lower than most people
expect. Most think 100 to 200. Why is this? I myopically imagine the probability of
someone in the group having a birthday match with me, and ignore the outcomes in
which other group members have matches among themselves. This myopia is common
in how we perceive and react to probabilities and risk in general.

3.3 Mathematical Expectation

Expected value is one of the most fundamental concepts in statistics. We can come up
with an expected value of a series of events that have not happened by combining their
probabilities, p(x), with their outcome values, x. X is the random variable and x are its
possible outcomes.

In the discrete case, where the outcomes are enumerable, we define the mean and
variance as

E(X) =
∑
x∈S

xp(x) = μ

and

Var(X) = E[(X − E(X))2] =
∑
x∈S

(x − E(X))2 = σ 2.

In the continuous case, we define the mean and variance as

E(X) =
∫

xp(x)dx = μ

and

Var(X) = E[(X − E(X))2] =
∫

(x − μ)2p(x)dx = σ 2.

32 Financial Statistics

The standard deviation is defined to be the square root of the variance

σr = √
Var(r).

Two more moments of interest also involve expectation. The skewness is defined
to be

Skew(X) = E

[(
X − μ

σ

)3
]

.

The kurtosis is defined to be

Kurt(X) = E

[(
X − μ

σ

)4
]

.

The covariance of two random variables is an indication of how likely they are to
occur together:

Cov(X, Y) = E[(X − E(X))(Y − E(Y))] = E(XY) − E(X)E(Y)

Cor(X, Y) = E[(X − E(X))(Y − E(Y))]

E(X)E(Y)
= E(XY) − E(X)E(Y)

σXσY
.

The mean is a location parameter which places the distribution at a particular place
on a the horizontal axis. For example, moving μ from 0 to 1 will reposition the entire
distribution over to the right by one unit. The variance and its square root, the stan-
dard deviation, are scale parameters determining how wide the distribution will be.
For example, if the standard deviation is tripled, it will widen out the distribution by
a factor of 3. The skewness and kurtosis are shape parameters. The skewness tells
us the amount of symmetry. When zero, there is perfect symmetry. When negative,
there is left-skewness, where the tail on the left is elongated. When positive, there is
right-skewness, where the tail on the right is elongated. Like the mean, the skewness
is an odd-numbered moment, so the value can be positive or negative. The kurtosis
tells us how heavy the tails of the distribution are. A higher value means a heav-
ier tail. Interestingly enough, all normal distributions have the same kurtosis, and that
value is 3.

Example
St Petersburg Paradox Imagine the following game. You flip a coin until you get “heads.”
The payoff for the game is 2n where n is the number of flips before the first “heads.”
What are you willing to pay to play this game? Or equivalently, if you had a ticket to
play the game, what would you sell it for?

Let’s calculate the expected payout of the game.

E(payout) =
∑

n

payout(n)p(n) =
∞∑

n=0

2nP(N = n),

which in this case is

= 1 · 1

2
+ 2 · 1

4
+ 4 · 1

8
+ · · · ,

3.3 Mathematical Expectation 33

which is

= 1

2
+ 1

2
+ 1

2
+ · · · = ∞.

So the game’s value is infinite, but what are we willing to pay to play it? Assume
again the log utility of wealth: U(W) = ln W. Now, instead of expected wealth, let’s
calculate expected utility of wealth:

E(U(W)) =
∑

n

ln(W(n))p(n)

=
∑

n

(
1

2

)n+1

ln(2n)

= ln 2
∑

n

(
1

2

)n+1

n

= 0.693.

Since ln(2) = 0.693 and under certainty equivalence,

E(U(W)) = E(ln(W))

implies that

Wce = 2.

This is quite close to what the average person is willing to pay to play this game.
So we can conclude that the assumption of log-utility is not perfect, but it is a good
approximation.

Note that the game’s value is infinite, but we are willing to pay only a very small
amount to play. This opens up an arbitrage opportunity. Let’s say there was a firm that
was willing to buy your ticket and play for you. There are such firms, of course, and
they are called insurance companies. Let’s say a company bought the tickets from the
entire class; say 16 for the sake of discussion. What would the expected payout be?
What about the 90th percentile payoff? The 95th percentile payoff? The 99th percentile
payoff?

Example
Risk Aversion and Insurance As an application of the discrete expected value calcula-
tion, let us assume that you have a total wealth of 250,000, of which your house is worth
200,000. You are considering fire insurance for your house. The probability of fire in
a given year is 0.001, in which case the value of your house is reduced to zero. Your
liquid wealth is invested at the risk-free rate of 6 percent. Assuming you have log utility
of wealth, how much are you willing to pay for fire insurance?

Well, recall that 200,000 of your wealth is invested in your house, and 50,000 is
invested in the risk-free asset. Without insurance, the probability distribution of your
end-of-year wealth is

34 Financial Statistics

Probability Wealth

No fire 0.999 253,000
Fire 0.001 53,000

since in the risk-free asset we will have: 50, 000 · 1.06 = 53, 000.
Now find the expected utility, assuming U(W) = ln(W):

E(U(W)) =
∑

s

p(s)U(W(s))

= p(no fire)U(W(no fire)) + p(fire)U(W(fire))

= 0.999 · U(253, 000) + 0.001 · U(53, 000)

= 0.999 · ln 253, 000 + 0.001 · ln 53, 000

= 12.439582.

The (wealth) certainty equivalent of this expected utility is

e12.439582 = 252, 604.85,

since U = ln W is equivalent to W = eU .
With insurance, we can have certain year-end wealth, but we need to pay an insurance

premium P. We pay P out of liquid wealth at the beginning of the year. So we have
50,000 − P to invest in the risk-free asset at the beginning of the year. Since we are
insured, end-of-year certain wealth is

(50, 000 − P) · (1.06) + 200, 000.

To find the indifference premium, set end-of-year insured wealth equal to expected
wealth certainty equivalent:

(50, 000 − P) · (1.06) + 200, 000 = 252, 604.85.

Now solve for the premium P:

50, 000 − P = 252, 604.85 − 200, 000

1.06

P = 50, 000 − 252, 604.85 − 200, 000

1.06
= 372.78.

Compare the premium a representative agent is willing to pay to protect his/her house
to the insurance company’s expected cost: 0.001 · 200, 000 = 200. Note also that it
is critical how high a percentage of my total wealth is in my house. The higher the
percentage, the more I am willing to pay for insurance.

3.4 Sample Mean, Standard Deviation, and Variance 35

3.4 Sample Mean, Standard Deviation, and Variance

Going from the discrete to the continuous probabilities can be more challenging. For
those readers who have not had (or who wish to review) major probability distributions
and some statistical analysis, please see the Appendix.

All probability distributions have parameters which characterize them. For example,
most have a mean. The mean is known as the first moment of the probability distribution.
Each probability distribution can be sampled. There are sample moments corresponding
to the moment of the probability distribution.

By using the sample moment which is the unbiased estimator of the moment of a
probability distribution, we can estimate a key parameter from a sample (Hogg and
Craig, 1978). For the sample mean, we can estimate the theoretical mean of a sample. In
the case of log returns of prices, finding the mean can tell an investor whether the price
trend is upward or downward. By finding the sample standard deviation, known in the
markets as the historical volatility, an investor can tell whether an investment is too risky.

The most common estimator is the sample mean, which a very common estima-
tor. Finding it involves summing the data points in the sample and dividing by the
number of data points, N. We call random variables for the sample returns Ri where
Ri = log(Si/Si−1) for N + 1 values S:

R̄ = 1

N

N∑
i=1

Ri, (3.29)

and can be found with the R function mean(). This can be shown to be true as seen
in the Appendix, Section A.14. The higher moments have sample estimators that use a
1/(N − 1) factor rather than a 1/N factor.

The historical variance, s2, and historical volatility, s, of a security, the standard devi-
ation of the sample log returns, are important in forecasting the scale of the prices
expected in the future. The latter of these two statistics is more commonly quoted in
practice and is often used to compute risk measures or by itself as a simple risk measure.
The historical volatility is the square root of the historical variance

s =
√√√√ 1

N − 1

N∑
i=1

(Ri − R̄)2 where R̄ = 1

N

N∑
i=1

Ri, (3.30)

and daily log returns are used and R̄ is the mean log return. This figure is usually dis-
cussed as an annualized amount in market circles, so the need to convert from daily to
annualized is satisfied by multiplying the variance by 252 days per year or, equivalently,
multiplying the volatility by the square root of 252:

s2
ann = s2

d(252) (3.31)

sann = sd
√

252. (3.32)

If the original prices for s were quoted weekly, then we use 52 instead of 252. And if
they are quoted every day, not just Monday through Friday, then we use 365 instead
of 252. As a financial analytics or risk professional, one of the more common tasks is
to find the historical volatility of a security of interest in order to simulate the potential

36 Financial Statistics

future market movements. It provides an objective measure of the security’s market risk.
Intuitively, if we know that the annual historical volatility for the Euro vs. US Dollar
goes from 10 percent down to 7 percent then we know that the market has become
quieter. If we know the existing annualized historical volatility, we know what to expect
in terms of up and down movements. We can set trading limits by establishing stop
limit orders based upon these expectations. We can also determine when those limits are
exceeded.

Here is R code which will compute annual historical volatility from a time series one
year long of daily or weekly prices.

> S = c(1.3,1.2,1.3,1.4,1.5,1.4,1.3,1.4,1.5)
> diffLogS = diff(log(S))
> diffLogSmean = mean(diffLogS)
> N = length(diffLogS)
> histVol = sqrt(1/(N-1)*sum((diffLogS-diffLogSmean)^2))
> annHistVol = histVol*sqrt(length(S))
> annHistVol
[1] 0.2296238

3.5 Sample Skewness and Kurtosis

The sample skewness is computed from the dataset. It can be calculated as

Skew(R) = 1

N

N∑
i=1

{
(Ri − R̄)

s

}3

. (3.33)

In R, the skewness(x) function from the moments library will use the moment method
above to compute the sample skewness.

The sample kurtosis is also computed from the dataset. It can be calculated as

Kurt(R) = 1

N

N∑
i=1

{
(Ri − R̄)

s

}4

. (3.34)

In R, the kurtosis(x) function from the moments library will use the moment method
above to compute the sample kurtosis. Examples of the use of the skewness() and
kurtosis() function will appear in Chapter 5.

3.6 Sample Covariance and Correlation

Correlation among securities in different times series becomes important when design-
ing portfolios. Just like in an athletic team, different securities in the portfolio “team”
are expected to do their part and “pick up” the portfolio return at different times. Since
each security will have a peak and valley at different times, studies have shown that
lower correlation is best. For example, we do not want the valleys to occur at the same
time, otherwise a large drawdown in the portfolio value will occur. When one security
is bottoming, the goal is to have another security pick up the portfolio value.

3.6 Sample Covariance and Correlation 37

The R language plotting utilities have the advantage of allowing users to visual-
ize equities markets’ random variables in any number of dimensions at once with the
plotting parameter command. The nine stock time series of Figure 3.3 from before are
equities with a log-normal distribution.

The log returns for the same nine time series are depicted in Figure 3.3. These are the
time series random variable that can be regarded as multivariate normal. In any case,
measuring correlation of prices is best done with log returns. As we saw earlier, log
returns are approximately normally distributed except for a higher frequency of extreme
values. In this case, we have p time series of length N each, (R1, . . . , Rp). Once again
we assume that Ri,j = log(Sij/Si−1,j). If we pick any two column series Rj and Rk, then
covariance and correlation matrices are defined as

� = Cov(Rj, Rk) = E
{
(Rj − R̄j)(Rk − R̄k)

}
(3.35)

Cor(Rj, Rk) = diag(�)
1
2 �diag(�)

1
2 (3.36)

where R̄j = 1

N

N∑
i=1

Ri,j and R̄k = 1

N

N∑
i=1

Ri,k. (3.37)

R code to compute covariance uses the cov() primitive. R is so statistically based
that covariance is native to the language. In Figure 3.4, the x and y axes are the row and
column values 1 through 9 for nine securities and the z value is the correlation coefficient
for the security pairs (x, y), with value range −1 to 1, covered in an upcoming section.
The “peak” green diagonal values appear to be in the foreground. Since the correlation
of each variable x with itself is 1, these are the highest values in the matrix. The third
random variable has the lowest correlation with the others, being close to zero, and this
is seen as the deep blue and “valley” representation.

Example
The basic idea of a portfolio is to place a set of securities into a basket with weights rep-
resenting the amount of investment in each. Each investment return is a random variable.
In the case of two investment returns, X and Y , if a and b are the investment weights, we
are interested in how the variance of the portfolio turns out.

Two random variables in a portfolio weighted by the factors a and b have the
following variance:

Var(aX + bY) = E(aX + bY)2 − E2(aX + bY)

= E(a2X2 + 2abXY + b2Y2) − E(aX + bY)E(aX + bY)

= E(a2X2 + 2abXY + b2Y2) − [E(aX) + E(bY)][E(aX) + E(bY)]

= a2E(X2) + 2abE(XY) + b2E(Y2) − a2E2(X) − 2abE(X)E(Y) + b2E2(Y)

= a2[E(X2) − E2(X)] + b2[E(Y2) − E2(Y)] + 2ab[E(XY) − E(X)E(Y)]

= a2Var(X) + b2Var(Y) + 2abCov(X, Y).

38 Financial Statistics

30
10

20
30

10
0

20
–2

0

0
10

–1
0

0
5

–1
0

0
5

–1
0

–5
5

–1
5

–5
5

15
–1

5

0
20

–2
0

0
20

–2
0

0
10

–1
0

40
20

30
10

15
25

5
70

90
50

30
40

50
20

50
80

20

40
60

20

0 500 1000

1 arii 2 uhs 3 abc

1500

0 500 1000

4 pfe

7 jpm

1 arii

4 pfe 5 mrk 6 xom

9 ge

5 mrk 6 xom

8 wfc 9 ge

2 uhs 3 abc

1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

0 500

7 jpm 8 wfc

1000 1500 0 500 1000 1500 0 500 1000 1500

Figure 3.3 Typical equities historical prices from 2008 through 2013. The 2008 and 2009 market downturn
in conjunction with the Great Recession is clearly seen, especially in the case of MRK, JPM,
WFC, and GE. Next, log returns of the same set of daily closing stock prices.

3.7 Financial Returns 39

2

4

6

8

8642

x

z
y 000001

024680

Figure 3.4 3D plot of the correlations of the stock log returns of Figure 3.3. Note the valley at the third row
and column. It indicates the lowest correlation and lowest covariance of the ABC company with
the other securities.

3.7 Financial Returns

In mathematical finance, the current price of an investment in a stock could be
represented as

S(0), S(1), . . . , S(t), . . .

with initial value S(0), which goes on into the future. Or the final value we are interested
in could be labeled at time T as in Figure 4.2. In this figure, we are concerned with the
value of S(t) for t in the range 0 to 44, where the unit of t is days.

Returns are the amount of gain or loss we have in an investment as time progresses.
When working with financial investments, measuring returns is critical. We would not
think of driving a car without a speedometer. We need this vital piece of information
for safety and planning our trip. Similarly, we need to objectively examine our current
returns, returns of the past, and expected returns in the future. Let our Ss be random
variables representing prices in our country’s currency. The book by Ruppert has a
quintessential definition for returns which we discuss here (Ruppert, 2011).

Gross returns are

Rg(t) = S(t)

S(t − 1)
.

Gross returns which represent gains are always greater than 1.
Net returns are

r(t) = S(t)

S(t − 1)
− 1.

Net returns which represent gains are always greater than 0.

40 Financial Statistics

Log returns are

R(t) = log(1 + r(t)) = log

(
S(t)

S(t − 1)

)
= log(S(t)) − log(S(t − 1)),

where log is natural logarithm. The log() function does not reorder values given to it.
It is monotonically increasing in the sense that if x > y then log(x) > log(y). For log
returns, if S(t) = S(t − 1) then S(t)/S(t − 1) = 1. The log() function maps this 1 to 0
so, like net returns, zero is the threshold. For log returns, gains are always greater than
0. We will be using log returns for most of the automated processing in the R language,
so we reserve the letter R for those.

3.8 Capital Asset Pricing Model

In the Capital Asset Pricing Model (CAPM), we assume the return on stock ri takes the
form

ri = αi + βirM + ei,

where αi is stock i’s excess return when the market return is zero. It is the expected
amount by which stock i is expected to “beat” the market. The parameter βi is the sensi-
tivity of stock i’s return to the market return rM , and ei is the idiosyncratic component of
stock i which is normally distributed with mean zero. Taking expectation of both sides
gives

E(ri) = E(αi + βirM + ei)

= E(αi) + E(βirM) + E(ei)

= αi + βiE(rM).

Calculating the variance of the return yields

σ 2
i = Var(ri)

= Var(αi + βirM + ei)

= Var(αi) + Var(βirM) + Var(ei)

= β2
i Var(rM) + Var(ei)

= β2
i σ

2
M + σ 2(ei).

Now let’s find the covariance between the returns of two stocks i and j:

Cov(ri, rj) = Cov(αi + βirM + ei,αj + βjrM + ej)

= Cov(αi,αj) + Cov(βirM ,αj) + Cov(ei,αj)

+ Cov(αi,βjrM) + Cov(βirM ,βjrM) + Cov(ei,βjrM)

+ Cov(αi, ej) + Cov(βirM , ej) + Cov(ei, ej)

= βiβjCov(rM , rM)

= βiβjVar(rM)

= βiβjσ
2
M ,

3.8 Capital Asset Pricing Model 41

which says that the covariance of the returns of the two stocks is equal to the market
variance times the two beta factors for each stock. We can carry out a CAPM calculation
for Apple AAPL. Using the RSQLite package, after connecting to the database, we load
monthly return data for Apple AAPL and the S&P 500 SPY. Then we extract returns
AAPL to the variable x and S&P 500 returns to y.

> library(RSQLite)
> library(foreign)
> setwd(paste(homeuser,"/FinAnalytics/ChapXII",sep=""))
> funda <- read.dta("funda.dta")
> msf <- read.dta("msf.dta")
> con <- dbConnect(SQLite(),":memory:")
> dbWriteTable(con,"funda",funda,overwrite=TRUE)
> dbWriteTable(con,"msf",msf,overwrite=TRUE)
> command <- "SELECT tsymbol,ret
+ FROM msf
+ WHERE date BETWEEN '2005-01-01' AND '2013-12-31'
+ AND tsymbol IN ('AAPL','SPY')"
> result<-dbGetQuery(con,command)
> y<-result[result$tsymbol=='AAPL',]$ret
> x<-result[result$tsymbol=='SPY',]$ret

We can calculate βAAPL both as a ratio of covariance to variance and then by noting
the linear component of the linear fit. We will use the regression function from R, known
as lm(). The Appendix has more about regression.

> cov(x,y)/var(x)
[1] 1.219438
> summary(lm(y~x+1))
Call:
lm(formula = y ~ x + 1)

Residuals:
Min 1Q Median 3Q Max

-0.267367 -0.057082 0.004689 0.051996 0.196984

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.02446 0.00857 2.853 0.0052 **
x 1.21944 0.19374 6.294 7.11e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08807 on 106 degrees of freedom
Multiple R-squared: 0.2721, Adjusted R-squared: 0.2652
F-statistic: 39.62 on 1 and 106 DF, p-value: 7.106e-09

Note also that we observe a statistically significantly positive α for Apple. This is
rare. The CAPM claims that normally α = 0.

42 Financial Statistics

−0.15 −0.10 −0.05 0.00 0.05 0.10

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

x

y

Figure 3.5 Relationship between the stock AAPL on the y-axis and the S&P 500 Index, SPY, on the x-axis.

> shapiro.test(x)

Shapiro-Wilk normality test

data: x
W = 0.96002, p-value = 0.002527

> shapiro.test(y)

Shapiro-Wilk normality test

data: y
W = 0.96924, p-value = 0.01323

> plot(x,y)

Above, we check for normality of monthly returns using the Shapiro–Wilk test. With the
p-value less than 0.05, we will reject normality for both and plot to illustrate the positive
return relationship in Figure 3.5.

3.9 Exercises

3.1. Sales of industrial earth movers X in a given month follow the probability function

p(x) =

⎧⎪⎪⎨
⎪⎪⎩

0.7 for x = 0

0.2 for x = 1

0.1 for x = 2.

(3.38)

Calculate the expected value, variance, and standard deviation of monthly sales.

3.9 Exercises 43

3.2. The proportion of time a server is operating during a given 24-hour day is given as

f (x) =
{

2x for 0 ≤ x ≤ 1

0 elsewhere.
(3.39)

(a) Calculate the expected value and variance of X.

(b) Find the probability that the server is operating for less than six hours out of a
given 24-hour day.

(c) The profit Y from operating the server is a function of the operating time such
that Y = 5X − 2. Calculate the expected value and variance of the profit.

3.3. The time (in years) to failure of a brand of golf cart battery is described by the
following probability density function

f (x) =
{

1
2 e−2x for x ≥ 0

0 elsewhere.
(3.40)

(a) Calculate E(X) and E(X2). Use the fact that Var(X) = E(X2) − E2(X) to
calculate the variance of X.

(b) Find the probability that the golf cart battery lasts for more than three years.

(c) Find the probability that the golf cart battery lasts for less than one year.

3.4. Refer to Section 3.6 for the variance of a weighted portfolio of two stock val-
ues. Now derive the formula for the variance of three stock values, weighted by
constants a, b, and c. Use X, Y , and Z as your random variables.

4 Financial Securities

The benefit of studying securities along the lines of this chapter is a better understand-
ing of the relationships between the various securities in the financial markets. We begin
with some basic quantitative aspects of bonds and stocks and then move to a narrative
about events from recent history. Many of us were impacted by these adverse events.
If we were not affected, we probably know somebody, maybe a good friend or loved
one, who was: they lost their retirement nest egg or their job. As we look back on these
stories, we can see why having financial analytic skills in our background can help us.
We need to understand the individual security statistical behaviors and their interrela-
tionships: this is key in the complex world we live in. Indeed, just to manage our own
portfolio toward our children’s future school funding, budgeting for an aging relative
or our own eventual retirement, requires this knowledge, especially in these days of
minimal return on savings accounts.

There are many stories of fortunes made and lost in securities trading. From our per-
sonal experience, on a business trip from Chicago to New York, a Chicago-based taxi
driver was asking questions about securities markets and seemed to know quite a bit
about them. As the luggage was retrieved from the taxi cab trunk at the airport drop-off
spot, he revealed that he busted some years back in the volatile Chicago commodities
markets and needed to find a new way to make a living: from trader to taxi driver. This
can happen.

In the past few decades, securities price discovery has gone from human conver-
sations, often loud and dynamic, to quiet devices sending signals over a computer
network. Securities are different from most products we encounter in that their prices
fluctuate continuously during trading hours. Therefore, analyzing securities prices is a
study of random processes. The mathematical study of randomness predates our modern
investment banks and computerized exchanges.

We will distinguish between the most basic securities whose prices are quoted –
underlying securities – and those securities whose value is derived from those basic
securities – derivative securities. Basic securities include stocks, bonds, and spot com-
modities which are priced in the present. Their prices can be found directly without
much in the way of special algorithms, but derivative security prices introduce another
level of complexity since they move relative to the underlying security prices, volatility,
and time to expiry.

The focus of this chapter will be on basic securities. A large portion of stock market
transactions use basic securities, so establishing an analytical foundation with these is a
priority.

The most basic financial instruments and the most common investment securities are
bonds and stocks. With a bond, the purchaser of the bond – the bond holder – is holding

4.1 Bond Investments 45

a certain amount of debt of the bond issuer. The bond issuer owes the bond holder from
the time of purchase until the time of maturity. The bond issuer can be a sovereign entity,
such as a local or national government, or a corporation. The issuer may be obligated
to pay the bond holder periodic payments, for example, semi-annually, which is a per-
centage of the overall or “notional” amount in addition to a full payment at maturity.
This type of bond is called a coupon bond. A zero-coupon bond, however, involves no
periodic payments; only a repayment at the time of the bond maturity. The idea, in either
case, is that the purchaser is expecting to gain value through the income provided by the
coupons and through the increase in the final bond value when compared to the original
purchase price.

With a stock, the stock purchaser or owner is buying a small piece of the corporation,
determined by the number of shares. Unlike the bond, there is an unlimited time period
to hold the stock. There is no time of maturity. Since stocks are traded actively in the
stock market, the price per share will fluctuate quite rapidly as buyers and sellers are
trading shares and determining the price by the rules of supply and demand.

Both bonds and stocks also have what are known as derivatives. These are securities
which always have a time of maturity, also known as their expiration date. Derivatives
derive their value from the value of the underlying security on which they are based.
The derivatives are contracts to buy or sell the bonds or stocks at a particular value by a
certain date. Although there will be discussion of bonds, most of this book will concern
itself with stock securities. Derivative securities will be discussed later in this book,
beginning in Chapter 14.

4.1 Bond Investments

Having introduced bonds above, one question we would like to concern ourselves with
is how to calculate a bond’s value. If a bond’s coupon payments are every six months,
the interest rate, r, is typically fixed throughout the life of the bond. If one purchases and
becomes the owner of a bond, we say they are long the bond. The bond seller is then
short the bond. The bond has a limited period of coupon payments. In mathematical
terms,

Bond Value = Present value of coupons + Present value of par (4.1)

BVann =
T∑

t=1

C

(1 + r)t
+ P

(1 + r)T
(4.2)

BVsemi =
2T∑
i=1

C

(1 + r
2)i

+ P

(1 + r
2)2T

. (4.3)

Note that, of all the coupon payments, the coupon payment and the par amount, P, are
the two quantities most discounted to today in that the interest rate (1 + r) is raised
all the way to the T . With zero-coupon bonds, there are no coupons in the Bond Value,
which leaves only Present value of par to be paid to the bond holder by the bond issuer
at maturity.

46 Financial Securities

10
0.

00

Years

r

50
0

B
on

d
V

al
ue

0.
06

0.
04

0.
02

20155 10
Years

20155 10
Years

20155

25
00

15
00

0

50
0

B
on

d
V

al
ue

25
00

15
00

0

Figure 4.1 20-year position in a semi-annual floating rate bond with rate r(t) which accrues value as
coupons and the principles are paid over time. On the left is the rate fluctuating in the interest
rates market. In the middle is the value of the zero coupon (C = 0) version of it. On the right is
the coupon bond value accruing at a variable pace, depending upon discounting, determined by
the rate.

A common type of bond is issued by the US Government treasury. Treasury-bills, or
T-bills, are short-term bonds with T ≤ 1 year. They do not pay interest before maturity.
The interest is the difference between the purchase price and the price paid either at
maturity (face value) or the price of the bill if sold prior to maturity. Treasury notes
and bonds are securities that have a stated interest rate that is paid semi-annually until
maturity. What makes notes and bonds different are the terms to maturity. Notes are
issued in T = 2-, 3-, 5-, and 10-year terms. Bonds are long-term investments with terms
of T > 10 years.

The value of a bond is a common application of opportunity cost. Once the bond
holder has purchased a bond at rate r, and the bond market continues to move, if the
prevailing rate goes up, the bond holder now holds a bond which is worth less. If the
bond holder’s rate r = 2% and the market moves to 3%, then we can calculate the value
of the original and newer zero-coupon 30-year bonds as follows:

> 1000/(1.02)^30
[1] 552.0709
> 1000/(1.03)^30
[1] 411.9868

The already-purchased bond is paying less than the current market rate. The inverse
relationship between a bond’s interest rate r and the Bond Value is clear from this
calculation. The interest rate went up, but the bond value went down.

This relationship can be seen graphically in Figure 4.1. Once again, the inverse rela-
tionship of the r(t) and the bond value can be seen if we match up movements, up
and down, in the left and right sides of the figure. The following R program simulates
r(t) the market rate fluctuating over time with a Gaussian distribution of N(μ = 0.03,
σ 2 = 0.00252). In the program, the bond value defined in Formula 4.3 is extended to
include coupon payments which have been paid in the past or accrued.

P<-1000
T<-20
r<-.06 #annual rate
C<-30

4.1 Bond Investments 47

BV <- function(P,C,r,t,T) {
#Finds coupon Bond Value at time t mat T
tmat <- T-t
acrued <- C*2*t #already paid
if(tmat != 0) { #include interim coupons

i <- seq(1,2*tmat)
acrued + sum(C/(1+r/2)^i) +

P/(1+r/2)^(2*tmat)
} else #no coupons left

acrued + P/(1+r/2)^(2*tmat)
}

Now that we have a function to find the bond value BV(), we can set our seed and
simulate r(t) using the rnorm() function to obtain Gaussian variates. We then loop to
simulate t from 0 to T . BV() implements our Formula 4.3 for BVsemi, the semi-annual
version, by doubling the time to maturity.

set.seed(437)
par(mfrow=c(1,3))
#Simulate rates market for r
rvec <- round(c(r,r+

rnorm(T)*.0050),4)
plot(rvec,type="l",ylim=c(0,.07),

xlab="Years",ylab="r",col=4)
points(rvec,col=4)
#Simulate PV of Bond at time t
simBV <- function(P,C,rvec,T) {

BVvec = rep(0,T)
for(t in 0:T) {

i = t+1
BVvec[i] <- BV(P,C,rvec[i],t,T)

}
plot(BVvec,type="l",col=4,ylim=c(0,2500),

xlab="Years",ylab="Bond Value")
points(BVvec,col=4)
BVvec

}
BV(P,C,r=.06,t=0,T=20)
BV(P,C,r=.06,t=1/2,T=20)
BV(P,C,r=.06,t=1,T=20)
BV(P,C,r=.07,t=1/2,T=20)
BV(P,C,r=.06,t=20,T=20)
BV(P,C,r=0,t=0,T=20)

C <- 0
simBV(P,C,rvec,T)
C <- 30
simBV(P,C,rvec,T)

While the prior code will simulate the interest rate and plot the bond value, the upcoming
code corresponds to “unit test” cases for checking the results of the bond value. Unit

48 Financial Securities

testing involves a very small number of lines of code to demonstrate a basic expected
property of a function. In many cases, these are one-liners as they are here. The function
tester, which may very well be the author of the function, needs to gain confidence that
basic elementary operation is correct.

> BV(P,C,r=.06,t=0,T=20)
[1] 1000
> BV(P,C,r=.06,t=1/2,T=20)
[1] 1030
> BV(P,C,r=.06,t=1,T=20)
[1] 1060
> BV(P,C,r=.07,t=1/2,T=20)
[1] 924.4875
> BV(P,C,r=.06,t=20,T=20)
[1] 2200
> BV(P,C,r=0,t=0,T=20)
[1] 2200

The final unit test case when time rates are zero (r = 0) illustrates what payments are
present when there is no discounting. The value of 2200 comes from the 40 payments
of 30 and the par value of 1000.

With bonds, there is one party who issues the bonds and is expected to make pay-
ments, the bond seller and bond issuer. The other party, the bond buyer and bond holder,
expects to receive the payments until final maturity. Default risk arises from potential
difficulties in making coupon payments or the final par value payment by the bond issuer.
Default risk is reflected as a portion of the rate r expected by the bond holding investors.
The rate is higher because of it.

4.2 Stock Investments

Unlike a bond, which is a loan to a company or government entity, a stock allows an
investor to buy a portion of a company. The stock market is one of the most dynamic
places to invest in terms of price movement, as the supply and demand for shares of the
company fluctuates on a daily, second, or even sub-second basis. If one purchases one
or more shares of stock, one becomes part owner of a company and is considered long
the stock. If the stock appreciates in value, then the long stock owner stands to profit or
gain if they decide to sell the stock.

It is also possible to sell a stock without owning it by borrowing the stock from a
brokerage house. In this case, the investor is short the stock. This is not as common, and
is considered a more risky investment than being long the stock.

In order to quantify stock prices as accurately as our methods will allow, securities
prices can be modeled as random variables over time. We designate the price of a stock
as being a random variable S, or more specifically, S(t). At the beginning of a trade, time
0, the stock prices is S(0), and at the end of the trade, time T , the stock price is S(T).
Our time increments here are days.

The stock trade for a long position of the security where the investor owns the security
during the trade. With a long position the investor profits when S(T) > S(0) by the

4.3 The Housing Crisis 49

0
10

20
0

Days

S
to

ck
 V

al
ue S(0) S(T)

40302010
98

00
99

00
10

00
0

10
10

0

Figure 4.2 45-day-long position on security S(t) with slight gain.

amount S(T) − S(0). When S(T) = S(0) there is no gain or loss. When S(T) < S(0)
the investor loses the amount S(0) − S(T). As the stock appreciates or depreciates in
value, as an investor, we have an unrealized gain or an unrealized loss, respectively.
When the trade is complete, if the stock position has been settled for a profit or loss,
we then have a realized gain or realized loss, respectively. In Figure 4.2, we have a
T = 45-day trade where there is a realized gain at time T . If the stock began the period
at 100 per share and we purchase, or “go long” 100 shares, then we have invested 10,000
at the outset. The following code will simulate a simple hypothetical long stock position
using the rnorm() generator to yield Gaussian variates:

#Stock position:
par(mfrow=c(1,1))
#Simulate rates market for r
T <- 45 #days not years
Svec <- round(c(1,1+1.1*

rnorm(T)*.0025),4)
SVvec <- 10000*Svec
plot(SVvec,type="l",col=4,ylim=c(9800,10200),

xlab="Days",ylab="Stock Value")
points(SVvec,col=4)
text(c(1,T),c(10050,10050),c("S(0)","S(T)"))

The stock trade for a short position where the security is borrowed so that it can be
sold to a buyer for the period of time 0 to T . With a short position the investor profits
when S(T) < S(0) by the amount S(0)−S(T). When S(T) = S(0) there is no gain or loss.
When S(T) > S(0) the investor loses the amount S(T) − S(0). Short positions are rarer
than long positions and are sometimes prohibited in investor accounts because they are
more complex operationally.

4.3 The Housing Crisis

Now that we have introduced some details about bond and stock investments, let’s con-
sider some of the recent events that have affected their value. The housing crisis was a

50 Financial Securities

near perfect storm of unfortunate situations. Let’s look at the historical set of events to
see how securities across markets affect each other. Collapse of the tech bubble in 2000
and the post-9/11 collapse in consumer spending led the US Federal Reserve Bank to
lower rates to near zero. This encourages a bubble in housing since a demand shock in
loans is chasing a relatively constant supply of housing. Everyone wants a bigger home
or to refinance their current home at the new lower rates. In addition, the government
helps make housing loans available in the sub-prime category. Sub-prime loans are those
with the highest chance of defaulting on payments.

Proliferation of sub-prime loans and demand from Wall Street for AAA securities
(those rated as having the least chance of defaulting on payments) leads to securitization
of loans. This is where agencies bundle together sub-prime loans into tranches. These
are known as Mortgage Backed Securities (MBS). The higher tranches are assumed
to have statistically AAA riskiness which means that the probability of default in one
year’s time is less, about 1 in 10,000.

Further down the line, investment banks are forced to keep some of the MBSs on
their balance sheet to align interests. These are called “skin-in-the-game” requirements.
Buy-back clauses are also used to force issuing banks to buy back the MBS if tranche
performance falls below a certain level. The US Federal Reserve Bank starts raising
rates, adjustable rate mortgages (ARM) reset to higher rates, and sub-prime mortgages
start defaulting. The problem is that default rates were much higher than anyone thought,
and, therefore, liabilities on investment banks’ balance sheets, due to buyback and skin
in game, grew faster and grew larger than anyone had anticipated.

How did this happen? Interest rates started to rise, leading to greater default rates
as people could no longer pay their mortgages. MBSs, which are less valuable as
underlying mortgages, then stopped performing. Investment bank balance sheets were
being financed with short-term commercial loans, which also see rising rates. Banks
assets started decreasing due to sub-prime mortgage under-performance. Liabilities are
increasing due to higher financing costs, so equity gets squeezed. Because of all this,
Lehman Brothers and Bear Stearns, two of the banks most involved with the MBS game,
went bankrupt.

The US Federal Reserve Bank stepped in to stem losses. It then started the Troubled
Asset Recovery Program or TARP. Banks, insurance companies, and others were able to
post MBSs with the Federal Reserve in exchange for government debt. This stabilized
banks’ capital bases. It also stopped the free fall in MBSs due to the vicious cycle of
margin calls, then wave of selling, then margin calls, then selling, and so forth. The
Federal Reserve has lowered rates again since to near zero. During 2012 most markets
showed signs of turning up after a five-year decline.

4.4 The Euro Crisis

The Euro currency was established in 1999 as the next step in European integration,
begun in the 1950s. Currencies were frozen and linked to each other in 1999. Prices
were dual-listed for a year and then the Euro rolled out in 2000. Citizens had a one-year

4.4 The Euro Crisis 51

window to turn in old currencies before those currencies were invalidated. This common
currency led to conversion of risk premiums across Europe. No longer does an insurance
policy need to consider currency risk when paying or collecting premiums. This resulted
in a boom in real estate across southern Europe, especially in Spain. The thinking was
that “convergence” would happen as Northern European capital flowed to Southern and
Eastern European markets.

Wages and productivity rose, corruption fell, economies became more similar and
interlinked within the common currency, and, in the story books, everyone lived happily
ever after. Needless to say, things didn’t work out this way. As happens many times in
economic cycles, things go through periods of boom and bust. Southern Europe over-
invested in housing, which is a non-productive asset. Total unit labor costs rose to the
point where they were 15 percent to 30 percent above German levels, which led to much
manufacturing being pushed out. The housing and financial crises hit, and growth in
southern Europe fell to recession levels. Benefits and government spending held steady
and so government deficits spiked.

In 2008 the housing crisis hit, and growth across the Mediterranean fell hard. From
2008 to 2010 Greece was in deep recession, social expenditures stayed high, and deficits
skyrocketed. The critical point is when a 100 percent debt to GDP ratio is reached. Once
over 100 percent, the economy needs to grow by at least the rate of interest or the ratio
spirals out of control. As a part of the European Union (EU), countries cannot devalue
their currency, which other countries can do; that is, print their way out.

Greek debt began to fall sharply as investors realized Greece would default. Spring
2010: markets start backing away from Greek debt. Let’s have a look at bond values
when considering Greek bonds and their present value, found by discounting:

• Initial yields of 7 percent produced a present value as follows: 1000/1.072 = 873.44
where the squared rate is due to two years of discounting.

• May 2011: annual yields on two-year Greek debt hit 40 percent: 1000/1.42 = 510.20.
• August 2011: annual yields on two-year Greek debt hit 60 percent: 1000/1.62 =

390.63.
• September 2011: annual yields on two-year Greek debt hit 87 percent: 1000/1.872 =

285.97.

We can see how the present value of bonds goes way, way down as the interest rate and
yields are rising. This inverse relationship will be covered more in an upcoming section.

So, the question may arise: why was the Greece problem such a big deal? It was
because of the structure of EU bailout funds and the composition of European bank
balance sheets:

• Spanish and Italian banks were heavily exposed to Greek debt.
• If Greece goes bust then part of the bailout must be paid by Spain and Italy.
• Another problem is that Italian and especially Spanish debt is too high for those

countries to pay their share of the Greece bailout and bail out their own banks.
• So the danger was that a Greek collapse would lead to a chain of events that would

force most of southern Europe to break away from the Euro.

52 Financial Securities

Now, if one were not a citizen of Greece, Spain, or Italy, and was, in fact, a citizen
of northern Europe, then perhaps one would not particularly care about these troubles.
Who cares? Just let them go, right? Well, not so fast:

• Germany’s trade surplus as a percentage of GDP is among the highest in the world.
Most economists attribute this to having a currency that is roughly 40 percent
undervalued.

• If most of southern Europe broke away from the Euro, the value of the Euro against
the dollar would shoot up.

• Having the US Dollar price of a BMW or Mercedes increase by 20 percent to 50
percent (depending on domestic labor proportion) over the course of a year is the last
thing Germany wants.

• And so we have the impasse.

Spain is among the hardest hit, with a housing overhang of 1.5 million units at the
height of the crisis. This was comparable to the US housing overhang, but the USA
has 300M/40M ≈ 7.5 times Spain’s population and 15T/1.477T ≈ 10 times Spain’s
GDP. Southern Europe could not devalue using Quantitative Easing (QE) to re-shore
manufacturing and reflate home prices as the USA has. They were stuck in the Euro.
So who benefits from the situation? Southern consumers and northern producers. Who
loses? Southern producers and northern consumers. This leads to the current situation
where, in Italy and Spain, industry is being hollowed out and youth unemployment is at
extreme (50 percent plus) levels.

So where does the Euro crisis go from here? The situation with Greece was touch and
go; now it is resolved. The Cyprus bailout was more ominous, with individual depositors
at a failed bank losing part of their deposits over 150,000 Euros. This set a new prece-
dent as it has never been done before. The elephant in the room is France. The French
economy is in deep recession and not showing signs of improvement. French housing
is looking at a significant fall. Economists predict a fall of 20 percent to 50 percent.
France is too big to bail out, which means that the only thing left is QE, which Germany
adamantly opposes. So this situation continues to develop and time marches on.

4.5 Securities Datasets and Visualization

With some discussion of these economic stories behind us, let us proceed into a very
specific technique for analyzing stocks: charting. Charting is the most common form
of visualization. Just like a geographical profile of a hillside or valley, one can easily
perceive the stock price activity from looking at a two-dimensional chart with time on
the horizontal axis and price on the vertical axis. In Figure 4.3, the Euro currency (EC)
from the foreign exchange or “Forex” market is plotted on a one-minute interval for one
month. These prices represent the number of US Dollars required to exchange for one
Euro at that instant in time.

Using the chart, one can make observations about the price behavior. We can see that
the price movement of EC can be quite erratic. There is a sudden 1 percent movement

4.5 Securities Datasets and Visualization 53

1.
31

1.
33

1.
35

E
C

0 5000 10000 15000 20000 25000

Minutes

Figure 4.3 Actual one-minute prices of EUR/USD for September 2013.

which occurs where the Euro strengthens against the US Dollar, going from about
1.3360 to 1.3500. This 0.0140 change is the kind of bullish move that a foreign exchange
speculator would appreciate if it has been forecasted and if they happen to be in the mar-
ket holding a long position. On the other hand, the speculator would be frustrated if they
had sold EC short or bought US Dollars and held on to that position through the move.

The following R routine takes a multivariate matrix of n × p prices and plots
them in rectangular display array with the R command for parallel plots: par(mfrow=
c(nrow,ncol)). It will be used frequently to help analysts visualize portfolios of securities
prices and log returns. In terms of our time-based random variable S(t), in this case, we
have p of these which can be expressed as (S1(t), . . . , Sp(t)) and are named prices.

displayCharts <- function(prices,lab,nrow=3,ncol=4,sleepSecs=4) {
Dims=length(prices[1,])
for(chartGrp in (1:ceiling(Dims/(nrow*ncol)))) {

print(chartGrp)
par(mar=c(3.82,1.82,1.82,0.82))
par(mfrow=c(nrow,ncol))
for(i in 1:(nrow*ncol)) {

j = ((chartGrp-1)*nrow*ncol+i)
if(j <= Dims) {

print(paste(j,lab[j]))
plot(prices[,j],type="l",xlab=paste(j,lab[j]))

}
}
Sys.sleep(sleepSecs)

}
}
#unit test
prices <- matrix(rep(1,10),nrow=5,ncol=2)
prices[3,] <- c(6,6)
prices[4,2] <- 2
lab <- c("X","Y")
displayCharts(prices,lab)

54 Financial Securities

In the displayCharts() function, the nrow and ncol refer to the plot display grid, not
the price data. lab is a vector of ticker symbols. In the unit test code below the function
definition, two dummy stocks X and Y make up this vector.

Often R packages contain embedded datasets for analysis. A package available for
R for machine learning, Higher-dimensional Undirected Graph Estimation, called huge,
contains a stockdata dataset which provides five years of daily closing prices for 452
stocks in the window January 1, 2003 to January 1, 2008 (Zhao, Liu, Roeder, Lafferty,
and Wasserman, 2012).

The best way to discuss the huge stockdata dataset is in the context of adjusting the
data for stock splits. We bring the stockdata into the R environment first.

library(huge)
data(stockdata)
D = length(stockdata$data[1,])
len = length(stockdata$data[,1])
prices = stockdata$data[,1:D]
lab = stockdata$info[1:D,1]

We may visualize the first ten stocks in the stockdata dataset by calling the display-
Charts() function.

> displayCharts(prices[,1:12],lab[1:12],sleepSec=30)

By setting sleepSec to 30 seconds, we have time to physically capture the first display
screen, pictured in Figure 4.4. Now we can see abrupt price movements, probably
needing data adjustments, for the MMM, ADBE, and AET charts.

80
10

0
12

0
14

0

0 200 600 1000

30
40

50
60

0 200 600 1000

35
40

45
50

55
60

0 200 600 1000

20

20
10

40
60

80

0 200 600 1000

1 MMM 2 ACE

30
40

30
40

10
5

15
20

80
40

12
0

50
60

70

0 200 600 1000

5 ADBE

30
40

50
60

0 200 600 1000

9 AFL

15
25

35

0 200 600 1000

10 A

40
60

80
10

0

0 200 600 1000

11 APD

30
40

50
60

0 200 600 1000

12 ARG

0 200 600 1000

6 AMD

0 200 600 1000

7 AES

0 200 600 1000

8 AET

3 ABT 4 ANF

Figure 4.4 Daily charts: first 12 securities of stockdata on the same scale, unadjusted for splits.

4.6 Adjusting for Stock Splits 55

4.6 Adjusting for Stock Splits

A stock split is an interesting event. When a stock’s price has appreciated greatly, split-
ting the common stock makes the price of a share more affordable to new investors.
The percentage ownership of the company does not change since the number of shares
is multiplied by the reciprocal of the split ratio. So in a 2-to-1 split, for example,
the price is cut in half while the investors are holding twice the number of shares.
A forward split such as this makes the shares more attractive to new buyers for two
reasons:

• the cost per share is more affordable;
• the commission per share is reduced since commission is based upon the number of

shares involved rather than the share price.

When buying 100 shares or fewer, the commission is traditionally a fixed amount.
Buying fewer than 100 shares increases the commission per share. If an investor can
only afford to buy 50 shares, they still must pay the commission for 100 shares. If the
stock undergoes a 2-for-1 split, however, then afterward the cost of 50 shares is for 100
shares as the cost per share was cut in half. This results in the commission per share
being the lowest that the investor could expect to pay.

While this scenario has been generally true over the years, with commission costs
declining in the last decade, the commission per share has become less important. For
this reason, some companies no longer split their stock in order to avoid administrating
the change. Companies like Priceline (PCLN) and Google (GOOG), which appreciated
greatly in price during 2010 to 2015, have not split their stock very often and the price
per share is in the multiple-hundred US Dollar range.

In any case, splits are still very common and so adjustments must be made to
the market price data. Normally a split is in the forward direction, like our example
where the split ratio is 2-for-1 or 3-for-2: a ratio greater than 1. However, a reverse
split can occur, usually after a stock has depreciated in price. Citigroup, for exam-
ple, went through a 1-for-10 reverse split in 2013 in order to reduce the number of
outstanding shares that investor reports show. In a reverse split, the split ratio is less
than 1.

A classic case of a reverse stock split is JDS Uniphase, a high-technology com-
pany involved in optical networking, in their 2006 announcement. The announcement
explains the rationale for the split to investors (JDSU, 06):

JDSU Announces 1-For-8 Reverse Stock Split

Milpitas, California, September 21, 2006 - JDSU today announced that
its Board of Directors has approved a 1-for-8 reverse split of its
common stock, following approval by the Company's stock-
holders on December 1, 2005. The reverse stock split will be
effective at 11:59 pm, Eastern Time, on Monday, October 16,
2006. JDSU's common stock will begin trading on the NASDAQ on
a split adjusted basis when the market opens on Tuesday, Octo-
ber 17, 2006, under the temporary trading symbol "JDSUD". The

56 Financial Securities

trading symbol will revert to "JDSU" after approximately twenty
trading days.

JDSU's reverse stock split is intended to enhance investors'
visibility into the Company's profitability on a per share basis.
The Company also believes that a higher share price could broad-
en JDSU's appeal to investors, in addition to reducing per share
transaction fees and certain administrative costs.

The reverse split will reduce the number of shares of the Comp-
any's common stock outstanding from approximately 1.7 billion
to approximately 211 million. Furthermore, proportional ad-
justments will be made to JDSU stock options and other equity
incentive awards, equity compensation plans and convertible
notes. The number of authorized shares of common stock will be
reduced from 6 billion to 1 billion.

In this 1-for-8 reverse split, if the number of shares of common stocks becomes 211
million, then eight times that, or 1.688 billion, appears to be the original number of
shares.

Often, only the prices are available in the time series and either the dates are provided
or they are implied for each price. Data for announced stock splits and the split ratio
are often not easily available. If the price data is not split-adjusted already in the freely
available historical data, and there is no available source of split event information, one
can use R’s vector, matrix, and plotting features to inspect the dataset:

1. Monitoring time series: manually inspecting unexplained jumps;
2. Data adjustment: adjusting for stock splits by automatically detecting and correct-

ing them.
The need to perform data cleaning becomes apparent by using one of R’s strongest

tools: its plotting capabilities. For the huge stockdata, an equity chart is displayed in
Figure 4.4, and it becomes obvious that unexplained price changes are present in the
data. These are not sudden price movement, but rather unadjusted stock splits, and they
appear as jumps in the price charts.

Stock splits are the most common cause of such an event, but the effect of earnings
announcements can look very similar on a chart. The key is to be able to discern between
the two events as stock splits must be adjusted by smoothing the prices over the day of
split for a consistent chart.

In large datasets, many stock split ratios are present, so transformation rules must be
written. For example, a sudden jump in the chart for Comcast (ticker symbol CMCSA) in
Figure 4.5 appeared to be an earnings announcement but, after further investigation via
the internet, is was discovered that there was a 3-for-2 split event during the timeframe in
question, resulting in a much smoother transformed second chart, depicted in Figure 4.6.
Without adjustment, the initial chart results in incorrect return and volatility calculations.
We discuss how to compute volatility in Chapter 3.

The following routine adjusts the prices vector by finding the multiplier and
applying it:

4.6 Adjusting for Stock Splits 57

splitAdjust <- function(prices,symbol) {
len = length(prices)
origFinalPrice = prices[len]
for(j in 2:len) {

split = 0
#print(paste(prices[j-1],prices[j]))
if(prices[j-1] >= 1.4*prices[j]) {

split = +1.5 # a 3 for 2
if(prices[j-1] >= 1.8*prices[j])

split = +2 #At least a 2 for 1
if(prices[j-1] >= 2.9*prices[j])

split = +3 #Ah a 3 for 1
if(prices[j-1] >= 3.9*prices[j])

split = +4 #Ah a 3 for 1
if(prices[j-1] >= 4.9*prices[j])

stop(paste(symbol,'detected more than 4:1 split'))
print(paste("split adjusting",symbol,split,

j,prices[j-1],prices[j]))

0

45

CMCSA

Index

pr
ic

es
[,

10
2]

12001000800600400200

20
25

30
35

40

Figure 4.5 A chart for the Comcast security, CMCSA, unadjusted.

0

30

CMCSA

Index

ad
jp

16
18

20
22

24
26

28

12001000800600400200

Figure 4.6 A chart for the Comcast security, CMCSA, adjusted after a 3-for-2 price split.

58 Financial Securities

Our rules above handle the case that the stocks becomes worth less in value: a split. A
reverse split is when the stock becomes worth more in value than before the day of the
split. Common reverse splits that we have seen in our dataset form rules below:

} #reverse splits: price increases so divide
if(prices[j-1] <= prices[j]/1.4) {

split = -1.5
if(prices[j-1] <= prices[j]/1.9 &&

prices[j-1] >= prices[j]/2.1)
split = -2

if(prices[j-1] <= prices[j]/2.9 &&
prices[j-1] >= prices[j]/3.1)

split = -3
if(prices[j-1] <= prices[j]/5.8 &&

prices[j-1] >= prices[j]/6.2)
split = -6

if((prices[j-1] <= prices[j]/7.7) &&
(prices[j-1] >= prices[j]/8.3))

split = -8
if((prices[j-1] <= prices[j]/9.7) &&

(prices[j-1] >= prices[j]/10.3))
split = -10

if((split == 0) && (prices[j-1] <= prices[j]/2.9))
stop(paste(symbol,

'detected more than double reverse split'))
print(paste("reverse split adjusting",j,symbol,j,

split,prices[j-1],prices[j]))
}

Now that the split amount has been determined, it can be applied to the prices vector;
dataset form rules below:

if(split != 0) {
for(k in j:len) { #adjust all prices to right from j:len

if(symbol=="C")
prices[k] = prices[k]/10 #hard coded for Citi

else if(split == +1.5)
prices[k] = 1.5*prices[k] # 3 for 2

else if(split == +2)
prices[k] = 2*prices[k] # 2 to 1

else if(split == +3)
prices[k] = 3*prices[k] # 3 to 1

else if(split == +4)
prices[k] = 4*prices[k] # 4 to 1

else if(split == -1.5)
prices[k] = prices[k]/1.5 # 2 to 3 rev

else if(split == -2)
prices[k] = prices[k]/2 # 1 to 2 rev

else if(split == -3)
prices[k] = prices[k]/3 # 1 to 2 rev

else if(split == -6)

4.6 Adjusting for Stock Splits 59

prices[k] = prices[k]/6 # 1 to 8 rev
else if(split == -8)

prices[k] = prices[k]/8 # 1 to 8 rev
else if(split == -10)

prices[k] = prices[k]/10 # 1 to 10 rev
else stop('splitAdjust internal error')

}
}

}
finalPrice = prices[len]
return(prices*origFinalPrice/finalPrice)

}
#unit test:
p <- c(3.0,3.0,2.0,11.88,5.9,1.95,3.90,3.90,

1.5,.75,1.00,1.2,1.4,1.8,2.1,1.05,1.30,1.31,1.32,.44,
.43,.11,.12,.13)

sap <- splitAdjust(p,"SYM")
plot(p,type='l',ylim=c(0,15)); points(sap,col=4)

Now we can examine our example of a 1-to-8 reverse split, JDSU, and use splitAdjust()
in a test:

> JDSUidx <- match('JDSU',lab)
> plot(prices[,JDSUidx],type='l',xlab='JDSU')
> adjp<-splitAdjust(prices[,JDSUidx],c('JDSU'))
[1] "reverse split adjusting 956 JDSU 956 -8 2.13 16.6"
> plot(adjp,type='l',xlab='JDSUadj')

which produces the before and after plots of Figures 4.7 and 4.8.
The code for findR() appears below. It finds the log returns for the D price series. We

use the super-assignment operator to side-affect D in addition to returning the log return
matrix, R:

findR <- function(prices,isSplitAdjusted=TRUE) {#Find R: logrets:
len = dim(prices)[1]
D <<- dim(prices)[2]
R = matrix(nrow=(len-1),ncol=D)
for(i in 1:D) {

#print(i)
if(!isSplitAdjusted) prices[,i] <<- splitAdjust(prices[,i],lab[i])
R[,i] = 100*diff(log(prices[,i])) ###log rets

}
R

}

Now that we have tested out our split adjustment utility to correct the non-adjusted
stock time series, we can invoke it to correct those elements of the prices matrix. We use
findR() with isSplitAdjusted == FALSE to invoke splitAdjust():

60 Financial Securities

> R <- findR(prices,isSplitAdjusted=FALSE)
[1] "split adjusting MMM 2 188 140.54 69.07"
[1] "split adjusting ADBE 2 603 62.72 32.42"
[1] "split adjusting AET 2 553 147.71 74.76"
[1] "split adjusting AET 2 790 202.5 99.42"
[1] "split adjusting AGN 2 1127 114.47 58"
[1] "split adjusting ABC 2 755 83.77 41.48"
...
[1] "reverse split adjusting 956 JDSU 956 -8 2.13 16.6"
...
[1] "reverse split adjusting 114 PCLN 114 -6 4.24 25.22"
...
[1] "split adjusting YHOO 2 343 53.53 27.08"
[1] "split adjusting YUM 2 1129 64.57 32.37"
> D <- dim(prices)[2]
> D
[1] 452

0

10

JDSU

Index

pr
ic

es
[,

22
5]

20
15

5

12001000800600400200

Figure 4.7 A chart for the JDS Uniphase security, JDSU, unadjusted. Clearly there is an extreme event
before day 1,000 that should be investigated.

0

45

JDSU

Index

ad
jp

10
15

20
25

30
35

40

12001000800600400200

Figure 4.8 A chart for the JDS Uniphase security, JDSU, adjusted after a 1-for-8 reverse price split. When
matched against Figure 4.7 we can see the similarity, after adjusting the scaling for the time of
the split.

4.7 Adjusting for Mergers 61

To build our confidence that the 1-for-6 split for PCLN really happened, we can scan the
internet and find several references to this split. It occurred on May 6, 2003 according
to the CNBC site (Spechler, 2011). In fact, the article focuses on a number of securities
which did quite well from a common stock price point of view after undergoing a reverse
split. As we will see in the charts of upcoming chapters, PCLN is no exception to this
trend.

4.7 Adjusting for Mergers

Mergers and acquisitions occur continuously and affect our dataset. When one company
buys another, typically one of the two ticker symbols is chosen to remain and the other
has the effect of appearing to stop trading on the merger day or one day before. When
we have a portfolio of stocks and are looking at the performance by obtaining prices,
we can encounter errors: either a missing file or a quoting utility function cannot return
accurate results. For example, here is a metals company merger or acquisition event
from GoogleFinance.com (2014) for the symbol TIE that occurs in our desired dataset:

Titanium Metals Corporation (TIMET) is a producer of titanium
melted and mill products. \ldots In January 2013, Precision Cast-
parts Corp acquired TIMET.

Here is another example, but this time from the healthcare industry in Forbes.com for
symbol CVH (Forbes.com, 2013):

Healthcare providers have also been hard at work trying to posi-
tion for a rapid change to Medicare and Medicaid as 'Obamacare'
kicks in over the next 12-to-18 months. At around the act's
passage and affirmation by the Supreme Court, WellPoint (WLP)
and Amerigroup (AGP) merged, followed shortly thereafter by a
merger between Aetna (AET) and Coventry Healthcare (CVH).

When the flat file named resD26QP1Days1258.csv has these two symbols, we
encounter errors; then edit rows for TIE and CVH out and write the new file called
resD24Days1258.csv:

adjustForMergers <- function(dir,portFile) {
#Take in symbols and their weights and emit a
#rebalanced file summing close to 1.0
setwd(paste(homeuser,"/FinAnalytics/",dir,"/",sep=""))
df <- read.csv(portFile)
lab <- df[,2]
w <- df[,3]
if(abs(sum(w) - 1.0) < .002) {

print('All weights sum to 1.0')
} else {

print(sum(w))
amtToRealloc <- 1.0 - sum(w)

62 Financial Securities

wInc <- w*amtToRealloc
print(sum(w+wInc))
df[,3] <- w+wInc
newFile = paste("rebal",portFile,sep="")
write.csv(df,file=newFile,row.names = FALSE)
print(paste("wrote file",newFile))

}
}
adjustForMergers('huge','resD26QP1Days1258.csv')
adjustForMergers('huge','resD25Days1258woTIE.csv')
adjustForMergers('huge','resD24Days1258.csv')

Running the utility function adjustForMergers() we first find out that, for the first file,
the weights sum close to 1.0, but these weights cannot be used because of ineligible TIE
and CVH.

> adjustForMergers('huge','resD26QP1Days1258.csv')
[1] "All weights sum to 1.0"
> adjustForMergers('huge','resD25Days1258woTIE.csv')
[1] 0.9498
[1] 0.99748
[1] "wrote file rebalresD25Days1258woTIE.csv"
> adjustForMergers('huge','resD24Days1258.csv')
[1] 0.9918
[1] 0.9999328
[1] "wrote file rebalresD24Days1258.csv"
>

In the case of TIE, its new parent company, PCP, was already in the portfolio, so we
decide to take the weight for TIE, w7 = 0.0491, and the weight of PCP, w15 = 0.0269,
and add them, replacing the weight of TIE with the new weight of PCP, wPCP = 0.0760.
In the case of CVH the parent company is not already in the portfolio so we eliminate
it. Then we run the utility function on resD24Days1258.csv, and it produces a third file
called rebalresD24Days1258.csv which has the rebalanced weights summing to 1.0.

4.8 Plotting Multiple Series

Another way to display the prices for the first few stocks of the dataset is using the
plotMultSeries() function, which scales all prices to 1 unit of currency or 1 unit of gross
return at the beginning of the time series. Figure 4.9 has this plot.

plotMultSeries <- function(prices,lab,w,D,cc="days",ret=NA,
ylim=c(.2,15),isAlone=TRUE) {

if(isAlone) plot.new()
mapToCol <- function(d)

if(d%%8==7) 1 else if(d==8)
2 else if(d==15) 3 else if(d==23) 4 else d

par(mar=c(4,2.82,1.82,1))

4.8 Plotting Multiple Series 63

if(isAlone) par(mfrow=c(1,1))
tot <- 0; len <- dim(prices)[1]
first <- TRUE; D <- dim(prices)[2]
for(d in 1:D) {

if(!is.na(prices[1,d]) && !is.na(w[d]) && w[d] > 0) {
print(lab[d])
tot <- tot + 1
if(first) {

first = FALSE
plot(prices[,d]/prices[1,d],type="l",

col=mapToCol(d),xlab=cc,
ylim=ylim)

} else
lines(prices[,d]/prices[1,d],type="l",

col=mapToCol(d))
text(len,(prices[len,d]/prices[1,d]),lab[d],

col=mapToCol(d),cex=.8)
}

}
print(tot)
print(paste("density or non-zero weights (sparsity) is ",tot/D))

}
#unit test:
D2 <- 12
w <- rep(1/D2,D2)
plotMultSeries(prices,lab,w,D2,cc=

paste(sum(w>0),"stocks"),ret="", ylim=c(.5,8))

0

6

12 stocks

MMM

ACE

ABT

ANF
ADBE

AMD

AES

AET

AFLA
APD

ARG

2
4

8

12001000800600400200

Figure 4.9 Replotting the first 12 securities of stockdata on the same scale of $1.

64 Financial Securities

This scaling replaces the actual prices with relative prices so that securities returns can
be compared.

4.9 Securities Data Importing

The huge stockdata dataset is a fairly robust place to start. However, there are a lot
more traded equity securities than the 452 provided by it, and we want to be able to
control our time frame rather than be limited to from 2003 to 2008. We especially want
to get current quotes for today and immediately prior to today to see how a portfolio is
performing lately.

To be able to measure historical return and even calibrate a chosen portfolio to the
current market, we need software mechanisms. The tseries R package provides an
extremely useful function called get.hist.quote() for obtaining Yahoo!-based historical
prices:

library(tseries)
pv <- get.hist.quote('YHOO',quote="Adj",start="2011-02-09",

end="2015-02-09")
pv

This function can be used to manage our historical data retrieval and our caching of the
data.

When the dataset is new there is no choice but to connect to an outside source. Often
we need to repeat a simulation multiple times, changing logic in-between. Using an
online data source is somewhat convenient, but caching it makes it available locally,
without the need for a network connection. So we can connect to the internet using the
get.hist.quote() when we require a new dataset and cache it into flat files as it streams
in. Reading from the cache makes our simulation run faster and allows it to run offline,
providing flexibility. Of course, we are limited to the same data from the same time
horizon as long as we use the cache.

readExchSymbols <- function(fileName) {
frame <- read.csv(fileName,header=TRUE,sep="\t")
return(as.character(frame[,1]))

}

The above routine, readExchSymbols(), reads our desired stock quotes for our time
horizon and caches the data into individual flat files in two directories: NYSE and NAS-
DAQ. The following initialization R code makes use of routines displayCharts() and
splitAdjust() to read from a directory of historical prices and display them in an array.
splitAdjust() was introduced above.

There are two sub-directories: one for the NYSE stocks and another for NASDAQ
stocks. Each directory contains approximately 2200 cache files, one per security. For
example, for the NYSE security IBM, the file is named cacheIBM.csv and contains
multiple years of prices arranged in a single-column format. The following routine,

4.9 Securities Data Importing 65

createDirs(), sets up a directory for storing stock prices for a test date range. Typically
there is one sub-directory for NYSE and one for NASDAQ under the main directory. If
isSubDir==TRUE, it assumes the two ticker files for the NYSE and NASDAQ need to
be copied over into the sub-directories:

createDirs <- function(dir,isSubDir=TRUE) {
#check for the two subdirs if isSubDir TRUE
mainDir <- paste(homeuser,"/FinAnalytics/",sep="")
destDir <- paste(mainDir,dir,sep="")
if (!file.exists(destDir))

dir.create(file.path(destDir))
setwd(file.path(destDir))
if(isSubDir) {

f1 <- "NYSEclean.txt"
f2 <- "NASDAQclean.txt"

NYSEsubDir <- paste(destDir,"/NYSE",sep="")
if (!file.exists(NYSEsubDir))

dir.create(file.path(NYSEsubDir))
if(!file.exists(paste(NYSEsubDir,"/NYSEclean.txt",sep="")))

file.copy(paste(homeuser,"/FinAnalytics/",f1,sep=""),
NYSEsubDir)

NASDAQsubDir <- paste(destDir,"/NASDAQ",sep="")
if (!file.exists(NASDAQsubDir))

dir.create(file.path(NASDAQsubDir))
if(!file.exists(paste(NASDAQsubDir,"/NASDAQclean.txt",sep="")))

file.copy(paste(homeuser,"/FinAnalytics/",f2,sep=""),
NASDAQsubDir)

} else {
f <- paste(dir,"clean.txt",sep="")
if(!file.exists(paste(destDir,"/",f,sep="")))

if(file.exists(paste(mainDir,"/",f,sep="")))
file.copy(paste(homeuser,"/FinAnalytics/",f,sep=""),".")

}
}
#unit test
createDirs("CDUT")

Try to define this routine in your R environment and run the unit test. The final line
of code above creates a test directory called CDUT under the main FinAnalytics direc-
tory. After CDUT is created, inspect the directory contents on your computer. There
should be two sub-directories, each with a file of ticker symbols when the unit test run
completes.

readSubDirs <- function(dir,isSubDir=TRUE) {
if(isSubDir) {

#Case: 2 sub-dirs: NYSE and NASDAQ
#Return 3 results, the last being a large vec
setwd(paste(homeuser,"/FinAnalytics/",dir,"/NYSE",sep=""))
lab <- readExchSymbols("NYSEclean.txt")

66 Financial Securities

D1 <- length(lab)
print(D1)
setwd(paste(homeuser,"/FinAnalytics/",dir,"/NASDAQ",sep=""))
lab2 <- readExchSymbols("NASDAQclean.txt")
lab <- append(lab,lab2)
D2 <- length(lab2)
print(D2)
list(D1,D2,as.character(lab))

} else {
setwd(paste(homeuser,"/FinAnalytics/",dir,sep=""))
lab <- readExchSymbols(paste(dir,"clean.txt",sep=""))
D <- length(lab)
print(D)
list(D,as.character(lab))

}
}

The function above, called readSubDir(), accounts for two primary cases:

• a directory with a sub-directory for the NYSE and the NASDAQ exchanges.
• a directory with no sub-directories.

acquirePrices() is our main routine for downloading and caching price quotes. Ini-
tially, acquirePrices() must download all prices for all the securities listed in the lab
vector. As price vectors get acquired from R tseries utility get.hist.quote() for the
required date range, they are cached in CSV files for later use. NYSE and NASDAQ
quotes are kept in separate sub-directories.

As we look at the declaration of acquirePrices() below, we see the start =
start, end = end portion. This indicates to set the initial values of the local variables
start and end in “YYYY-MM-DD” format if they are provided as arguments position-
ally; otherwise the default values will be assigned. The default values, in this case, are
the values of variables start and end global to the function.

acquirePrices <- function(prices,lab,len,D,D1,D2,dir,
start,end,isSubDir=TRUE) {

isSuccessfulQuote <- FALSE
for(d in 1:D) {

if(d == 1 || (isSubDir && d == (D1+1)))
if(d == 1 && isSubDir) {

setwd(paste(homeuser,"/FinAnalytics/",dir,"/NYSE",sep=""))
unlink('bad*')
print(paste("NYSE=======:",d))

} else if(d == (D1+1) && isSubDir) {
setwd(paste(homeuser,"/FinAnalytics/",dir,"/NASDAQ",sep=""))
unlink('bad*')
print(paste("NASDAQ=======:",d))

} else {
setwd(paste(homeuser,"/FinAnalytics/",dir,sep=""))
unlink('bad*')
print(paste("ETF==========:",d))

4.9 Securities Data Importing 67

}
print(paste(d,lab[d]))
fileName = paste("cached",lab[d],".csv",sep="")
usingCacheThisFileName <- FALSE
if(file.exists(fileName)) {

usingCacheThisFileName <- TRUE
pricesForStock <- read.csv(fileName,header=TRUE,sep="")[,1]
if(!is.na(pricesForStock[1]))

isSuccessfulQuote <- TRUE
}
if(!usingCacheThisFileName ||

(usingCacheThisFileName && length(pricesForStock) != len)) {
usingCacheThisFileName <- FALSE

An interesting feature of R is the tryCatch() wrapper function, which encloses a block
of code and attaches a warning, error and final block of code to each outcome. Our
tryCatch() logic appears below:

tryCatch({
print(start);print(end)
Sys.sleep(1)
pricesForStock <- get.hist.quote(lab[d],quote="Adj",

start=start,end=end)
if(!is.na(pricesForStock[1]))

isSuccessfulQuote <- TRUE
}, error = function(err) {

print(err);cat(lab[d],file="badsyms.txt",
append=TRUE,sep="\n")

isSuccessfulQuote <- FALSE
})

}

The returned length must exactly match our requested len, otherwise we determine that
the symbol cannot be quoted by get.hist.quote():

if(length(pricesForStock) == len) {
prices[,d] <- pricesForStock
if(sum(is.na(prices[,d])) > 0 || (sum(is.na(prices[,d-1])) == 0 &&

d > 1 && prices[1,d] == prices[1,d-1])) {
print(paste(lab[d],'has NA prices'))
cat(lab[d],file="badsyms.txt",

append=TRUE,sep="\n")
isSuccessfulQuote <- FALSE

}
} else {

cat(lab[d],file="badsyms.txt",append=TRUE,sep="\n")
}
if(!isSuccessfulQuote)

cat(lab[d],file="badsyms.txt",append=TRUE,sep="\n")
if(isPlotInAdjCloses) {

68 Financial Securities

if(d == 1)
plot(prices[,d]/prices[1,d],type="l",col="blue",ylim=c(.2,6))

else
lines(prices[,d]/prices[1,d],type="l",col="blue")

text(len,(prices[len,d]/prices[1,d]),lab[d],cex=.6)
}

Above is the error-handling logic. When NA is returned in the pricesForStock vector,
an entry is made into badsyms.txt file. Later, the elimSyms() routine will use this file
to remove these entries from the lab vector and prices[] matrix. If we determine that
caching is on and we have not used a cache for this item, the logic below will create a
cache item for this symbol; that is, a flat file containing its prices.

The following block is the code sequence where the cache files are written:

if(isCacheEnabled && !usingCacheThisFileName &&
isSuccessfulQuote) {

#save redundant re-write
fileName = paste("cached",lab[d],".csv",sep="")
print(fileName)
write.csv(prices[,d],file=fileName,row.names = FALSE)

}
isSplitAdjusted = TRUE

}
prices

}

So that is our logic for acquiring prices from the internet repository using
get.hist.quote(), which uses Yahoo! for stocks prices and Oanda for foreign exchange
rates. This utility is quite a powerful tool for obtaining daily prices. For the case of
our four thousand-some stockprice series, however, it takes a considerable amount of
time to download these. The cache allows us to debug or rerun by reading the files
locally, decreasing the time to obtain prices significantly after they have been initially
downloaded.

Two key arguments to the get.hist.quote() utility are start and end. For a six-year daily
price study, one of the main studies of Chapter 8, we set them as below:

start = "2008-02-14"
end = "2014-02-14"

These key variables set the historical data range.
To set up a directory structure to start acquiring prices via the get.hist.quote() rou-

tine of acquirePrices(), we need a basic two-level setup. If MVOx is our first-level
directory name under the <homeuser>/FinAnalytics directory, where <homeuser> is
typically something such as C:\Users\<userid> or /home/<userid> and where we use x
to denote the number of years back we are collecting prices for (3, 4, 5, or 6 typically),
then we need two files containing our desired ticker symbols under two sub-directories
listed in Table 4.1. The flat files have a simple header line, which is ignored, followed
by consecutive lines of a single ticker name per line.

4.9 Securities Data Importing 69

Table 4.1 The names of simple flat files containing one ticker per line.

Directory path File

<homeuser>/FinAnalytics/MVOx/NYSE NYSEclean.txt
<homeuser>/FinAnalytics/MVOx/NASDAQ NASDAQclean.txt

We discussed unit testing a bit when we introduced the bond value calculation in
Section 4.1, above. Setting up our two-level directory structure, with one sub-directory
for each exchange, NYSE and NASDAQ, and with flat files for the cleaned list of ticker
symbols, NYSEclean.txt and NASDAQclean.txt, is a little tricky. In order to ensure that
the components are there to support the stored prices, known as the cached files, a unit
test script can be built in R. The following steps are needed:

• Initialize the NYSE and NASDAQ ticker symbols.
• Set up the top-level directory (APUT for Acquire Prices Unit Test) and two sub-

directories.
• Set the D1 and D2 dimensions to the number of symbols.
• Merge the symbol vector into one vector and set D = D1 + D2.
• Acquire prices. These must be from the network as there are no cache files yet. Create

the cache files: one for each symbol which has prices returned from get.hist.quote().
• Test the use of the cache files by re-running the above step. This time the prices will

be selected from the cache files, if they exist.
• Delete the top-level directory and sub-directories so that the unit test is rerunnable.

We chose to use 20 NYSE and 26 NASDAQ ticker symbols. Not all of the requested
ticker symbols will succeed with successful price quotes.

library(tseries)
APUT <- function(isTestElimSyms=FALSE) {

dir <- 'APUT'
l1 <- c('A','AA','AAN','AAP','AAT','AAV','AB','ABB','ABC','ABG',

'ABM','ABR','ABX','ACC','ACCO','ACE','ACG','ACH','ACI','ACM')
l2 <- c('AAL','AAME','AAON','AAPL','AAWW','AAXJ','ABAX','ABCB',

'ABCD','ABCO','ABIO','ABMD','ABTL','ACAD','ACAS',
'ACAT','ACCL','ACET','ACFC','ACFN','ACGL','ACHC','ACHN',
'ACIW','ACLS')

topdir <- paste(homeuser,'/FinAnalytics/',dir,sep="")
NYSEdir <- paste(topdir,'/NYSE',sep="")
NASDAQdir <- paste(topdir,'/NASDAQ',sep="")
if(!file.exists(topdir))

dir.create(topdir)
if(!file.exists(NYSEdir)) {

dir.create(NYSEdir)
setwd(NYSEdir)
if(!file.exists("NYSEclean.txt"))

write.csv(l1,file="NYSEclean.txt",
quote=FALSE,row.names=FALSE)

}

70 Financial Securities

if(!file.exists(NASDAQdir)) {
dir.create(NASDAQdir)
setwd(NASDAQdir)
if(!file.exists("NASDAQclean.txt"))

write.csv(l2,file="NASDAQclean.txt",
quote=FALSE,row.names=FALSE)

}
D1 <- length(l1)
D2 <- length(l2)
l <- c(l1,l2)
D <- D1 + D2
len <- 1006
p <- matrix(rep(NA,len*D),nrow=len,ncol=D)
#acquirePrices assumes user knows proper
#len, start and end
isPlotInAdjCloses <<- FALSE
isCacheEnabled <<- TRUE
p <- acquirePrices(p,l,len,D,D1,D2,dir,

start="2010-02-18",end="2014-02-14",isSubDir=TRUE)
#Second time cached files exist.
p <- acquirePrices(p,l,len,D,D1,D2,dir,

start="2010-02-18",end="2014-02-14",isSubDir=TRUE)
if(isTestElimSyms) {

dim(p)
D
system(paste('sort ',paste(NYSEdir,'/bad*',sep="")))
system(paste('sort ',paste(NASDAQdir,'/bad*',sep="")))
saveD <- D
res <- elimSyms(p,l,"APUT")
p <- res[[1]]
l <- res[[2]]
print(paste("elimSyms returns",l))
#print(p[1,])

}
unlink(topdir, recursive = TRUE)

}
#acquirePrices unit test (APUT):
APUT()

In our runs of this unit test sequence, all but two of the 46 ticker symbols produced a
price vector.

> p[len,]
[1] 38.954475 11.223343 29.747891 127.015142 NA 3.880000
[7] 20.996400 23.711670 66.778435 49.259998 26.564400 6.129368

[13] 19.929171 34.144345 5.990000 94.616193 6.821497 9.250000
[19] 40.801209 30.000000 34.018565 3.879132 18.988840 75.606251
[25] 32.939999 56.436053 38.114603 19.883766 1.930000 61.419998
[31] 61.419998 1.790000 28.139999 18.049999 23.930000 14.820000
[37] 45.126448 NA 18.506554 3.990000 3.670000 55.259998
[43] 51.180000 3.570000 19.150000 2.190000

4.10 Securities Data Cleansing 71

We can see this result in the preceding output. This is the contents of a time slice of the
price vector after two runs of acquirePrices(): one to obtain prices over the network and
cache them and one to read them back in the from the cache files.

4.10 Securities Data Cleansing

As we try to acquire prices for the two ticker lists and are not able to do so for all, we
can edit the NYSEclean.txt and NASDAQclean.txt files to remove tickers that we will not
be able to acquire prices for. In addition, acquirePrices() will emit rows into three types
of error with “bad” in their names.

Data cleansing can be automated by using this set of files for each type of error:

• badsyms.txt for symbols with unavailable prices;
• badsharpes.txt for symbols with uncomputable Sharpe Ratios;
• badcors.txt for symbols with uncomputable covariances or correlations.

The elimSyms() routine takes the accumulated badsyms.txt files and removes them from
the ticker set lab[] and prices[] matrix. For example, even though we have a candidate
such as ACO, the routine get.hist.quote() cannot find prices for it. And, looking it up in
Yahoo! or Google Finance, we do not find quotes, so we can eliminate this candidate by
adding it to the badsyms.txt file:

elimSyms <- function(prices,lab,dir,isSubDir=TRUE) {
len = dim(prices)[1]
D = dim(prices)[2]
#First find removal list in 3 files in each of NYSE and NASDAQ
indInFile = as.vector(rep(FALSE,D))
ifelse(isSubDir,subdirVec <- c("NYSE","NASDAQ"),subdirVec <- c(NA))
for(subdir in subdirVec) {

if(isSubDir)
setwd(paste(homeuser,"/FinAnalytics/",dir,"/",subdir,sep=""))

else
setwd(paste(homeuser,"/FinAnalytics/",dir,sep=""))

for(file in c("badsyms.txt","badcors.txt","badsharpes.txt")) {
badlab = NA
if(file.exists(file))

badlab <- read.table(file) # badcors.txt badsharpes.txt")
if(length(badlab)>1 || !is.na(badlab)) {

for(l in badlab) {
print(paste("elimSym",l))
pos = match(l,lab)
indInFile[pos] = TRUE

}
}

}
}
indNAPrices = (is.na(prices[1,]))

72 Financial Securities

indNALab = (is.na(lab[1:D]))
indTooBig = (prices[1,] > 1e5) | (prices[len,] > 1e5)
#missing price or lab is NA or too big
indUnion = indInFile | indNAPrices | indNALab | indTooBig
#Create new prices matrix smaller for only NonNAs
smallerSz = D - sum(indUnion)
print(smallerSz)
newPrices = matrix(rep(0,len*smallerSz),nrow=len,ncol=smallerSz)
newLab = vector(length=smallerSz)
e <- 1
for(d in 1:D) {

if(!indUnion[d]) {
#print(paste("e",e,lab))
newPrices[,e] <- prices[,d]
newLab[e] <- lab[d]
e <- e + 1

} else {print(d)}
}
list(newPrices[,1:smallerSz],newLab)

}

In elimSyms() we check three error files in each sub directory (if isSubDir is TRUE),
for symbols with errors. At the end of the loop, we have a Boolean vector, indInFile per
symbol to tell us if that symbol would be eliminated from the lab vector.

When it becomes necessary to unit test the routine, we can reuse the unit test for
acquirePrices(), APUT. This time we invoke the inner block which tests elimSyms() by
setting isTestElimSyms == TRUE.

#unit test:
APUT(TRUE)

isPlotInAdjCloses = FALSE
dir <- 'MVO4'
len <- 1006
createDirs(dir)
res <- readSubDirs(dir)
isCacheEnabled <- TRUE
D1 <- res[[1]]
D2 <- res[[2]]
lab <- res[[3]]
D <- D1 + D2
start = "2011-02-09"
end = "2015-02-09"

prices <- matrix(rep(NA,len*D),nrow=len,ncol=D)
prices <- acquirePrices(prices,lab,len,D,D1,D2,

start=start,end=end,dir,isSubDir=TRUE)

res <- elimSyms(prices,lab,dir,isSubDir=TRUE)
prices <- res[[1]]

4.10 Securities Data Cleansing 73

lab <- res[[2]]
D <- length(lab)
D
dim(prices)

R <- findR(prices)
D <- dim(prices)[2]

Now that we have findR() and its dependent routines defined, we can see and run the
code sequence above to read the sub-directories, acquire the prices, and compute the R
log return matrix.

findCovMat() finds the mean vector and the covariance matrix. It then uses the covari-
ance matrix to find the vector of standard deviations. Next we turn to computing our
statistics.

findCovMat <- function(R) {
meanv <- apply(R,2,mean)
cov_mat <- cov(R)
diag_cov_mat <- diag(cov_mat)
sdevv <- sqrt(diag(cov_mat))
list(meanv,cov_mat,diag_cov_mat,sdevv)

}
#unit test:
res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]

The covariance matrix must be free of NAs for the process to proceed. In addition, if
duplicate prices make their way into the process, the covariances will be duplicated as
well and that can be detected here.

checkCovMat <- function(cov_mat) {
#Check for duplicate covariances:
D = dim(cov_mat)[1]
for(d in 1:D)

for(e in d:D) {
print(paste(d,e,cov_mat[d,1],cov_mat[e,1]))
if(d != e && !is.na(cov_mat[d,1]) &&

!is.na(cov_mat[e,1]) && cov_mat[d,1] == cov_mat[e,1])
stop(paste("dups in cov_mat",d,e))

}
}
#unit test:
checkCovMat(cov_mat)

74 Financial Securities

While preparing this book, for example, an unexpected failure of the checkCovMat()
routine occurred. Darn it, why, after repeated runs of the packaged code, would it fail
on our known set of tickers? Here is its output message:

...
[1] "16 291 1.35732246087691 1.93682271844313"
[1] "16 292 1.35732246087691 1.35732246087691"
Error in checkCovMat(cov_mat) : dups in cov_mat 16 292
> cov_mat[16,1:5]
[1] 1.3573225 1.3360865 0.8959254 0.7315397 0.8271826
> cov_mat[292,1:5]
[1] 1.3573225 1.3360865 0.8959254 0.7315397 0.8271826
> lab[c(16,292)]
[1] "ACE" "CB"

Well, looking on the internet the same day that checkCovMat() failed, it turned out
that ACE acquired the Chubb Group (Chubb15), and so they became one and the same
company as far as prices returned by get.hist.quote() are concerned. Chubb, ticker CB,
is the surviving ticker symbol, so we removed ACE from the NYSEclean.txt file.

For the years 2008 through 2013, we can see the displayCharts() output in Figure 4.4.
We can visualize several typical stocks in a 3 × 4 table and their price action over the
same time period.

4.11 Securities Quoting

Having introduced our very useful utility get.hist.quote(), we can expand on it and the R
plotting capabilities to create getHistPrices(). It loops through all the weighted tickers
in the lab vector and finds historical prices:

library(tseries)
getHistPrices <- function(lab,w,len,start="2013-11-29",

end="2014-11-28",startBck1="2013-11-28",
startFwd1="2013-11-27",cached=NA) {

#gather recent prices for all lab symbols
D <- length(lab)
recentPrices = matrix(rep(NA,len*D),nrow=len,ncol=D)
for(d in 1:D) {

if(w[d] > 0.0) {
print(lab[d]) #Use cached list for now-obsolete tickers
if(!is.na(cached) && !is.na(match(lab[d],cached))) {

x <- read.csv(paste("cached",lab[d],".csv",sep=""))[,1]
recentPrices[,d] <- x

} else
tryCatch({

x <- get.hist.quote(lab[d],quote="Adj",start=start,end=end)
if(length(x) != len) {

x <- get.hist.quote(lab[d],quote="Adj",

4.12 Exercises 75

start=startBck1,end=end)
if(length(x) != len) {

x <- get.hist.quote(lab[d],
quote="Adj",start=startFwd1,end=end)

} else { #partial quotes
recentPrices[1:length(x),d] <- x

}
} else {

recentPrices[,d] <- x
}

#}, warning = function(w) {
#warning-handler-code
#print(w)

#}, error = function(e) {
#error-handler-code
#print(e)

})
}

}
return(recentPrices)

}
#unit test: one good one bad
getHistPrices(c('PCLN','UA'),c(.5,.5),252)

By starting off with NA values in the recentPrices matrix, the warning and error-
handling code can simply allow these values to persist. The NA values will be returned
to the caller in columns corresponding to the tickers without valid price quotes for the
date range start to end. The cached parameter is used to provide previously downloaded
price files when ticker symbols become obsolete to get.hist.quote().

4.12 Exercises

4.1. If S = c(1.3, 1.2), two successive prices for the EUR quoted in term of USD, use
R to compute the gross return, net return, and log return. What do you notice about
the log return as compared to the net return?

4.2. Locate the code for the function adjustForMergers() along with the three test case
files, resD26QP1Days1258.csv, resD25Days1258woTIE.csv, and resD24Days
1258.csv. Create the directory under FinAnalytics called huge. Write and run code
to invoke the function once per file, three times, and explain the results for each
test case.

4.3. Locate the code for the function plotMultSeries() and run the unit test, producing
the multi-colored 12 stock chart of Chapter 4.

4.4. Use par(mfrow=c(2,1)) to set up two plots:

(a) One should be the unadjusted prices for the AET stock in the first 12 of the 452
stocks in the stockdata.

76 Financial Securities

(b) The second plot should be the split-adjusted prices for the AET stock.

(c) How many split adjustments are needed?

(d) What is the ratio for each split adjustment?

(e) Piece together a vector using the c() operator multiplying or dividing by
proper constants in each segment. Match your vector to the result returned by
splitAdjust().

4.5. Locate the unit test code in Chapter 4 for the acquirePrices() utility. This test cre-
ates a directory called APUT, which stands for acquirePrices Unit Test, with two
sub-directories. It removes them as the final step. Run the unit test and explain the
behavior.

5 Dataset Analytics and Risk
Measurement

When performing Monte Carlo simulation in finance, mixture models are probabilis-
tic models that can be used to represent subpopulations within a population. In order to
simulate extreme events which can occur in the various financial markets, the subpopula-
tions can be jumps or crashes in the market. While applying a non-Gaussian distribution
is common practice for introducing these jumps, it is also reasonable to use two or more
single-variate Gaussian distributions and combine them into a mixture model. We apply
it to simulations from the foreign exchange markets.

5.1 Generating Prices from Log Returns

Performing financial analytics is now easier than ever before due to the sophistication
of open source toolkits such as RStudio and web-available market datasets. When fore-
casting and predicting future outcomes using such data, measuring the uncertainty and
risk is important. We start with the most basic properties of mixture models and then
work our way into actual market events.

Whether the log returns are Gaussian or normally distributed (the theoretical assump-
tion), or not really normally distributed (the practical reality), simulating prices from
log returns is important. Once we know the distribution of the log returns, simulating
realistic prices allows one to go back and forth between simulated and actual market
prices without losing much accuracy.

R has such convenient functional programming syntax that it can really save, at times,
the analyst a lot of programming. The best trick in the book for quantitative finance is
the idiom

Ylogrets = diff(log(Y))

Being able to apply the log() function to the vector and then feed the results into the diff()
function is quite powerful. Imagine how unwieldy this is in a spreadsheet by comparison.
Let’s see: we must find the top and bottom of the row with the prices and create a column
with the logs, now another column with the differences of the logs which is one row
fewer in length. In any case, whether in a spreadsheet program or R, finding the inverse
to the above equation is not quite so obvious! A little algebra will get us there, though.

78 Dataset Analytics and Risk Measurement

For N original prices Y where Y = (Y1, . . . , YN), the convention that r2 =
log(Y2/Y1), . . . , rN = log(YN/YN−1) will be used to name our log returns. If we
accumulate the sum of the log returns increasingly, from 1 to N, in a vector,⎛

⎝Y1, Y1 exp(
2∑

j=2

rj), . . . , Y1 exp(
i∑

j=2

rj), . . . Y1 exp(
N∑

j=2

rj)

⎞
⎠ , (5.1)

which is multiplied by our initial value, Y1, then this can be written, by the properties of
the exp() function, as⎛

⎝Y1, Y1

2∏
j=2

exp(rj), . . . , Y1

i∏
j=2

exp(rj), . . . Y1

N∏
j=2

exp(rj)

⎞
⎠ , (5.2)

which is a vector of multiplied series

(Y1, Y1[Y2/Y1], . . . , Y1[Y2/Y1] . . . [Yi/Yi−1], . . . , Y1[Y2/Y1] . . . [YN/YN−1]) . (5.3)

This can be simplified to

(Y1, . . . , YN) , (5.4)

which is the original Y vector, our goal. Formula 5.1 can be implemented quite
compactly with the following R expression:

c(Y[1],Y[1]*exp(cumsum(Ylogrets)))

We can see from this output sequence that prices which match the original Y can be
generated from the log returns of Y using this R expression:

> Y = c(30,29,28,28,30,32,31)
> Ylogrets = diff(log(Y))
> round(Ylogrets,4)
[1] -0.0339 -0.0351 0.0000 0.0690 0.0645 -0.0317
> Yprices = c(Y[1],Y[1]*exp(cumsum(Ylogrets)))
> Yprices
[1] 30 29 28 28 30 32 31

This scheme of generating prices from log returns will be used in an upcoming section.
Now we can write a utility to convert log returns to prices, toPrices():

Y=c(1.3,1.2,1.3,1.4,1.5,1.4,1.3,1.4,1.5)

toPrices <- function(Y1,Ylogrets){
Yprices = c(Y1,Y1*exp(cumsum(Ylogrets)))
Yprices

}
Y
toPrices(Y[1],diff(log(Y)))
#assert
sum(Y-toPrices(Y[1],diff(log(Y)))<.00000001) == length(Y)

5.1 Generating Prices from Log Returns 79

The output from running the last few lines of code after the function is below. We can
see there that the assertion comparing Y to the recreated Y from its log returns via the
function toPrices() is TRUE.

> Y
[1] 1.3 1.2 1.3 1.4 1.5 1.4 1.3 1.4 1.5
> toPrices(diff(log(Y)))
[1] 1.3 1.2 1.3 1.4 1.5 1.4 1.3 1.4 1.5
> #assert
> sum(Y-toPrices(diff(log(Y)))<.001) == length(Y)
[1] TRUE

Consider the process of going from log returns to prices one step further. Our log
returns are named in Formula 5.4 and they are the incremental week-to-week, day-to-
day, or second-to-second changes. Thinking in terms of day-to-day, for example, each
of the rs is distributed N(μd, σ 2

d), where d denotes daily:

r2, . . . , rN . (5.5)

Our desire is to examine what happens to the distribution as we reconstruct prices from
these log returns. If we look at how to construct Yis where 2 ≤ i ≤ N for period of
length N, we know from our reconstruction Formula 5.1 that

Yi = Y1 exp(r2 + · · · + ri). (5.6)

Formula 5.6 is another form of reconstruction formula. We can choose any time period,
but we will focus on one year for now. If the original prices are stocks quoted daily,
we set N = 252. If the prices are for foreign exchange rates, we set N = 365 for data
sources with no breaks: every day has a closing price at the end of the day. We will
choose N = 365, the FX convention. If r2, . . . , rN is our path from day 2 to day N, we
use Formula 5.1 to see that

Y365 = Y1 exp(
365∑
j=2

rj) = Y1 exp(r2 + · · · + r365). (5.7)

The summation has 364 terms where each term is distributed N(μd, σ 2
d). The summation

of normal variates is normal with mean equal to the sum of the means and variance equal
to the sum of variances. If the summation portion of Formula 5.7

Ui =
i∑

j=2

rj, (5.8)

then Ui ∼ N(μU , σ 2
Ui

) where μUi = (i − 1)μd and σ 2
Ui

= (i − 1)σ 2
d . Since Ui = U is

distributed normally, N(μ, σ 2), we know that V = exp(U) is distributed log-normally,
LN(μ, σ 2). Since we have (i − 1) terms ri in this case, summarizing:

Ui ∼ N((i−1)μd, (i−1)σ 2
d) and Vi = exp(r2+. . .+ri) ∼ LN((i−1)μd, (i−1)σ 2

d). (5.9)

By Formula 5.6, Yi/Y1 is distributed LN((i − 1)μd, (i − 1)σ 2
d) as well.

80 Dataset Analytics and Risk Measurement

5.2 Normal Mixture Models of Price Movements

The Gaussian or normal distribution always has kurtosis 3, which means that the size of
the tails are consistently the same value, regardless of the variance. A Gaussian mixture
model or normal mixture model can be used to obtain the required heavier tails, meeting
a criterion that the kurtosis be greater than 3 as we would expect. In order to simulate
the market distribution for a normal mixture random variable X, a mixture can be used
which is a combination of two normal distributions: the first distribution with random
variable Y has a smaller variance than the second with random variable Z (Hogg and
Craig, 1978; Ruppert, 2011). Both Y ∼ N(0, σ 2

1) and Z ∼ N(0, σ 2
2), where σ1 < σ2.

One can use a uniform distribution for a random variable U with a threshold set at the
decimal level where the first or the second is used:

X =
{

Y , if U < .9

Z, otherwise.
(5.10)

This simple scheme can be implemented in R using the runif() function for the uniform
distribution and two instances of the rnorm() function with one of two expected variates
with each of the two variances. The function rmixture() implements the normal mixture
with μ = 0 and σ1 and σ2 provided. The single line of code after the function is a unit
test of it. The unit test histogram plot is shown in Figure 5.1.

rmixture <- function(N,sigma1,sigma2=0,thresh=.9) {
variates = vector(length=N)
U = runif(N)

0
50

0
10

00
15

00

−15 −10 –5 0 5 10 15
rmixture(10000, sigma1=1, sigma2=5)

Histogram of rmixture(10000, sigma1=1, sigma2=5)

Fr
eq

ue
nc

y

Figure 5.1 Extreme events in the market can be modeled with a normal mixture model: above is a histogram
with μ = 0 and σ1 = 1 and σ2 = 5. The tails have occurrences of variates that are five times
greater than the standard normal distribution.

5.2 Normal Mixture Models of Price Movements 81

for(i in 1:N)
variates[i] = rnorm(1,0,sd=sigma1)

if(sigma2 != 0) { #only mixture if sigma2 != 0
for(i in 1:N)

if(U[i] >= thresh)
#replace original variate with mixture variate
variates[i] = rnorm(1,0,sd=sigma2)

}
variates

}
hist(rmixture(10000,sigma1=1,sigma2=5),breaks=50)

In order to use the mixture model in a price simulation, we need a way to convert
returns into prices. If log returns are normally distributed, that matches the conven-
tional financial markets assumptions. However, with our new mixture model in hand,
rmixture(), we want to modify our assumption such that the log returns are distributed
according to the normal mixture model. This is in order to obtain the extreme events in
the tails as needed.

The R function simPricePath() below will generate a price path from a normal or
a normal mixture model. If sigma2 is supplied it will choose a normal mixture using
μ = 0 and sigma1 and sigma2. Y is our normal variable and Z is our normal mix-
ture random variable. Once the log returns are generated, toPrice() is used to map log
returns into prices. Figures 5.2 and 5.3 provide a way to compare Yprices to Zprices.
We can see that the mixture model, as expected, produces a jumpier prices series,
Figure 5.3.

simPricePath <- function(initPrice,N,seed,sigma1=.05,
sigma2=0,thresh=.9) {

#Non mixture model
set.seed(seed)
Xlogrets = rmixture(N,sigma1,sigma2,thresh=thresh)
Xprices = toPrices(initPrice,Xlogrets)
list(Xprices,c(Xlogrets))

}
#unit test
seed=26
sigma1=0.007157
N=365
par(mfrow=c(2,2)); maxy=10*.007
Y <- simPricePath(1.3,N=365,seed=seed,sigma1)
Yprices <- Y[[1]]
Ylogrets <- Y[[2]]
plot(Yprices,type='l')
plot(Ylogrets,type='l',ylim=c(-maxy,maxy))
points(Ylogrets)
Z <- simPricePath(1.3,N=365,seed=seed,sigma1,sigma2=4*sigma1)
Zprices <- Z[[1]]
Zlogrets <- Z[[2]]

82 Dataset Analytics and Risk Measurement

plot(Zprices,type='l')
plot(Zlogrets,type='l',ylim=c(-maxy,maxy))
points(Zlogrets)
sd(Ylogrets)
sd(Zlogrets)
par(mfrow=c(1,1))
plot(density(Ylogrets))
lines(density(Zlogrets),col=4)

Figure 5.4 provides a density plot for Ylogrets and Zlogrets generated from the above
final three lines of code. The right tail being thicker for Zlogrets corresponds to the large
movement after the 50th time step in Figure 5.3. Comparing the fourth moments of the
non-mixture and the mixture model, we can see from the output below that the kurtosis
of the mixture model is quite a bit larger than the kurtosis of the non-mixture model.

1.
29

0
1.

30
0

Y
pr

ic
es

0 100 200 300
Index

–0
.0

06
0.

00
2

Y
lo

gr
et

s

0 100 200 300
Index

Figure 5.2 Daily normal model-generated prices for a time series Y 365 days long. The kurtosis of these log
returns in the bottom chart is in the normal range, 2.9, versus 14.6 for Figure 5.3.

1.
29

0
1.

30
5

1.
32

0
Z

pr
ic

es

0 100 200 300
Index

–0
.0

06
0.

00
2

Z
lo

gr
et

s

0 100 200 300
Index

Figure 5.3 Normal mixture model-generated prices for a time series Z. There is similarity with Figure 5.2
except that jumps occur in the log returns which cause corresponding jumps in the prices.

5.2 Normal Mixture Models of Price Movements 83

0
10

0
20

0
30

0
40

0
50

0
D

en
si

ty

–0.003 –0.002 –0.001 0.000 0.001 0.002
N = 365 Bandwidth = 0.0001977

Density.default(x = Ylogrets)

Figure 5.4 Kernel density estimate of normal model and normal mixture model-generated log returns

Figure 5.5 Simulated prices, density, and plot of variates for normal model, 365 days.

84 Dataset Analytics and Risk Measurement

> library(moments)
> KurtYlogrets = length(Ylogrets)^(-1)*sd(Ylogrets)^
+ (-4)*sum((Ylogrets - mean(Ylogrets))^4)
> KurtYlogrets
[1] 3.393385
> kurtosis(Ylogrets)
[1] 3.412056
> #measure Kurtosis of mixture
> KurtZlogrets = length(Zlogrets)^(-1)*sd(Zlogrets)^
+ (-4)*sum((Zlogrets - mean(Zlogrets))^4)
> KurtZlogrets
[1] 12.09176
> kurtosis(Zlogrets)
[1] 12.15829

We can see in the output sequence above that, whether measured by our coded kurtosis
formula using Equation 3.34 or by the R kurtosis() routine, the kurtosis of the mixture
distribution is quite a bit larger. It is a little more than three times four, the kurtosis of
the normal distribution.

Simulating multiple paths with for 365 days starting at the EUR per USD price of
1.3000 is possible by calling simPricePath() in a loop. We can do this with the under-
lying normal and normal mixture models to compare the behavior. Below is the normal
code first, with plots shown in Figure 5.5:

#Multiple paths
library(moments)
par(mfrow=c(3,1))
mapToCol <- function(d)

if(d==7) 1 else if(d==8)
2 else if(d==15) 3 else if(d==23) 4 else d

allYlogrets = matrix(nrow=10,ncol=N)
for(path in 1:10) {

Y <- simPricePath(1.3,N,seed=path,sigma1=.007157)
Yprices <- Y[[1]]; Ylogrets <- Y[[2]]
if(path == 1) plot(Yprices,type='l',ylim=c(.8,1.8))
else lines(Yprices,col=mapToCol(path))
allYlogrets[path,] = Ylogrets

}
for(path in 1:10) {

if(path==1) plot(density(allYlogrets[path,]),main="")
else lines(density(allYlogrets[path,]),

col=mapToCol(path))
}
mean(Ylogrets)
sd(Ylogrets)
for(path in 1:10) {

if(path==1) plot(allYlogrets[path,],ylab='Ylogrets')
else points(allYlogrets[path,],col=mapToCol(path))

}

5.2 Normal Mixture Models of Price Movements 85

Figure 5.6 Simulated prices, density and plot of variates for normal mixture model, 365 days.

Now comes the normal mixture code, with plots shown in Figure 5.6. Our sigma1 =
0.007157 as this corresponds to annualized 13.7 percent volatility, a typical value. In the
mixture code below we quadruple that to 4 ∗ sigma 10 percent of the time.

#mixture
allZlogrets = matrix(nrow=10,ncol=N)
for(path in 1:10) {

Z <- simPricePath(1.3,N,seed=path,sigma1=.007157,
sigma2=4*.007157)

Zprices <- Z[[1]]; Zlogrets <- Z[[2]]
if(path == 1) plot(Zprices,type='l',ylim=c(.8,1.8))
else lines(Zprices,col=mapToCol(path))
allZlogrets[path,] = Zlogrets

}

for(path in 1:10) {
if(path==1) plot(density(allZlogrets[path,]),main="")

86 Dataset Analytics and Risk Measurement

else lines(density(allZlogrets[path,]),
col=mapToCol(path))

}
mean(Zlogrets)
sd(Zlogrets)
for(path in 1:10) {

if(path==1) plot(allZlogrets[path,],ylab='Zlogrets')
else points(allZlogrets[path,],col=mapToCol(path))

}

As we can see below, this causes our volatility to go from 0.007157 to 0.010179 on a
daily basis, an increase of 34.6 percent, seemingly not that great, compared to the impact
it has on the paths.

> sd(Ylogrets)
[1] 0.007559591
> sd(Zlogrets)
[1] 0.01017884
> sd(Zlogrets)/sd(Ylogrets)
[1] 1.34648

5.3 Sudden Currency Price Movement in 2015

On Thursday, January 15, 2015, the Swiss Central Bank switched policies regarding
their currency, the Swiss Franc, abbreviated CHF, and that sent other related currencies
weaker and the CHF stronger. The price for CHFEUR went from 0.8323 CHF per EUR
to 0.8884 then to 0.9983 in only three days, according to daily data downloaded via the
get.hist.quote() utility call below. This is unheard of in currency markets because that
represents 557 and 1099 ticks respectively. A tick is the minimum upward or down-
ward movement in the price of a security. For the CHFEUR security, the amount per
tick (0.0001) is roughly 10.09 dollars per contract held. 557 ticks represent $5621 and
$11,091 moves per contract held which is quite a bit for the investor who is long Euros
and short the Swiss Franc when their investment has lost value so quickly.

library(tseries)

tmixture <- function(N,sigma1,sigma2=0,sigma3=0)
#three level mixture with state changes
{

variates = vector(length=N)
mode = 1
B = rbinom(365,1,1/365)
for(i in 1:N)

variates[i] = rnorm(1,0,sd=sigma1)
if(sigma2 != 0) { #only mixture if sigma2 != 0

for(i in 1:N)
if(B[i] == 1) {

5.3 Sudden Currency Price Movement in 2015 87

mode = 2
#replace original variate with mixture variate
variates[i] = rnorm(1,0,sd=sigma2)
print(sigma2)
print(variates[i])

} else if (mode == 2) {
variates[i] = rnorm(1,0,sd=sigma3)

}
}
variates

}
#S<-get.hist.quote("CHF/EUR",provider="oanda",
start="2014-01-30",end="2015-01-29")
setwd(paste(homeuser,"/FinAnalytics/ChapV",sep=""))
S<-rev(read.csv("CHFperEUR.csv",header=TRUE)[,2])

Market data provided by Oanda Corporation through get.hist.quote() for CHF/EUF
was pre-downloaded via two commented out commands and placed into the file called
CHFperEUR.csv. Another way to obtain market data is to go to the elegant and powerful
Quandl.com web site API, then download and invert the ECB/EURCHF prices, which
are also provided in reverse order, as shown below:

library(Quandl)
S2<-1/rev(Quandl('ECB/EURCHF',

start_date="2014-01-30",end_date="2015-01-29")[,2])

We resume our code sequence by setting up a 2 × 2 plotting grid and finding log returns
of the actual prices for plotting below.

par(mfrow=c(2,2))
diffLogS <- diff(log(S))
plot(diffLogS,type='p',ylim=c(-.08,.08))
plot(S,type='l',col='blue',ylim=c(.60,1.05),

xlab="One Year: ealry 2014 - early 2015",
ylab="actual CHF per EUR")

S[351:359]

diffLogS351 <- diff(log(S[1:351]))
diffLogS351mean <- mean(diffLogS351)
diffLogS351mean
diffLogS351dailyVol <- sd(diffLogS351)
diffLogS351dailyVol
diffLogSjumpMean = mean(diff(log(S[351:353])))
sd(diff(log(S[351:353])))/diffLogS351dailyVol
diffLogSlast <- diff(log(S[355:365]))
sd(diffLogSlast)/diffLogS351dailyVol

We use a binomial random variable, B ∼ Bn(n, p), where n = 365, the number
of days for the simulation, and p = 1

365 , the probability of the jump event occurring
each day. We also need to know the magnitude of the mixture of standard deviation,

88 Dataset Analytics and Risk Measurement

sigma1. In terms of historical volatility, the daily volatility is calculated from the first
351 days below and the figure after that is the number of “sigmas” movement that the
jump represents.

> diffLogS351 <- diff(log(S[1:351]))
> diffLogS351mean <- mean(diffLogS351)
> diffLogS351mean
[1] 6.068558e-05
> diffLogS351dailyVol <- sd(diffLogS351)
> diffLogS351dailyVol
[1] 0.0006194764
> diffLogSjumpMean = mean(diff(log(S[351:353])))
> sd(diff(log(S[351:353])))/diffLogS351dailyVol
[1] 73.00818
> sd(diff(log(S[351:353])))/diffLogS351dailyVol
[1] 57.15945
> diffLogSlast <- diff(log(S[355:365]))
> sd(diffLogSlast)/diffLogS351dailyVol
[1] 17.8339

If we apply the R code sequence to CHF prices, we can get a handle on how dras-
tic this move was historically. We know that three standard deviations for a normally
distributed random variable is fairly rare. The two largest days of movement represent
a 73-times sigma move! It caused turmoil, especially outside the Euro-zone countries.
It caused investors to continue to flock toward safe havens like the United States and
Switzerland, which are outside the Euro zone (Swiss Move Roils Global Markets,
2015).

The following code block makes use of a three-level mixture called tmixture(). Here
are the three phases of the mixture:

• In the beginning, until the binomial random variable B = 1, the mixture is purely
normal with a small variance. This phase represents the Swiss Government enacting
its policy of keeping the CHF currency weak and approximately tied to four-fifths of
the EUR.

• Once the binomial random variable B = 1, a normal variate is selected with a standard
deviation 73.00 times the original sigma1.

• Once the event has occurred, the currency moves with normal to higher volatility.
The simulated prices appearing after the jump event use a sigma3 which is 17.84
times sigma1.

In summary,

Y =

⎧⎪⎪⎨
⎪⎪⎩

Z ∼ N(0, σ1), while B = 0 then

U ∼ N(0, σ2), while B = 1 then

V ∼ N(0, σ3), afterward where σ2 = 73.00σ1 and σ3 = 17.84σ1.

(5.11)

Once the model is built it can generate scenarios which are inspired by this currency cri-
sis but not identical to it. The scenario with seed 196 is particularly similar to the January

5.3 Sudden Currency Price Movement in 2015 89

Figure 5.7 Daily prices for CHFEUR from 2014-01-24 to 2015-01-13. The top two depict actual price and
the bottom two are simulated prices. The huge rise in prices occurs on the 352nd and 353rd days
in this series after the Swiss Central Bank switched policies regarding its currency. The left plots
are the log returns while right plots are prices. The top-right chart is scaled for the first 351 days
before the jump. The bottom-left chart is a plot of the normal variates of the three-way mixture
model with the singularity occurring randomly at the 95th day in the first simulated path. The
mixture model of log returns is then mapped into 10 price paths as seen on the bottom-right. The
path going lower in price than any other is a path where two jump events occur.

2015 event with exactly one large singularity. The binomial portion of the mixture model
can generate from zero to two such events typically in a one-year window.

b = 196
for(path in b:205) {

N=365;
set.seed(path)

Y <- tmixture(N,diffLogS351dailyVol,
73.00818*diffLogS351dailyVol,
17.84*diffLogS351dailyVol)

90 Dataset Analytics and Risk Measurement

if(path == b)
plot(Y,ylim=c(-.08,.08),xlab=path)

Yprices = c(S[[1]],S[[1]]*exp(cumsum(Y)))
if(path == b)

plot(Yprices,col=14,type="l",ylim=c(.60,1.05),
xlab="1825 Days = 5 Simulated Years",
ylab="simulated CHF per EUR")

else
lines(Yprices,col=mapToCol(path%%24))

print(path)
Sys.sleep(2)

}

Figure 5.7 at the top shows a chart of the sample variable, S, which contains daily
CHFEUR prices plotted with and without the extreme movement. The left plots are
the log returns while right plots are prices. The top-right are the actual prices. The
bottom-right is of a simulation similar event with Y displayed over a five-year daily
series.

When considering the risk of trading and investing in foreign exchange markets,
extreme movements like this are always possible. If one did not think such a large
move was possible in the FX markets, seeing this event occur will change one’s mind.
It is important to study these events from an analytics perspective in order to build risk
models which take these extreme event possibilities into account.

5.4 Exercises

5.1. Understanding the inverse of the difference of the logs mapping.

Without using the R cumsum() function, write mycumsum(), a function that takes
in a length N vector of values and performs the mapping of Formula 5.1. What
values do you get for c(15,15*exp(mycumsum(c(–0.0339, –0.0351, 0.0000, 0.0690,
0.0645 –0.0317))))?

5.2. Tailoring a Gaussian Mixture Model to the Market.

Use the code in the chapter as necessary and modify it to formulate a Gaussian mix-
ture model which will produce 30,000 prices from 29,999 log returns. This would
correspond to approximately one month of one-minute prices for the EURUSD
security. Use an initial price of 1.3400 EUR per USD. Use σY = 0.0002 and σZ =
0.0006 for the normal random variables Y and Z.

(a) Use variates from the uniform distribution to form a two-part mixture so that
the kurtosis of the 29,999 log returns is approximately 10 where 3 is the
kurtosis of the Gaussian distribution. Your uniform random variable,

X =
{

Y , if U < h

Z, otherwise
(5.12)

5.4 Exercises 91

U comes from the uniform distribution. You may use trial and error to find the
proper threshold, h, to tailor the distribution to this kurtosis.

(b) Plot both the generated prices and the log returns. Plot the density of the log
returns.

(c) Is this the density of the normal distribution?

6 Time Series Analysis

You work for an airline in the operations department. They ask you to reach into the
historical company and industry datasets and figure out the expected loading for every
flight in their book for this coming year. This ties directly into projected revenue. In
the back of your mind, you know that expenses for the company need to be offset by
revenue. It doesn’t help to be overly optimistic because the risk of not meeting the
projections carries with it the risk of future disappointment.

What should you do? Passenger boardings are cyclical. There are risks of a downturn.
But a downturn could impact profitability of the entire company. The price of oil and jet
fuel is important. Mergers happen every year which change the competitive landscape
and make some routes more efficient.

Time series analysis can certainly help. Just like confidence intervals in statistics
(please see also the Appendix), there is a band of uncertainty around any of the projec-
tions. The expected airline passenger loadings is a random variable. Passenger boarding
is one of several arenas we will explore with the help of tools in R.

6.1 Examining Time Series

We begin with a quick survey of the types of times series we will model. We can
use the quantmod and PerformanceAnalytics packages, firstly. We will define the
vector of symbols to be downloaded. The symbols GSPC, VIX, TNX, refer to the S&P
500 index, the CME volatility index, and the ten-year treasury yield, respectively. Use
the getSymbols() function to download the time series for the symbols in sym.vec
between the dates of January 3, 2003 and September 10, 2015. If the quantmod
and PerformanceAnalytics packages are not yet installed, they can be installed
with the commands install.packages("quantmod", dependencies=TRUE) and
install.packages("PerformanceAnalytics", dependencies=TRUE).

> library(quantmod)
> library(PerformanceAnalytics)
> sym.vec <-c("^GSPC","^VIX")
> getSymbols(sym.vec, from = "2005-01-03", to = "2015-09-16")

[1] "GSPC" "VIX"

6.1 Examining Time Series 93

Jan 03
2005

Jul 03
2006

Jan 02
2008

Jul 01
2009

Jan 03
2011

Jul 02
2012

Jan 02
2014

10
00

15
00

20
00

GSPC

Jan 03
2005

Jul 03
2006

Jan 02
2008

Jul 01
2009

Jan 03
2011

Jul 02
2012

Jan 02
2014

−
0.

10
0.

00
0.

10

GSPC.logret

Jan 03
2005

Jul 03
2006

Jan 02
2008

Jul 01
2009

Jan 03
2011

Jul 02
2012

Jan 02
2014

10
30

50
70

VIX

Figure 6.1 Prices, log returns and the volatility index of the S&P 500 index from January 3, 2003 to
September 10, 2015.

The first plot is of the S&P 500, shown in Figure 6.1. We see the peak of the market in
early 2007 and then the steep decline as the housing crisis hit. We see the market bottom
out in mid 2009 and begin a large rally that lasts through mid 2015. We see minor
corrections in 2011 and 2012 due to uncertainty surrounding the government debt in the
Euro zone, and a significant sell-off in mid 2015 due to uncertainty surrounding China’s
economy. An interesting aspect of this time series is the fact that negative returns tend to
clump together (bear market) and positive returns tend to clump together (bull market).

Now we extract the adjusted price of the S&P 500.

> GSPC <- GSPC[, "GSPC.Adjusted", drop=F]

We then use the CalculateReturns() function to calculate the log returns of the
price vector. We are interested in log returns because if the overall price distribution

94 Time Series Analysis

Histogram of Google

Google

F
re

qu
en

cy

−0.05 0.00 0.05 0.10 0.15

0
5

10
15

20
25

30

Figure 6.2 Histogram of Google log returns from August 20, 2004–September 13, 2006 with overlay of
density of a normal random variable with the same mean and standard deviation as Google log
returns. We observe the excess kurtosis commonly seen in stock returns: clustering of small
returns around the mean, as well as large deviations out in the tail of the distribution.

is log-normally distributed then the log returns are normally distributed and their joint
distribution follows a multivariate normal distribution.

> GSPC.logret = CalculateReturns(GSPC, method="log")

The CalculateReturns() function first takes the log() of the price time series and
then takes the difference. Since the difference is the current value minus the previous
value, the first component of the log return vector is not defined. To illustrate this we
take the difference of a sequence of numbers one through ten.

> GSPC.logret[1]

GSPC.Adjusted
2005-01-03 NA

> GSPC.logret[1] = 0.0

We plot the returns in Figure 6.1 and observe one of the main features of finan-
cial return: volatility that changes with time. We see there are “quiet” or “calm” times
when the market is not very active, and then there are “loud” or “stormy” times when
the market is extremely active. The statistical term for this time-varying volatility is
heteroskedasticity, and is one of the main reasons financial data is so difficult to model.

6.1 Examining Time Series 95

0

20

40

60

−0.10 −0.05 0.00 0.05 0.10
as.vector(GSPC.logret)

D
en

si
ty

Figure 6.3 Histogram and estimated density of log returns of the S&P 500 index from January 3, 2003 to
September 10, 2015.

> par(mfrow=c(3,1))
> plot(GSPC)
> plot(GSPC.logret)
> plot(VIX)

Closely related to the burstiness of market returns is behavior of what is known as
priced volatility, represented here by the VIX and shown in Figure 6.1. Loosely speak-
ing, the VIX is an average over implied volatilities of a basket of options. Implied
volatilities are figures which are between 0.0 and just over 1.0 and represent the stan-
dard deviation of the movement of the underlying security. For the VIX, the underlying
security is the S&P 500 Index.

The VIX is known as the market’s “fear factor” because it represents how much
investors are demanding to assume market risk at a given time. If the market is quiet
then investors will likely not demand much to bear market risk. If, on the other hand,
market behavior is violent then investors will likely demand much more to bear market
risk. This is indeed what we observe in Figure 6.1. During the market crash associ-
ated with the 2008 housing crisis we see the VIX spike to levels as high as 80 percent,
whereas during the long boom after the housing crisis we see the VIX fall to levels as
low as 11 percent or 12 percent.

> library(TSA)
> library(ggplot2)

96 Time Series Analysis

> data(google)
> hist(google, breaks=100)
> curve(dnorm(x, mean=mean(google), sd=sd(google)), add=TRUE, col="blue")
> ggplot(NULL,aes(x=as.vector(GSPC.logret),y=..density..)) +
+ geom_histogram(fill="cornsilk", colour="grey60", size = 0.2) +
+ geom_density(colour="blue")
> dt4<-function(x) dt(x,df=4)
> ggplot(data.frame(x=c(-5,5)),aes(x=x)) +
+ stat_function(fun=dnorm, colour="blue") +
+ stat_function(fun=dcauchy, colour="green") +
+ stat_function(fun=dt4, colour="red")

In R, the kurtosis(x) function from the moments library will use the moment method
above to compute the sample kurtosis. Examples of the use of the skewness() and kur-
tosis() functions appears in Chapter 5. Normality is depicted in Figure 6.2. Kurtosis can
be seen in Figure 6.3.

The thickness of the tails of the t(4) and Cauchy is evident from the plot of the den-
sities as shown in Figure 6.4. We can underscore this by randomly sampling 10,000
random variable samples from each of the three distributions, computing the kurtosis of
each sample, and comparing to the kurtosis of the S&P 500 log returns. We see what
has been previously documented, namely that observed market returns follow a t(4)
reasonably well. Returns have higher kurtosis than that of a standard normal, and com-
parable to that of a t(4) distribution as seen in the output below. The extreme, fat tails
of the Cauchy are illustrated by a kurtosis over two orders of magnitude greater than

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0
x

y

Figure 6.4 Densities of a standard normal (blue), a Cauchy (green), and t distribution with four degrees of
freedom (red).

6.2 Stationary Time Series 97

Cauchy

−5000 −3000 −1000 0 1000 2000

0
10

00
30

00
50

00 t(4)

−10 0 10 20 30

0
50

0
10

00
15

00

Standard Normal

−4 −2 0 2 4

0
10

0
20

0
30

0
40

0 Uniform

0.0 0.2 0.4 0.6 0.8 1.0

0
20

60
10

0
Figure 6.5 Histograms of a Cauchy, a t distribution with four degrees of freedom, a standard normal

distribution, and a uniform distribution.

the kurtosis of the t(4) or market returns as seen in Figure 6.5. As expected, the normal
random variable has an excess kurtosis of close to zero.

par(mfrow=c(2,2))
hist(rcauchy(n=10000), main="Cauchy",breaks=100)
hist(rt(n=10000,df=4), main="t(4)",breaks=100)
hist(rnorm(n=10000), main="Standard Normal",breaks=100)
hist(runif(n=10000), main="Uniform",breaks=100)
set.seed(255270)
kurtosis(rcauchy(n=10000))
kurtosis(rt(n=10000,df=4))
kurtosis(rnorm(n=10000))
kurtosis(GSPC.logret[c(-1)]) #remove 1st elem
kurtosis(runif(n=10000))

6.2 Stationary Time Series

In time series analysis we are generally concerned with isolating different types of
structure in the time series under study. Typical types of structure include trend and
cyclicality. In finance we often encounter exponential trend growth, and seasonal cycli-
cality. We will examine several different examples of time series to illustrate different
types of trend and cyclicality (Cryer and Chan, 2010). Other sources are Shumway and
Stoffer (2006) and Hamilton (1994). Our analysis uses the R package TSA by Kung-Sik
Chan and Brian Ripley. We are interested in two classes of time series: stationary and

98 Time Series Analysis

non-stationary. Stationarity has two levels: weak and strong. Weak stationarity implies
that both the mean and covariance structure of the time series are constant in time:

E(Yt) = μ

γj = E(Yt − μ)(Yt−j − μ) for all t.

Strong stationarity goes beyond the first and second moments and says that the
underlying probability distribution function itself does not change in time, i.e.:

FY (yt+j1 , · · · , yt+jn) = FY (yj1 , · · · , yjn) for all t and j1, · · · , jn.

The distinction is in the behavior of the higher moments. We can imagine a distri-
bution whose third moment changes with time but whose first and second moments
do not change with time. Such a time series would be weak-sense stationary but not
strong-sense stationary.

6.3 Auto-Regressive Moving Average Processes

The main tool for examining stationary time series is the Auto-Regressive Moving
Average (ARMA) process. An ARMA(p, q) process is defined as

Yt = μ+ φ1Yt−1 + φ2Yt−1 + · · · + φpYt−p

+ et − θ1et−1 − θ2et−2 − · · · − θqet−q,

where φ1yt−1+φ2yt−1+· · ·+φpyt−p is the auto-regressive component, θ1et−1+θ2et−2+
· · ·+ θqet−q is the moving average component, μ is the process mean, and et is the error
process. The error process (also called the innovation process) is the difference between
the observed value of a variable at time t and the model forecast of that value based on
information available up to time t.

6.4 Power Transformations

Analysis of non-stationary time series requires us to expand our tool set. Essentially, the
goal is to take a time series that is non-stationary and carry out a series of operations on
it so that the resulting time series is stationary. The main operations we use are transfor-
mation and differencing. In transformation we apply a function to the time series in an
attempt to reduce heteroskedasticity, i.e. make the variance more stable in time. Typical
transform functions are the natural log function: log(x) and the square root function:√

x. Both these functions can be generalized into a family of transformations called the
power transformation. Power transformations were introduced by Box and Cox (1964).
Given a parameter λ, the power transformation is defined by

f (x) =
{

xλ−1
λ

for λ �= 0

log x for λ = 0.
(6.1)

6.5 The TSA Package 99

To show that the power transform f (x) = log(x) when λ = 0 we use l’Hospital’s
rule from calculus and show that as λ → 0, xλ−1

λ
→ log(x). We first recall elog(x) = x,

log(xλ) = λ log(x) and d
dx ex = ex so that we can rewrite xλ = eλ log(x) and then taking

the derivative, giving us

dxλ

dλ
= deλ log(x)

dλ
(6.2)

= log(x)eλ log(x) (6.3)

= log(x)
(

elog(x)
)λ

(6.4)

= log(x)xλ. (6.5)

Applying l’Hospital’s rule gives us

lim
λ→0

xλ − 1

λ
= lim
λ→0

(
d

dλ (xλ − 1)
d

dλλ

)
(6.6)

= lim
λ→0

(
log(x)xλ

1

)
(6.7)

= log(x). (6.8)

With the general transformation defined, the question now is how to find the appropri-
ate value for λ. This appropriate value is the one that produces a transformed series most
similar to a normal random variable. This depends on the time series and is estimated
via the R function BoxCox.ar().

6.5 The TSA Package

The TSA package is a time series analysis package written by Kung-Sik Chan and Brian
Ripley. The package contains functionality to estimate, forecast, and plot time series
models. It also includes functionality to estimate spectra of time series which involve
the decomposing of functions into combinations of sinusoids. We will not cover spectral
analysis in this book, however. If you have not already installed the TSA package, it can
be installed with the R command install.packages("TSA").

We begin by loading the TSA package.

> library(TSA)

The first time series we examine is tempdub, which is the average monthly tempera-
ture recorded in Dubuque, Iowa from January 1964 to December 1975. This is a good
example of a well-behaved time series. We can see in Figure 6.6 that the mean is rea-
sonably constant, and the cyclicality is seasonal and highly stable. We see that summers
and winters vary in their severity and months in which extremes are reached, but these
are minor deviations.

100 Time Series Analysis

Time

T
em

pd
ub

1964 1966 1968 1970 1972 1974 1976

10
20

30
40

50
60

70

Time

H
ar

e

1905 1910 1915 1920 1925 1930 1935

0
20

40
60

80

Figure 6.6 Two cyclical time series. Left: Average monthly temperature in Dubuque, Iowa. Right: Hare
abundance in the Hudson Bay, Canada. We observe stable cyclicality over decades with a period
of around ten years. We also observe variation in the slopes of the rise and fall of hare
population, probably due to variation in environmental factors.

> data(tempdub)
> plot(tempdub,col='blue')

Given the highly structured nature of the tempdub, we expect it to be stationary.
We can test stationarity formally using the Augmented Dickey–Fuller test. The null
hypothesis of the Augmented Dickey–Fuller test is non-stationarity, so to reject the null
hypothesis we need to see a small p-value. We carry out the Augmented Dickey–Fuller
test below and note a p-value small enough to reject non-stationarity at the α = 0.05
level. We therefore conclude that tempdub is stationary.

> adf.test(tempdub)

Augmented Dickey-Fuller Test

data: tempdub
Dickey-Fuller = -11.077, Lag order = 5, p-value = 0.01
alternative hypothesis: stationary

A natural way to model a highly stationary times series such as tempdub is the sea-
sonal means model. In the seasonal means model we assume a number of parameters for
the model, one for each segment of time – months in this case. We assume the observed
time series can be described as

Yt = μt + Xt, (6.9)

whereμt is the cyclical component and Xt is the random component such that E(Xt) = 0.
In our case here, we want to estimate the expected average for each of 12 months. We

6.5 The TSA Package 101

assume a constant average for each month: β1, β2, · · · , β12 so that the expected average
temperature for each of the 12 months is given as

μt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β1 for t = 1, 13, 15, · · ·
β2 for t = 2, 14, 26, · · ·

...

β12 for t = 12, 24, 36, · · · .

(6.10)

To fit the seasonal means model to the tempdub dataset we define indicator variables
that indicate the month to which each of the data points corresponds. The TSA package
has functionality by which we can extract the month of the dataset. We then regress the
temperature on the extracted month, and view the summary of the linear regression. We
see the average temperature for each of the months. Note that the -1 in the regression
suppresses the intercept.

> month <- season(tempdub)
> model1 <- lm(tempdub ~ month - 1)
> summary(model1)

Call:
lm(formula = tempdub ~ month - 1)

Residuals:
Min 1Q Median 3Q Max

-8.2750 -2.2479 0.1125 1.8896 9.8250

Coefficients:
Estimate Std. Error t value Pr(>|t|)

monthJanuary 16.608 0.987 16.83 <2e-16 ***
monthFebruary 20.650 0.987 20.92 <2e-16 ***
monthMarch 32.475 0.987 32.90 <2e-16 ***
monthApril 46.525 0.987 47.14 <2e-16 ***
monthMay 58.092 0.987 58.86 <2e-16 ***
monthJune 67.500 0.987 68.39 <2e-16 ***
monthJuly 71.717 0.987 72.66 <2e-16 ***
monthAugust 69.333 0.987 70.25 <2e-16 ***
monthSeptember 61.025 0.987 61.83 <2e-16 ***
monthOctober 50.975 0.987 51.65 <2e-16 ***
monthNovember 36.650 0.987 37.13 <2e-16 ***
monthDecember 23.642 0.987 23.95 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.419 on 132 degrees of freedom
Multiple R-squared: 0.9957, Adjusted R-squared: 0.9953
F-statistic: 2569 on 12 and 132 DF, p-value: < 2.2e-16

102 Time Series Analysis

Since we are modeling a highly stationary process we expect the model to fit very
well. This is what we see. The estimates for each month are highly significant, the stan-
dard error is less than 1 degree for any given month, and the R2 is a whopping 0.9957,
which means the model is accounting for 99.57 percent of all variation we see in the
data.

While seasonal patterns such as tempdub, above, records quite stable, other types of
cyclicality are less stable. The dataset hare records yearly hare abundances for the main
drainage of the Hudson Bay in Ontario, Canada and was based on trapper questionnaires.
We see in Figure 6.6 behavior that is obviously cyclical, but it is less stable than the
temperature measurements. Instead of a yearly period, we see a period that is variable
with an average of about ten years. We can reason that, at peak, hare population, it
is too high and the environment cannot support it, so hares die off or are eliminated by
predators. When enough hares have died off and the environment has recovered, then the
population begins to move to a new peak. We could also hypothesize some type of multi-
year pattern in the weather or behavior of the sun that leads to cyclicality in the hare
population. In any case, the problem is that the periodicity is not stable. During some
cycles the increases and decreases are steeper, while in other cycles the increases and
decreases are more gradual. This, no doubt, is connected to the season timing, predator
density, weather, and other factors which cumulatively result in a situation that is more
difficult to model than the temperature example above.

> data(hare)
> plot(hare,col='blue')

For hare, we test for stationarity by applying the Augmented Dickey–Fuller unit root
test, and since the reported p-value is greater than 0.05 we accept at the α = 0.05 level
the null-hypothesis of non-stationarity. There is enough instability in the series to reject
stationarity with a p-value > .05.

> adf.test(hare)

Augmented Dickey-Fuller Test

data: hare
Dickey-Fuller = -3.5051, Lag order = 3, p-value = 0.06064
alternative hypothesis: stationary

It could be that heteroskedasticity, or variation in the magnitude of the cycles, is
a problem. If so, then applying a power transform could stabilize the variance. The
Box–Cox procedure solves for the value of λ that produces a transform closest to a
normal random variable with constant variance, as well as produces confidence interval
for that optimal λ value. We carry out the Box–Cox procedure to estimate the optimal
power transform parameter λ. The resulting confidence interval is seen in Figure 6.7.
We observe that λ = 0.5 is well within the confidence interval and decide on a square
root transform.

6.5 The TSA Package 103

Lo
g

Li
ke

lih
oo

d

 95% 95% 95%

Time

sq
rt

(h
ar

e)

Series sqrt(hare)

Lag

A
C

F

−2 −1 0 1 2

−
50

0
50

λ
1905 1915 1925 1935

2
4

6
8

10
2 4 6 8 10 12 14

−
0.

6
−

0.
2

0.
2

0.
6

2 4 6 8 10 12 14
−

0.
4

0.
0

0.
4

Lag

P
ar

tia
l A

C
F

Series sqrt(hare)

Figure 6.7 From upper left: Box–Cox confidence interval for Hare series, square-root transform,
autocorrelation function, and partial autocorrelation function.

> par(mfrow=c(2,2))
> BoxCox.ar(hare)
> plot(sqrt(hare),col='blue')
> acf(sqrt(hare))
> pacf(sqrt(hare))

We examine a plot of the square-root of the hare dataset in Figure 6.7 and notice
that the degree of heteroskedasticity, or non-constant variance, has been reduced signif-
icantly. While the trough heteroskedasticity is still apparent, the peak heteroskedasticity
has been largely eliminated. We can now again test for stationarity, this time of the
square root transformed process. Testing for stationarity of the square-root transformed
time series yields a p-value of 0.01, which is too small to accept the null hypothesis
of non-stationarity at the 5 percent level. We therefore reject the null hypothesis of
non-stationarity and conclude that the square root of the hare time series is stationary.

> adf.test(sqrt(hare))

Augmented Dickey-Fuller Test

data: sqrt(hare)
Dickey-Fuller = -4.479, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary

104 Time Series Analysis

With stationarity reasonably established we can turn toward the structure of the
ARMA(p, q) process. That is, we must identify p: the order of the auto-regressive
component, as well as q: the moving average component. We need three tools for this:

1. a plot of the ARMA subsets;
2. the autocorrelation function; and
3. the partial autocorrelation function.

The plot of ARMA subsets gives the lags of the AR and MA components that mini-
mize the Bayesian Information Criterion (BIC) and can be seen in the upper panel of
Figure 6.8. (The BIC is defined in the Appendix.) The ARMA subset plot serves as a first
indication of what lags might be of interest in modeling the series. This occurs at several
AR and MA lags, and we choose the lags that are corroborated by the autocorrelation
function and partial autocorrelation functions.

layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))
plot(armasubsets(y=hare,nar=7,nma=7))
acf(sqrt(hare))
pacf(sqrt(hare))

The above block of code produces the subsets and correlation graphs of Figure 6.8.
The autocorrelation function (ACF) indicates which lags of the MA component are of

interest, and the partial autocorrelation function (PACF) indicates which lags of the AR
component are of interest. They allow us to winnow the model down to the essentials. In

B
IC

(I
nt

er
ce

pt
)

Y
−

la
g1

Y
−

la
g2

Y
−

la
g3

Y
−

la
g4

Y
−

la
g5

Y
−

la
g6

Y
−

la
g7

er
ro

r−
la

g1

er
ro

r−
la

g2

er
ro

r−
la

g3

er
ro

r−
la

g4

er
ro

r−
la

g5

er
ro

r−
la

g6

er
ro

r−
la

g7

−3.8
−22
−24
−26
−38
−52
−87

−190

Series sqrt(hare)

A
C

F

2 4 6 8 10 12 14 2 4 6 8 10 12 14

−
0.

6
0.

0
0.

4

−
0.

4
0.

0
0.

4

P
ar

tia
l A

C
F

Series sqrt(hare)

Figure 6.8 ARMA subsets, autocorrelation, and partial autocorrelation of transformed hare series.

6.5 The TSA Package 105

Figure 6.8, the ARMA subset plot on top indicates that AR lags of 2, 3, 5, and 7 are of
interest while MA lags of 1, 2, 3, and 6 are of interest. The three significant lags of the
partial autocorrelation function indicate that the AR component of the model will be of
order three. The oscillating but exponentially decaying behavior of the autocorrelation
function indicates the MA component will be of order zero.

The ACF indicates no MA component, and the PACF indicates lags of 1, 2, and 3.
We examine the partial autocorrelation function and conclude that lags 1 and 2 are sig-
nificant. Lag 3 is borderline, but since both lags 1 and 2 are strongly significant we will
include lag 3 in the model as well. We prefer models to be as simple as possible so that
estimation of parameters can be as precise as possible, so we conclude that an AR(3)
model is appropriate. This leads us to choose an ARMA(3, 0).

We fit the AR(3) model as an ARIMA(3, 0, 0) model using the arima() function so
that p = 3, d = 0 and q = 0 in ARIMA(p, d, q) in the TSA package. ARIMA will be
defined further in the next section.

> m1.hare <- arima(x=sqrt(hare),order=c(3,0,0))

We now examine the autocorrelation function of the residuals with the goal of finding
structure to be modeled. The goal of modeling the time series is to incorporate all of the
structure into the model. If we succeed at this then the residual errors left over should
exhibit no discernible structure. In time series, this phrase “no discernible structure” typ-
ically means the error terms are independent of each other, exhibit no autocorrelation,
and (ideally) are normally distributed. Given the lack of significance in the autocorrela-
tion of the residuals as seen in Figure 6.9 we are led to believe we have modeled most
of the structure in the time series. To be sure, we carry out the Ljung–Box test, seen in
the lower panel of Figure 6.9, which tests for autocorrelation of the residual errors with
the null hypothesis of the test being no autocorrelation. As expected, the Ljung–Box test
produces a p-value high enough that we accept the null hypothesis of no autocorrelation
(independence) of error terms and we conclude we have incorporated all structure in the
time series into the model errors of the model.

To corroborate the results of the Ljung–Box test and further bolster our claim of
residual error independence, perform a runs test on the residuals. The runs test examines
the prevalence of “runs” in the series, i.e. streaks where the series is above or below the
median, with the null hypothesis being independence. If we have too many or too few
runs in the series then it is evidence that the series is not random. We carry out the
runs test below and observe a p-value high enough that we accept the null hypothesis of
independence of the error terms.

> runs(rstandard(m1.hare))

$pvalue
[1] 0.602

$observed.runs
[1] 18

106 Time Series Analysis

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

A
C

F
 o

f R
es

id
ua

ls

1905 1910 1915 1920 1925 1930 1935

−
2

−
1

0
1

2 4 6 8 10 12 14

−
0.

3
0.

0
0.

2

2 4 6 8 10 12 14

0.
0

0.
4

0.
8

P
−

V
al

ue
s

Figure 6.9 Standardized residuals, autocorrelation of residuals, and Ljung–Box test for independence of
residuals of hare.

$expected.runs
[1] 16.09677

$n1
[1] 13

$n2
[1] 18

$k
[1] 0

With the independence of error terms established, we wish to determine if they
are normally distributed or not. We first examine the histogram of the residuals in
Figure 6.10 and notice a couple of outliers on the left and a conspicuous lack of a tail on
the right of the distribution. This negative skew and prominent left tail might lead us to
question the normality of the residuals.

> tsdiag(m1.hare)
> par(mfrow=c(1,2))

6.5 The TSA Package 107

Histogram of rstandard(m1.hare)

rstandard(m1.hare)

F
re

qu
en

cy

−3 −2 −1 0 1

0
1

2
3

4
5

6
7

−2 −1 0 1 2

−
2

−
1

0
1

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 6.10 Histogram of the residuals of the AR(3) model fit to hare.

> hist(rstandard(m1.hare))
> qqnorm(rstandard(m1.hare),col='blue')
> qqline(rstandard(m1.hare))

The next tool we use to determine normality is the Q–Q plot. Since our goal is to
produce a model with residual errors that are independent and normally distributed,
we compare the standardized residuals to a standard normal random variable using the
qqnorm() function. If the residuals were perfectly normal, then the dots would all be
plotted very close to the line. We examine the quantile–quantile normal plot of the resid-
uals in Figure 6.10 and observe that, while most are quite close to the line, there are
a couple that show significant deviation. This again highlights the prominent left tail
(negative residuals) and indicates that further analysis of the residuals is needed.

With both the histogram and Q–Q plot ambiguous, we proceed to perform the
Shapiro–Wilk test of normality on the residuals. The Shapiro–Wilk test takes normal-
ity as its null hypothesis and so, observing a p-value of over 0.05, we accept the null
hypothesis of normality of residuals. However, the p-value of the Shapiro–Wilk test is
just barely over 0.05, which we expect given the ambiguity of the histogram and Q–Q
plot. So we conclude that the residuals are normal, but just barely.

> shapiro.test(residuals(m1.hare))

Shapiro-Wilk normality test

data: residuals(m1.hare)
W = 0.93509, p-value = 0.06043

Lastly, in Figure 6.11 we plot the predicted forecast as well as the 95 percent con-
fidence intervals around the hare predicted forecast. We define the function to square
the vector and we plot the squared predicted forecasts as well as 95 percent forecast

108 Time Series Analysis

Hare Abundance

Year

H
ar

e
A

bu
nd

an
ce

1910 1920 1930 1940 1950 1960

0
50

10
0

15
0

Figure 6.11 Predicted hare abundance in the Hudson Valley.

confidence intervals of the model for 25 time steps ahead. We observe that the pre-
diction confidence interval increases with the overall level of prediction and widens as
prediction time is further in the future.

> square<-function(x) {y=x^2}
> plot(m1.hare,n.ahead=25,xlab='Year',ylab='Hare Abundance',
+ pch=19,transform=square,
+ col='blue')

Let us now summarize the model diagnostic process. Once we have used the Box–
Cox procedure to arrive at an optimal transform and looked at the ACF/PACF to arrive
at model order, we fit the model. After we have fit the model we have a couple of tools at
our disposal to ascertain the quality of the model. The goal in modeling a time series is to
incorporate any discernible structure into the model. If we have done this to a sufficient
degree, then we should be able to observe no structure in the model residuals, i.e. the
part of the data that is left over after taking away what is predicted by the model. If the
residuals are truly random, we expect them to exhibit some specific properties:

1. They should be either normally distributed or very close to normally distributed.
If this is the case, then we can make the argument that whatever is generating the
residuals is essentially unrelated to the structure of the time series.

2. The residuals should be uncorrelated in the sense that knowing the current and/or past
time value of the residuals tells us nothing or close to nothing about future values of
residuals.

We have a couple of tools in our toolbox to help us.

1. The Shapiro–Wilk test is a test for normality in that if we pass the shapiro.test()
function the residuals of the model and observe a p-value of at least 0.05 then we
can feel confident that the residuals are normally distributed. A p-value of between

6.6 Auto-Regressive Integrated Moving Average Processes 109

0.01 and 0.05 is a “grey area” and a p-value below 0.01 means our claim of normal
residuals is probably false.

2. The tsdiag() function takes as its argument a fitted model and returns three plots,
each a diagnostic tool in itself.
(a) The top plot is a simple plot of the standardized residuals, i.e. the residuals minus

their mean and divided by their standard deviation. If we are claiming normality,
then we should see few points outside +/−2, and very few outside +/−3. If we
observe any points at +/−4 or beyond, then our claim of normality is probably
false.

(b) The second panel of the tsdiag() output shows the autocorrelation function of the
model residuals. We should see no more than 1 in 20 residuals outside the dashed
red line. If we see more than this, or if we see residuals far outside the red dashed
line, then it is an indication that there is significant structure in the residuals, i.e.
structure that should have been incorporated into the model.

(c) The third panel shows the results of the Ljung–Box test for independence. If we
observe points significantly above the red dashed line then we can assume that
the model residuals are sufficiently independent of one another.

6.6 Auto-Regressive Integrated Moving Average Processes

Many times in the analysis of time series we see non-stationarity due to a growth trend in
the series or instability in the variance of the process. We can see both in the Johnson &
Johnson earning time series in Figure 6.12. We see an exponential growth trend due
to earnings growing with the overall economy, and we see a periodic component since
earnings tend to be weakest in the fourth quarter and strongest in the first and third
quarters. As the economy grows we see a mean that is increasing exponentially and
we see a periodic component that is stable but also increasing exponentially in severity
with time. We approach such a series by first transforming to homogenize the variance
(see Figure 6.12) and then differencing to remove the trend left after transformation.

JJ

0
5

10
15

lo
g(

E
ar

ni
ng

s)

1960 1965 1970 1975 1980

1960 1965 1970 1975 1980

0
1

2

Figure 6.12 Quarterly earnings per share of Johnson & Johnson, Inc. (above) and log of earnings (below).

110 Time Series Analysis

This process of differencing to produce a stable ARMA process leads us to the topic of
Auto-Regressive Integrated Moving Average (ARIMA) models.

> data(JJ)
> plot(JJ,col='blue')
> par(mfrow=c(2,1))
> plot(JJ,col='blue')
> plot(log(JJ),ylab='log(Earnings)',type='l',col='blue')

A time series {Yt} follows an Auto-Regressive Integrated Moving Average process if
the dth difference Wt = ∇dYt is a stationary ARMA process. If Wt in turn follows an
ARMA(p, q) process then we say that Yt is an ARIMA(p, d, q) process.

To begin, let us consider an ARIMA(p, 1, q) with Wt = Yt − Yt−1 so that in terms of
the differenced series Wt we have

Wt = μ+ φ1Wt−1 + φ2Wt−1 + · · · + φpWt−p (6.11)

+ et − θ1et−1 − θ2et−2 − · · · − θqet−q, (6.12)

and in terms of the original observed series we have

Yt − Yt−1 = μ+ φ1(Yt−1 − Yt−2) + φ2(Yt−2 − Yt−3) + · · · + φp(Yt−p − Yt−p−1)

+ et − θ1et−1 − θ2et−2 − · · · − θqet−q,

which is an ARIMA(p, 1, q) process. Note that if the first differenced process were still
not stationary (as indicated by an Augmented Dickey–Fuller test p-value of less than
0.05) then we would difference again, resulting in an ARIMA(p, 2, q) process, but most
processes need only be differenced one time. After we have transformed the process to
stabilize the variance, we must often difference once to remove any trend that is left
after the transform. The next section will document such an example.

As we will see in the next section, if the series shows a strong quarterly or yearly
cyclicality, we can expand the ARIMA process to accommodate a seasonal component.
This is called a multiplicative seasonal ARIMA model and is specified as

ARIMA(p, d, q) × (P, D, Q)s,

with non-seasonal orders p, d, and q as well as seasonal orders P, D, and Q with seasonal
period s.

6.7 Case Study: Earnings of Johnson & Johnson

Let us now return to our example with exponential growth as well as a quarterly sea-
sonal component. The dataset JJ is the quarterly earnings per share from Q1 of 1960
to Q4 of 1980 of the US company, Johnson & Johnson, Inc. While this series is non-
stationary due to its exponential growth, we can model it effectively due to the stable
rate of exponential growth and seasonal cyclicality. We also observe heteroskedasticity
in that earning volatility at lower levels is lower than earning volatility at higher levels.

The first step in our analysis of the earnings time series is to take the logarithm of it.
This converts the exponential trend to a linear trend and can be seen in Figure 6.12. The
next step is to remove the linear trend by differencing the logged series. The resulting
series will be the basis for further analysis and can be seen in Figure 6.13.

6.7 Case Study: Earnings of Johnson & Johnson 111

Lo
g

D
iff

er
en

ce
d

1960 1965 1970 1975 1980
S

ea
so

na
l D

iff

1980197519701965

D
iff

 D
iff

er
en

ce
d

1980197519701965

−
0.

6
0.

0
0.

4
−

0.
1

0.
2

0.
4

−
0.

2
0.

0
0.

2

Figure 6.13 Lagged quarterly earnings per share of Johnson & Johnson, Inc.

> par(mfrow=c(3,1))
> plot(diff(log(JJ)),ylab='log differenced',type='l',col='blue')
> plot(diff(log(JJ),lag=4),ylab='seasonal diff',type='l',col='blue')
> plot(diff(diff(log(JJ),lag=4)),ylab='diff differenced',type='l',
+ col='blue')

The cyclicality of the log-diff series is obvious and we will further document it with
a couple of diagnostic tools. The first is to examine the autocorrelation, seen in Fig-
ure 6.14. We calculate and graph the sample ACF of the first differences and observe
that the cyclical (lag 4) component has been removed. We observe further that the first
lag is significant, and this will lead us to set the MA component of the ARIMA process
to p = 1. We proceed to obtain the seasonal differenced series by differencing at lag = 4
and test this seasonal differenced series for stationarity. We observe a p-value of 0.01 so
can conclude stationarity at the α = 1 percent level but not at the α = 5 percent level.

> series<-diff(diff(log(JJ),lag=4))
> adf.test(series)

Augmented Dickey-Fuller Test

data: series
Dickey-Fuller = -6.8701, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

> par(mfrow=c(1,2))
> acf(as.vector(series),ci.type='ma')
> pacf(as.vector(series),ci.type='ma')

We set d = 1 because we differenced the series once and set q = 1 because the ACF
shows a significant correlation at lag 1. We now turn to examination of the seasonal

112 Time Series Analysis

5 10 15

Series as.vector(series)

Lag

A
C

F

−
0.

4
−

0.
2

0.
0

0.
2

5 10 15

−
0.

4
−

0.
2

0.
0

0.
2

Lag

P
ar

tia
l A

C
F

Series as.vector(series)

Figure 6.14 Autocorrelation and partial autocorrelation of seasonally differenced quarterly earnings per share
of Johnson & Johnson, Inc.

differenced series. We observe the ACF in Figure 6.14 and see significant MA lags
at 1. We observe the PACF and see significant AR lags at 1 and 4. However, if we fit an
ARIMA(1, 1, 1) × (0, 1, 1)4 or ARIMA(4, 1, 1)×(0, 1, 1)4 we observe AR component esti-
mates that have large standard errors. Based on this we fit an ARIMA(0, 1, 1) × (0, 1, 1)4

model to the log of the series. Using the seasonal ARIMA notation developed earlier,
in ARIMA(p, d, q) × (P, D, Q)s we set s = 4 because we have quarterly cyclicality (4
cycles per year), Q = 1 because we differenced at period 4 once, and D = 1 because we
difference once after seasonal difference to obtain stationarity.

> model<-arima(x=log(JJ),order=c(0,1,1),seasonal=
+ list(order=c(0,1,1),period=4))
> model
Call:
arima(x = log(JJ), order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1),

period = 4))

Coefficients:
ma1 sma1

-0.6809 -0.3146
s.e. 0.0982 0.1070

sigma^2 estimated as 0.007931: log likelihood = 78.38, aic = -152.75

> shapiro.test(residuals(model))

Shapiro-Wilk normality test

data: residuals(model)
W = 0.98583, p-value = 0.489

> tsdiag(model)
> plot(model,n1=c(1975,1), n.ahead=8, pch=19, ylab='Earnings',

transform=exp,col='blue')

6.7 Case Study: Earnings of Johnson & Johnson 113

As described in section 6.5, the R tsdiag() function plots time series diagnostics,
we use it in the above code with the results in the Figure 6.15. In the upper panel we
see nearly all standardized residuals falling within +/− 2 and exhibiting no discernible
trend. In the middle panel we see no significant auto correlation lays in the residuals.
In the lower panel we observe easily accepted null hypotheses of independence at all
lags. These three panels let us comfortably conclude that the residuals are independent
and normally distributed, and that the ARIMA model has incorporated all discernible
structure.

With normality established, we now turn to prediction of the series, predicting eight
quarters ahead starting in 1975, exponentiating the output of the ARIMA model, and
plotting 95 percent confidence intervals, shown in Figure 6.16.

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

15105A
C

F
 o

f R
es

id
ua

ls

15105

1965 1970 1975 1980

−
2

0
1

2
−

0.
2

0.
0

0.
2

0.
0

0.
4

0.
8

P
−

V
al

ue
s

Figure 6.15 Standardized residuals, autocorrelation of residuals, and Ljung–Box test for independence of
residuals for Johnson & Johnson for eight quarters from 1980 to 1982.

Time

E
ar

ni
ng

s

1976 1978 1980 1982

10
15

20
25

Figure 6.16 Predicted earnings of Johnson & Johnson for eight quarters from 1980 to 1982.

114 Time Series Analysis

6.8 Case Study: Monthly Airline Passengers

From 1960 to 1972 airline travel increased by a factor of five or more. The cyclicality is
depicted in Figure 6.17. The ACF of the difference of key airline passenger transforms
is depicted in Figure 6.18.

> data(airpass)
> par(mfrow=c(3,1))
> plot(airpass,ylab="Air Passengers",col="blue")
> plot(log(airpass),ylab=" Log of Air Passengers",col="blue")
> plot(diff(log(airpass)), ylab="Diff of Log Air Passengers",col="blue")
> points(diff(log(airpass)),
+ x=time(diff(log(airpass))),
+ pch=as.vector(season(diff(log(airpass)))))
> layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE))
> acf(as.vector(diff(log(airpass))),main="differenced")
> acf(as.vector(diff(diff(log(airpass)),lag=12)),
> main="seasonal differenced")
> plot(diff(diff(log(airpass)),lag=12),col="blue",
> ylab="seasonal differenced")
> hist(diff(diff(log(airpass)),lag=12),main="histogram",
> xlab="difference")

Time

A
ir

P
as

se
ng

er
s

Time

 L
og

 o
f A

ir
P

as
se

ng
er

s

Time

D
iff

 o
f L

og
 A

ir
P

as
se

ng
er

s

1960 1962 1964 1966 1968 1970 1972

10
0

30
0

50
0

1960 1962 1964 1966 1968 1970 1972

5.
0

5.
5

6.
0

6.
5

1960 1962 1964 1966 1968 1970 1972

−
0.

2
0.

0
0.

2

Figure 6.17 Plot of airline passengers, log of airline passengers, and difference of log airline passengers.

6.8 Case Study: Monthly Airline Passengers 115

Differenced

Lag

A
C

F

Seasonal Differenced

Lag

A
C

F

Time

S
ea

so
na

l D
iff

er
en

ce
d

Histogram

Difference

F
re

qu
en

cy

5 10 15 20
−

0.
2

0.
2

0.
6

5 10 15 20

−
0.

4
−

0.
2

0.
0

1962 1966 1970−
0.

15
−

0.
05

0.
05

0.
15

−0.15 −0.05 0.05 0.15
0

10
30

50

Figure 6.18 From top left: ACF of difference of log air passengers, ACF of seasonal difference of difference
of log air passenger miles, and histogram of seasonal difference of difference of log air passenger
miles.

Carrying out the ARIMA model estimation on the monthly airline passenger series,
we observe standard error (marked s.e. below) of model estimates about one-fifth of the
absolute value of the estimates themselves, indicating that the estimates are precise and
reliable.

> mod <- arima(log(airpass), order = c(0,1,1),seasonal=
list(order=c(0,1,1),period=12))

> mod
Call:
arima(x = log(airpass), order = c(0, 1, 1), seasonal =

list(order = c(0, 1, 1), period = 12))

Coefficients:
ma1 sma1

-0.4018 -0.5569
s.e. 0.0896 0.0731

sigma^2 estimated as 0.001348: log likelihood = 244.7, aic = -485.4

Turning to analysis of the model residuals, we wish to examine the standardized
residuals, the autocorrelation function of the residuals, and the Ljung–Box test for inde-
pendence of residuals. We see in the upper panel of Figure 6.19 that the standardized

116 Time Series Analysis

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

A
C

F
 o

f R
es

id
ua

ls

1962 1964 1966 1968 1970 1972

5 10 15 20

5 10 15 20

−
3

−
1

1
2

3
−

0.
15

0.
00

0.
15

0.
0

0.
4

0.
8

P
−

V
al

ue
s

Figure 6.19 Standardized residuals, autocorrelation of residuals, and Ljung–Box test for independence of
residuals for monthly airline passenger miles.

residuals are reasonably well behaved, with only a couple outside +/− 3. We see in
the middle panel no autocorrelation of residuals, and in the lower panel we see that the
Ljung–Box test easily accepts the null hypothesis of independence of residuals.

> tsdiag(mod)

To confirm, we carry out the Shapiro–Wilk test for normality of the residuals, and
observe a p-value of over 0.15, leading us to accept the null hypothesis of normally
distributed residuals.

> shapiro.test(residuals(mod))

Shapiro-Wilk normality test

data: residuals(mod)
W = 0.98637, p-value = 0.1674

With the model estimated and the residuals analyzed, we can turn to prediction. In
Figure 6.20 we predict monthly airline passenger numbers three years out into the future,
and observe that the 95 percent confidence intervals increase with the overall level of
the prediction and widen as the prediction moves further into the future.

6.9 Case Study: Electricity Production 117

Time

P
re

di
ct

ed
 A

ir
P

as
se

ng
er

s

1970 1971 1972 1973 1974 1975

40
0

60
0

80
0

10
00

Figure 6.20 36 months’ predicted air passengers.

Time

E
le

ct
ric

ity

1975 1980 1985 1990 1995 2000 2005

15
00

00
25

00
00

35
00

00

Figure 6.21 Monthly US electricity generation for three decades, 1973 to 2005.

> plot(mod,n1=c(1970,1),n.ahead=36,pch=19,
+ ylab="Predicted Air Passengers",transform=exp,col="blue")

6.9 Case Study: Electricity Production

We next consider in Figure 6.21 a more difficult series, namely electricity, which is
monthly US electricity generation (in millions of kilowatt hours) of all types: coal, nat-
ural gas, nuclear, petroleum, and wind, from January 1973 to December 2005. In this
series we see structure that is more difficult to deal with. We begin by loading the dataset
and plotting it.

> data(electricity)
> plot(electricity,col='blue')

118 Time Series Analysis

λ

Lo
g

Li
ke

lih
oo

d

 95% 95%

Differenced

Lag

A
C

F

Seasonal Differenced

Lag

A
C

F

Histogram

Difference
F

re
qu

en
cy

−2 −1 0 1 2

14
20

14
60

15
00

5 10 15 20 25

−
0.

4
0.

0
0.

4
0.

8

5 10 15 20 25

−
0.

4
−

0.
2

0.
0

0.
2

−0.15 −0.05 0.00 0.05 0.10 0.15

0
20

40
60

80

Figure 6.22 From upper left: Box–Cox estimate of the transform parameter λ, autocorrelation function of
differenced series, autocorrelation of seasonal differenced series, histogram of seasonal
differenced series.

We see in Figure 6.21 that stable cyclicality is still present, since electricity genera-
tion is greatest during the hottest days of summer and coldest days of winter. However,
we also see a growth trend in electricity usage. As the economy and population of the
country grows, so will electricity usage. This growth trend is easy enough to model.
What is more difficult to model is the changing variance. We can see that variability at
lower levels of usage is lower and that variability at higher levels of usage is higher.
This phenomenon is known as heteroskedasticity and to deal with it we will need to
carry out a power transformation. Given the stable exponential growth of the electricity
time series, we might guess that a log transform is appropriate. We carry out the Box–
Cox procedure to estimate the optimal λ and confidence interval. We see in Figure 6.22
that λ = 0 is well within the confidence interval, and is very close to being the optimal
value of λ, so we conclude that a log transform is appropriate.

> layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE))
> BoxCox.ar(electricity)
> acf(diff(log(as.vector(electricity))),main="differenced")
> acf(diff(diff(log(as.vector(electricity))),lag=12),
+ main="seasonal differenced")
> hist(diff(diff(log(as.vector(electricity))),lag=12),
+ main="histogram",xlab="difference")
> mod2 <- arima(log(electricity), order = c(0,1,1),
+ seasonal=list(order=c(0,1,1),period=12))

6.9 Case Study: Electricity Production 119

> mod2
Call:
arima(x = log(electricity), order = c(0, 1, 1), seasonal =

list(order = c(0, 1, 1), period = 12))

Coefficients:
ma1 sma1

-0.5049 -0.8299
s.e. 0.0753 0.0319

sigma^2 estimated as 0.0007344: log likelihood = 831.35, aic = -1658.7

> tsdiag(mod2)
> shapiro.test(residuals(mod2))

Shapiro-Wilk normality test

data: residuals(mod2)
W = 0.99232, p-value = 0.03925

> plot(mod2,n1=c(2004,1),n.ahead=24,pch=19,
+ ylab="Predicted Electricity Production",transform=exp,col="blue")

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

1975 1980 1985 1990 1995 2000 2005

5 10 15 20 25

A
C

F
 o

f R
es

id
ua

ls

5 10 15 20 25

−
3

−
1

1
3

−
0.

15
0.

00
0.

10
0.

0
0.

4
0.

8

P
−

V
al

ue
s

Figure 6.23 Standardized residuals, autocorrelation of residuals, and Ljung–Box test for independence of
residuals for monthly electricity production.

120 Time Series Analysis

In Figure 6.23 we see that the residuals are not as well behaved. The residual plot in
the upper panel of the figure shows values larger than +/–3, indicating more extreme
values than we like to see. In the middle panel we see more significant correlations
than the 1 in 20 we expect at the 5% significance level. In the lower panel we see that
the Ljung-Box test rejects independence at all lags. These results are consistent with a
Shapiro-Wilks test that rejects normality. The conclusion is that while we have modeled
most of the structure in the series, there is still some structure left in the residuals, most
likely of a non-linear nature.

6.10 Generalized Auto-Regressive Conditional Heteroskedasticity

As we have discussed previously, many financial time series have a variance that changes
with time. Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH)
models give us a framework to model this phenomenon. While ARMA(p, q) processes
have both auto-regressive AR(p) and moving-average MA(q) components, GARCH
processes have a similar structure:

σ 2
t|t−1 = ω + β1σ

2
t−1|t−2 + · · · + βpσ

2
t−p|t−p−1

+ α1r2
t−1 + · · · + αqr2

t−q.

In the GARCH framework the series we are trying to model: σ 2
t is analogous to

yt in the ARMA framework, and squared returns r2
t in GARCH are analogous to the

innovations et in ARMA. The β coefficients determine how past values of volatility
σ 2

t affect the present value of σ 2
t , and the α coefficients determine how past values of

squared returns r2
t affect the present value of σ 2

t . We can see the forcasted electricity
production in Figure 6.24.

Time

P
re

di
ct

ed
 E

le
ct

ric
ity

 P
ro

du
ct

io
n

2004 2005 2006 2007 2008

30
00

00
35

00
00

40
00

00
45

00
00

Figure 6.24 Predicted electricity production with 95 percent confidence intervals for 24 months.

6.11 Case Study: Volatility of Google Stock Returns 121

6.11 Case Study: Volatility of Google Stock Returns

We turn now to an analysis of the daily returns of Google stock from August 20, 2004 to
September 13, 2006. We load the dataset google and plot it as shown in Figure 6.25. We
notice heteroskedasticity in the returns, with variability higher at some times and lower
at other times.

Note that Google time series comprises returns, not raw prices. If we want to recon-
struct the original price series we can recall that returns are created by first differencing
the series then taking the log of it: return <- diff(log(price)). To create the price vector
from the return vector, we must invert this process. We sum the process cumulatively
and then take the exponential of each value in the vector. In R this is accomplished with
the cumsum() and exp() functions, respectively, and as outlined in Chapter 5. Note that
this price series is scaled to a starting value of 1. To reconstruct the actual price series
we would multiply by the price of Google at the start of the series: $50.12, which is the
closing price on August 19, 2004. The price series reconstructed from returns is shown
in Figure 6.26.

Time

G
oo

gl
e

0 100 200 300 400 500

−
0.

05
0.

00
0.

05
0.

10
0.

15

Figure 6.25 Daily returns of Google stock from August 20, 2004 to September 13, 2006.

Index

P
ric

e

Histogram of Google

Google

F
re

qu
en

cy

0 100 200 300 400 500

50
10

0
15

0
20

0

−0.05 0.00 0.05 0.10 0.15

0
5

10
15

20
25

30

Figure 6.26 Left: daily price of Google stock. Right: histogram of daily returns of Google stock. The period
is from August 20, 2004 to September 13, 2006.

122 Time Series Analysis

> data(google)
> plot(google,col='blue')
> price <- exp(cumsum(google)) * 50.12
> plot(price,type='l',col='blue')

We next consider the histogram of Google returns over the time series. We observe the
heavy tails that are common in financial time series. While the histogram of Google’s
returns do resemble a normal distribution, we must carry out a Shapiro–Wilk test for
normality.

> hist(google,breaks=100)
> shapiro.test(google)

Shapiro-Wilk normality test

data: google
W = 0.94779, p-value = 1.365e-12

We notice two things from the Shapiro–Wilk test for normality. First, from the p-value
close to zero, that the null hypothesis of normality is easily rejected. Second, we note
the dependence of the presence of extreme values on the reported p-value. If we run
the Shapiro–Wilk test for normality on the Google returns with all returns greater than
6 percent removed, we observe a p-value of over 0.44 in which case the null hypoth-
esis of normal distribution is easily accepted. So while the returns are reasonably well
behaved, the presence of extreme values leads to the rejection of normality. We also see
below that if we count the number of days on which we have an absolute value of return
greater than 6 percent, they amount to only 17 days.

> sum(abs(google)>0.06)
[1] 17
> shapiro.test(google[abs(google)<=0.06])

Shapiro-Wilk normality test

data: google[abs(google) <= 0.06]
W = 0.99686, p-value = 0.4403

We now turn toward characterization and modeling of the daily return process. The
first step is to examine the autocorrelation function and partial autocorrelation func-
tion of the series to look for cyclicality. We observe in Figure 6.27 significant lags, we
conclude that the returns are essentially uncorrelated over time.

> par(mfrow=c(2,2))
> acf(google)
> pacf(google)
> acf(google^2)
> pacf(google^2)

To model the return process we need the mean to be zero. We calculate the mean of
the daily return series

6.11 Case Study: Volatility of Google Stock Returns 123

Series Google

Lag

A
C

F

Lag

P
ar

tia
l A

C
F

Series Google

Series Google^2

Lag

A
C

F

0 5 10 15 20 25

−
0.

05
0.

05

0 5 10 15 20 25

−
0.

05
0.

05

0 5 10 15 20 25

−
0.

05
0.

10
0.

20

0 5 10 15 20 25

−
0.

05
0.

10
0.

20

Lag

P
ar

tia
l A

C
F

Series Google^2

Figure 6.27 Autocorrelation function of daily returns of Google stock from August 20, 2004 to September
13, 2006.

> mean(google)
[1] 0.002685589

and see that the mean return ≈ 0.27 percent per day. This sounds small but amounts to
0.6804 or 68 percent annualized. We carry out a one-sided t-test and conclude that with
a p-value of much smaller than 0.05, we reject the null hypothesis that the mean return
is zero and conclude the alternative that the mean return is greater than zero. We will
need to subtract the mean when we model the return series in a GARCH framework.

> t.test(google, alternative='greater')

One Sample t-test

data: google
t = 2.5689, df = 520, p-value = 0.00524
alternative hypothesis: true mean is greater than 0
95 percent confidence interval:
0.000962967 Inf

sample estimates:
mean of x

0.002685589

The next step is to test for Auto-Regressive Conditional Heteroskedasticity (ARCH).
The McLeod–Li test carries out this hypothesis test with a null hypothesis of constant
variance, or homoskedasticity. We observe in Figure 6.28 that the null hypothesis of
constant variance is easily rejected.

124 Time Series Analysis

Lag

P
−

V
al

ue

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

P
−

V
al

ue

Figure 6.28 On the left we see the McLeod–Li test for ARCH of daily returns of Google stock from August
20, 2004 to September 13, 2006 with consistently low values leading us to reject the null
hypothesis on constant variance. On the right we see the McLeod–Li test for a sequence of 500
independent normal random variables with mean 0 and standard deviation 1 with high values
indicating acceptance of the null hypothesis of constant variance.

> par(mfrow=c(2,1))
> McLeod.Li.test(y=google)
> McLeod.Li.test(y=rnorm(500))

To put this in perspective, let’s carry out the McLeod–Li test under conditions of
known constant variance, i.e. a vector of 500 standard normal random variables. We
observe that all p-values are above the critical level and most are substantially over the
critical value.

Now that heteroskedasticity is established; we need to determine the correct order
of the GARCH(p,q) process. We calculate the extended autocorrelation function for
both the absolute value of the return vector and the square of the return vector, both
of which indicate that a GARCH(1,1) process is appropriate. We also carry out the
extended autocorrelation function eacf() and see at the (1,1) position the “northwestern”-
most vertex of a triangle of o’S with x’s both above and to the left. This corresponds to
auto regressive and moving average components each having lag 1. This corroborates
our findings in the autocorrelation function and partial autocorrelation functions.

> eacf(google^2)

AR/MA
0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x o o o o o o o x o o o x
1 x o o o o o o o o x o o o x
2 x o o o o o o o o x o o o x
3 x x x o o o o o o x o o o x
4 x x x o o o o o o o o o o o
5 x x x o o o o o o o o o o o
6 x x x x o o o o o o o o o o
7 o x x o o x o o o o o o o o

6.11 Case Study: Volatility of Google Stock Returns 125

Having decided upon a GARCH(1,1) process to model the return series, we have a
model equation of

σ 2
t|t−1 = ω + β1σ

2
t−1|t−2 + α1r2

t−1 (6.13)

and we wish to estimate ω, α1, and β1 from the return series. We fit the model to the
data and examine the output. We see that the estimates of ω, α1, and β1 are all highly
significant. We see from the result of the Jarque–Bera test that the null hypothesis of joint
zero skew and zero kurtosis is easily rejected. We also observe from the Box–Ljung test
that the null hypothesis of independence of residuals is easily accepted.

> m1 <- garch(x=google-mean(google),order=c(1,1),reltol=1e-6)
> summary(m1)
Call:
garch(x = google - mean(google), order = c(1, 1), reltol = 1e-06)

Model:
GARCH(1,1)

Residuals:
Min 1Q Median 3Q Max

-3.60772 -0.59914 -0.04721 0.54559 5.56378

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

a0 5.246e-05 1.276e-05 4.111 3.94e-05 ***
a1 1.397e-01 2.335e-02 5.984 2.17e-09 ***
b1 7.698e-01 3.722e-02 20.682 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostic Tests:
Jarque Bera Test

data: Residuals
X-squared = 201.25, df = 2, p-value < 2.2e-16

Box-Ljung test

data: Squared.Residuals
X-squared = 0.010978, df = 1, p-value = 0.9166

With the volatility modeled we can now plot it. We observe in Figure 6.29 that the
conditional variance of returns can vary greatly over time, with periods of relatively low
volatility very quickly giving way to large spikes of volatility. We see in Figure 6.30
a joint plot of Google’s return series, price series, and conditional variance of returns
series. We observe spikes in variance coinciding with periods of greater uncertainty and
movement in both the return series and the price series.

126 Time Series Analysis

Time

S
ta

nd
ar

d
R

es
id

ua
ls

0 100 200 300 400 500
−

2
0

2
4

Figure 6.29 Standard residuals for Google.

Index

P
ric

e

Time

Lo
g

R
et

ur
ns

Time

C
on

di
tio

na
l

V
ar

ia
nc

e

0 100 200 300 400 500

50
15

0

0 100 200 300 400 500

−
0.

05
0.

10

0 100 200 300 400 5000.
00

05
0.

00
30

Figure 6.30 Joint plot of returns, price, and volatility of Google stock from August 20, 2004 to September 13,
2006.

> plot(residuals(m1),type='h',ylab='standard residuals',col='blue')

> par(mfrow=c(3,1))
> plot(price,type='l',col='blue',ylab='price')
> plot(google,type='l',col='blue',ylab='log returns')
> plot((fitted(m1)[,1])^2,type='l',
+ ylab='conditional variance',xlab='time',col='blue')

We can see the Q–Q plot of the residuals from GARCH(1,1) in Figure 6.31.

> par(mfrow=c(2,2))
> plot(residuals(m1),col="blue",main="Residuals")
> hist(residuals(m1))
> McLeod.Li.test(y=residuals(m1),main="McLeod-Li")

6.11 Case Study: Volatility of Google Stock Returns 127

Residuals

Time

R
es

id
ua

ls
(m

1)

Histogram of Residuals(m1)

Residuals(m1)

F
re

qu
en

cy

McLeod−Li

Lag

P
−

V
al

ue

0 100 300 500
−

2
0

2
4

−4 −2 0 2 4 6

0
50

10
0

20
0

0 5 10 15 20 25

0.
0

0.
4

0.
8

−3 −2 −1 0 1 2 3

−
2

0
2

4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 6.31 Q–Q plot of residuals from GARCH(1,1) model of Google returns.

> qqnorm(residuals(m1),col='blue')
> qqline(residuals(m1))
> shapiro.test(residuals(m1))

Shapiro-Wilk normality test

data: residuals(m1)
W = 0.96922, p-value = 5.534e-09

Under a GARCH(1, 1) model we can calculate a process variance. Assuming station-
arity and noting that σ 2

t = E(r2
t) − E2(rt) ≈ E(r2

t) since E(rt) is close to zero, we can
take expectations of both sides of the equation σ 2

t|t−1 = ω+ β1σ
2
t−1|t−2 + α1r2

t−1 above,
yielding:

σ 2 = ω + β1σ
2 + α1σ

2

which, when we solve for σ 2, using our α1 = a1 and β1 = b1 estimates from the garch()
summary above, gives us

σ 2 = ω

1 − α1 − β1
= 0.00005

1 − 0.1397 − 0.7698
= 0.00052, (6.14)

which is very close to the calculated variance of the return process:

> var(google)
[1] 0.0005693958

In this chapter we have covered the main tools used to isolate and model structure
in a time series. We have discussed how to detect stable periodic structure by way of

128 Time Series Analysis

autocorrelation and partial autocorrelation functions. We have discussed how to stabilize
variability using the Box–Cox transformation, test for stationarity using the Augmented
Dickey–Fuller test, and then model the time series in an ARMA framework. With the
model defined and estimated we can turn to the tools in the TSA package for prediction
estimates and confidence intervals. We have also discussed how to incorporate trend
behavior into our characterization of time series via differencing. With the differenced
series sufficiently stationary we discussed how to model series with trend in an ARIMA
framework. Lastly, we discussed the phenomenon of heteroskedasticity, i.e. time-
changing variance, and introduced the GARCH process for modeling heteroskedasticity.

6.12 Exercises

6.1. Public Transport Boardings

Install the TSA package with the command install.packages("TSA") if you
have not already, and load it with the command library(TSA).

In this exercise we use our time series analysis techniques to model and forecast the
number of people who boarded light rail trains and city buses in Denver, Colorado.

(a) Load the boardings data with data(boardings) and examine its structure with
str(boardings).

(b) Extract the component we will analyze with boardings <- boardings[,1].

(c) Plot the boardings data with plot(boardings,col=“blue”) and overlay the
first letter of every month with points(boardings, x=time(boardings), pch =
as.vector(season(boardings)))

(d) Calculate and view the ACF with acf(as.vector(boardings)). Is the yearly
periodicity apparent? What about MA lags?

(e) Calculate and view the PACF with acf(as.vector(boardings)). Is the yearly
periodicity apparent? What about AR lags?

(f) Model the boardings data as ARIMA(4, 0, 3) × (1, 0, 0)12. Note that the inte-
grated part of the model is zero because we did not do any differencing for trend
removal. Which estimates are the most precise? Which are the least precise?

m.boardings <- arima(boardings, order=c(4,0,3), seasonal = list(order =
c(1,0,0), period=12)) m.boardings

(g) Examine the model residuals with tsdiag(m.boardings). Are the residuals well-
behaved? Are they reasonably normal? Are they reasonably independent?

(h) Test the residuals for normality with shapiro.test(residuals(m.boardings)).
Does the Shapiro–Wilk test accept or reject normality?

(i) Predict 36 months ahead and plot the boardings data with predictions
and 95 percent confidence interval with: plot(m.boardings, n1=c(2004,1),
n.ahead=36, col=‘blue’)

6.2. CO2 Levels

In this exercise we use our time series analysis techniques to model and forecast
the levels of CO2 in the atmosphere.

(a) Load the dataset with data(co2) and plot it with plot(co2, col=“blue”).

6.12 Exercises 129

(b) Plot a partial window of the time series starting in 2001 with plot(window(co2,
start=c(2001,1)), col=“blue”).

(c) Define months = c(‘J’, ‘F’, ‘M’, ‘A’, ‘J’, ‘J’, ‘A’, ‘S’, ‘O’, ‘N’, ‘D’) and lay
the points over the line with points(window(co2, start = c(2001, 1)), pch =
months).

(d) Plot the ACF with acf(as.vector(co2), lag.max=48) and observe what appears
to be a 12-month cycle.

(e) Plot the first difference with plot(diff(co2)) and again observe the yearly cycle.

(f) Calculate the first and seasonal difference with, and plot it with, series <-
diff(diff(co2), lag=12) plot(series, ylab = ‘First and Seasonal Difference’).

(g) Plot the ACF and PACF of the first and seasonal differenced series with
acf(as.vector(series)) and pacf(as.vector(series)). What order of ARIMA
model do you recommend?

(h) Fit and examine an ARIMA(2, 1, 1)×(0, 1, 1)12 model with m.co2 <- arima(co2,
order = c(2,1,1), seasonal = list(order = c(0,1,1), period = 12)) m.co2.

(i) Examine model diagnostics with tsdiag(m.co2) test for normality with
shapiro.test(residuals(m.co2)). Describe the residuals. Are they well-behaved?
Are they normal?

(j) Plot predictions 48 months ahead starting in 2004 with 95 percent confidence
intervals with the command plot(m.co2, n1=c(2004,1), n.ahead=48,
col = 'blue').

6.3. Exchange Rates

In this exercise we will analyze the volatility of the US dollar to Hong Kong dollar
exchange rate.

(a) Load the US dollar/Hong Kong dollar data frame: data(usd.hkd).

(b) Examine the structure of the data frame: str(usd.hkd).

(c) Extract the hkrate component and make it a time series: us.hk <-
ts(usd.hkd$hkrate).

(d) Plot the time series: plot(us.hk).

(e) Fit a GARCH(1,1) to the time series: m2 <- garch(x = us.hk - mean(us.hk),
order = c(1,1), reltol = 1e-6).

(f) Examine the model: summary(m2).

(g) Plot the fitted model conditional variance: plot((fitted(m2)[,1])2̂, type=‘l’, ylab
= ‘conditional variance’, xlab = ‘time’, col=‘blue’).

(h) Plot the model residuals with the command plot(residuals(m2), col=“blue",
main = “Residuals"). Do they look normal? Why or why not?

(i) Generate the histogram of the model residuals with the command
hist(residuals(m2)) Is it similar to a normal distribution? Why or why not?

(j) Test the model residuals for normality with the command shapiro.test(resi-
duals(m2)) Is normality accepted or rejected? Does this agree with your
thoughts on the residual plot and histogram above?

7 The Sharpe Ratio

When comparing investments, an objective metric is necessary for measuring per-
formance. We can use an analogy from sports. The American football quarterback
efficiency ratio provides an analytical measurement of the success of the passer, an ath-
lete at the quarterback position who is in the role of throwing the football to a receiver
(rather than running the ball forward). Total yards are the number of yards gained from
passing the ball successfully. Touchdowns for the passer are when a pass they throw
results in a successful score through a 6-point touchdown. Completions are the num-
ber of successful plays involving a pass from the passer. Interceptions are when the pass
throws a pass which is caught successfully by the opposing defense. For the US National
Collegiate Athletic Association (NCAA), the formula is:

PssrRtgNCAA = (8.4 × Yds) + (330 × TDs) + (100 × Compl) − (200 × Intcps)

Atmps
.

(7.1)
The quarterback efficiency ratio allows college football coaches to measure a passing
quarterback’s performance against their peers on the same team or other teams. It has
become an important metric for selecting the better quarterbacks in the league. While
Aaron Rogers was a quarterback in college, playing for the University of California at
Berkeley, also known as “Cal,” he played two seasons with 5,469 total passing yards,
424 completions on 665 attempts with only 13 interceptions and a hefty 43 touchdown
passes. This yielded, according to our formula above, a Cal career passer rating of
150.27. He was then drafted by the Green Bay Packers NFL team, thereby moving
from playing at the college level to playing at the professional level. As predicted by his
college passer rating, he became one of most prolific passers in the American National
Football League, the NFL. After a great two-year career at Cal, he went on to hold the
highest average passer rating in the NFL of his time, ranking first for all time as of the
end of the 2014 season.

Just as the quarterback efficiency ratio formula provides an objective metric of the
passer’s performance for a season, when looking at the price behavior of common
stocks, we need an analytical metric. Like athletic metrics, security returns are a reflec-
tion of the management team in place. Just as for the quarterback and the team, success
is key and the management team needs to perform consistently, yielding good returns
in order for investors to commit their capital. If the security price appreciates more than
others, usually that is due to the talent and hard work of the management team and the

7.2 Time Periods and Annualizing 131

employees of the company. Just as for the quarterback and the team, past successes can,
in many cases, predict future success.

A drawdown of a security is when a sustained price depreciation occurs. Drawdowns
can be pretty scary for the owner of a security. The investor observes as their investment
loses value. If we see a stock chart with significant drawdowns, that is like having a
quarterback on our team with a lot of interceptions. In either case, our confidence in the
performance is severely impacted. We can no longer trust the athlete to succeed. Analo-
gously, we can no longer trust the market, with our chosen securities, to generate gains.

Looking closely at the passer rating equation, Formula 7.1 above, it is clear that
interceptions, which are mistakes, are penalized twice as much as pass completions,
successes, are rewarded. This is because mistakes can be so costly to the team. Just like
interceptions, the adverse market events are hard to overcome. Market drawdowns in
value can ruin people’s future retirement income or even their current income, so we
need to be careful about how to analytically account for this.

7.1 Sharpe Ratio Formula

As a long-time standard for measuring investment efficiency, the Sharpe Ratio is impor-
tant. Intuitively, the Sharp Ratio combines two important statistical moments of a
random variable representing a security price time series (Sharpe, 1964). If the invest-
ment is a mixture of securities in a portfolio, P, the Sharpe Ratio is the mean return over
and above the risk-free rate divided by the volatility:

E {RP} − μf

σP
. (7.2)

We can think of the volatility as a measure of risk. For every unit of risk, we have the
excess return over and above the risk-free rate provided by taking that risk.

Figure 7.1 depicts high Sharpe Ratio stock prices in separate charts. These are actual
daily price charts using historical data. The tickers symbols were omitted to create a
sense of mystery. These might be deemed “good looking” to an investor in that they
have drawdowns of short duration and continue to generally rise. We can think of these
perhaps as the best quarterbacks in the NCAA, using our passer rating analogy.

7.2 Time Periods and Annualizing

Often, one can read books or journal articles quoting Sharpe Ratios, and they can seem
too high or too low when remembering other instances. “Let’s see, now, was that good
Sharpe Ratio we talked about, 2.0 or 0.2?” It is important to recognize that it should be
thought of as a unitless figure computed on a time series. The interval of the time series
determines the implicit units.

For example, if there are log returns which were computed on a daily basis, those are
unitless amounts, and they cannot be compared against log returns on a monthly basis.
In order to compare the two, one of them must be converted.

132 The Sharpe Ratio

Security 1 Security 2 Security 3

50
0

30
0

U
S

D

Days
10

0

10
0

60
80

U
S

D
U

S
D

40

40
50

20
30

U
S

D

10

60
80

20
40

0

0 500 1000 1500

Security 5 Security 6

10
0

14
0

60U
S

D

Days

20

0 500 1000 1500

Security 9

80
0

12
00

40
0U

S
D

Days

0

0 500 1000 1500

Security 10

U
S

D

Days

10
30

50
70

0 500 1000 1500

Days

0 500 1000 1500

U
S

D

50
60

20
30

40
10

Security 7

Days

0 500 1000 1500

U
S

D

14
0

60
10

0
20

Security 8

Days

0 500 1000 1500

Days

0 500 1000 1500

Days

0 500 1000 1500

Security 4

40
20

30

U
S

D

10

Days

0 500 1000 1500

Figure 7.1 Ten stocks with the best Sharpe Ratios from a larger set of stocks. All of these exhibit a high rate
of return relative to their volatility.

One of the most common conventions is to convert to an annualized basis. To convert
a mean of daily returns or daily log returns, one can simply multiply by 252, the number
of trading days per year. Similarly, when computing the variance of daily returns or daily
log returns, one can simply multiply by 252 to obtain an annualized variance. However,
since volatility is a standard deviation figure, one multiplies the volatility based upon
daily prices by

√
252 to obtain an annualized volatility. Equations 3.31 and 3.32 describe

converting from daily to annualized volatility.
All that being said, we will simply keep Sharpe Ratios in their simplest form without

annualizing them due to the number of places they are being calculated.

7.3 Ranking Investment Candidates

The function pruneBySharpe() computes Sharpe Ratios independently and before they
are needed for portfolio optimization. The pruning occurs after they are calculated. The
candidate set of tickers is reduced according to the threshold threshSR. Figure 7.2 is the
output of pruneBySharpe(), which shows the Sharpe Ratios both before and after the
sorting and pruning.

pruneBySharpe <- function(prices,lab,meanv,sdevv,threshSR,mufree=0) {
par(mar=c(4,4,1,1))
par(mfrow=c(1,2))
indepSharpes <- (meanv-mufree)/sdevv
len = length(indepSharpes)
plot(indepSharpes,ylab="SR",col=4)

7.3 Ranking Investment Candidates 133

plot(sort(indepSharpes),ylab="SR",col=4)
lines(1:len,rep(threshSR,len))
indHighSharpes <- (indepSharpes > threshSR)
#clean up NAs
for(d in 1:length(indHighSharpes)) #clean up NAs

if(is.na(indHighSharpes[d]))
indHighSharpes[d] <- FALSE

len = dim(prices)[1]
wid = dim(prices)[2]
smallerSz = sum(indHighSharpes)
newPrices <- matrix(rep(0,len*smallerSz),

nrow=len,ncol=smallerSz)
newLab <- vector(length=smallerSz)
e <- 1
for(d in 1:wid) {

if(indHighSharpes[d]) {
print(paste("e",e))
newPrices[,e] <- prices[,d]
newLab[e] <- lab[d]
e <- e + 1

}
}
print("completed Sharpe pruning")
list(newPrices,newLab,indepSharpes)

}
#unit test:
library(huge)
data(stockdata)
D <- length(stockdata$data[1,])
p <- stockdata$data[,1:D]
l <- stockdata$info[1:D,1]
r <- findR(p)

res <- findCovMat(r)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]

res <- pruneBySharpe(p,l,meanv,sdevv,.035)
p <- res[[1]]
l <- res[[2]]
D <- length(lab)
indepSharpes <- res[[3]]
print(paste('D =',D))

After running pruneBySharpe(), there is a big impact on our set of candidate secu-
rities, reflected in a new copy of the prices matrix. If we begin our process with an
original covariance matrix, � computed via findCovMat() from R, the time series of log
returns, then, after reducing the number of securities with pruneBySharpe(), �′ needs

134 The Sharpe Ratio

Index

S
R

0 100 300

−
0.

05
0.

00
0.

05
0.

10

0 100 300

−
0.

05
0.

00
0.

05
0.

10

Index

S
R

Figure 7.2 Output of the function pruneBySharpe(). On the left are the 452 unsorted candidates. On the
right are the sorted candidates and the threshold as a horizontal line. 102 of them are above the
threshold. We notice on the right that the majority of the candidates have positive Sharpe Ratios
which is only possible with positive mean log returns. Since the candidates are 452 surviving
stocks of the S&P 500 Index from 2003 to 2008 this is not surprising.

to be found. �′ is a new covariance matrix coming from the new time series of log
returns, R′. This is done by the function findCovMat(), above. Also, as a guard against
NAs creeping into the matrix from the log returns matrix, isnaCheckCovMat is utilized
for detecting this.

In most cases, the Sharpe Ratio filter, implemented in pruneBySharpe(), will reduce
our candidate securities quite a bit, depending upon the threshold we choose. Once the
covariance matrix is recomputed, a check for any NA values prevents some unexplained
errors.

isnaCheckCovMat <- function(R) {
cor_mat = cor(R);
print("Checking correlation data.")
isNACor <- FALSE
for(d in 1:D) { #check one row for bad data

if(is.na(cor_mat[d,1])) {
print(paste("NA for",d,lab[d]))
cat(lab[d],file="badsyms.txt",append=TRUE,sep="\n")
isNACor <- TRUE

}
}
if(isNACor) stop("NA Cors recorded in badsyms.txt")
diag_cov_mat <- diag(cov_mat)
sdevv <- sqrt(diag_cov_mat)

}
sdevv <- isnaCheckCovMat(r)

7.3 Ranking Investment Candidates 135

There are times when the process can wind up with duplicated prices for differently
named securities, based upon the fact that two symbols can point to the same price
series. It makes no sense to continue the process of selecting portfolio weight if we have
a covariance matrix that cannot be utilized. One of the main criteria is that the price
series for each candidate security being considered are unique. This is the first check
performed in the checkDeterminant() function. Arbitrarily chosen time point day 20 is
used and price[20, d] is compared to price[20, d + 1]. This test will fail if there are
consecutive prices series in which day 20 prices are identical. From experience with our
data source, this test is necessary.

In the second portion of checkDeterminant(), there is a progressive check of the deter-
minant of either the correlation or covariance matrix. The algorithm proceeds like this.
We begin with a core-sized correlation matrix of the price series, Rsmall, which is sized
5 × 5. We then add in a single vector of prices one by one, so that each iteration, Rsmall

goes from size d × d to size (d + 1) × (d + 1).

checkDeterminant <- function(prices,R,lab,isSubDir=TRUE) {
#incrementally build cov_mat to find singularities
subdirStr = ifelse(isSubDir,"/NYSE","")
D <- dim(R)[2]
#First find out which pairs might be too cor
scalar_cov = vector(length=D)
for(d in 1:D){

scalar_cov[d] = cor(R[,d],R[,8])
print(paste(d,round(scalar_cov[d],6)))

}
#Look specifically for consecutive same prices[20,d],prices[20,d+1]
for(d in 1:(D-1))

if(prices[20,d] == prices[20,d+1]) { #arb pick 20th time point
print("adding to badcors.txt")
print(lab[d:(d+1)])
system(paste("echo",lab[d],

paste(">> ",homeuser,"/FinAnalytics/",dir,subdirStr,
"/badcors.txt",sep="")))

}
for(d in 5:D){

Rsmall = R[,1:d]
small_cov_mat = cor(Rsmall)
deter = det(small_cov_mat)
print(paste(d,lab[d],deter,dim(Rsmall)[2]))
if(deter <= 0.0) {

system(paste("echo",lab[d],
paste(">> ",homeuser,"/FinAnalytics/",dir,subdirStr,

"/badcors.txt",sep="")))
stop(paste(d,lab[d],"det =",deter))

}
}

}
checkDeterminant(p,r,l)

136 The Sharpe Ratio

The determinant can become quite large or small in numeric terms, but must not go
below zero. For example, for a set of 102 securities which survive the Sharpe Ratio
threshold, the following results are reported by checkDeterminant().

> checkDeterminant(p,r,l)
[1] "5 APD 0.737976891151175 5"
[1] "6 ARG 0.658016526839159 6"
[1] "7 AKS 0.608526624429268 7"
[1] "8 AKAM 0.587466012099102 8"
[1] "9 ATI 0.444410330824053 9"
[1] "10 AMZN 0.343231977428733 10"
[1] "11 AMT 0.230336200741275 11"
[1] "12 AON 0.162730053562088 12"
[1] "13 AAPL 0.134763127490828 13"
[1] "14 ADM 0.109717871386606 14"
...
[1] "92 UNP 3.69665092461679e-15 92"
[1] "93 X 2.71285159638293e-15 93"
[1] "94 VTR 2.1053706107129e-15 94"
[1] "95 VRSN 1.65020918169293e-15 95"
[1] "96 VNO 9.96678721117897e-16 96"
[1] "97 WAT 8.39710100408012e-16 97"
[1] "98 WDC 5.41680804131733e-16 98"
[1] "99 WMB 3.94165762115458e-16 99"
[1] "100 WEC 3.56197738805091e-16 100"
[1] "101 WYNN 2.51444920848486e-16 101"
[1] "102 XEL 1.78723110721909e-16 102"

We can see the numeric value becoming very close to zero. As it heads toward 1×10−16,
we finish all D = 102 of the prices successfully. checkDeterminant() is the kind of data
engineering check which needs to succeed to prevent a long process from continuing
forward with bad data.

7.4 The Quantmod Package

The Sharpe Ratio embodies such an important concept of finance that we should not
limit it to only prices. Fundamental reported figures of companies, including income
statements, are important metrics to track as harbingers of how the market will react
in terms of price trends and volatility. The income statement is a summary of the prof-
itability of the firm over a period of time. If a smooth, profitable income statement can
be achieved by a company’s managers, there is a better chance that price volatility will
be low and the stock price trend will be desirable for investors. Let’s think about how
we might obtain these fundamental company metrics and, by forming a very short time
series, measure their growth and volatility, much like we did for the price time series.

The R quantmod package makes important market-based datasets available from
several major sources: yahoo, google, MySQL, FRED, csv, RData, and Oanda. Our
examples use the google source (src=‘google’). From this source, several key reporting

7.4 The Quantmod Package 137

figures from company income statements can be read and trends can be calculated. We
look at a small code segment for how to do this.

> library(quantmod)
> symbol='GOOG'
> getFinancials(symbol, src="google")
[1] "GOOG.f"
> GOOG.fISA["Diluted Normalized EPS",]
2014-12-31 2013-12-31 2012-12-31 2011-12-31

20.72 19.77 17.16 15.61
> 20.72/19.77
[1] 1.048053

We can query any of thousands of publicly traded companies. By setting the symbol
to “GOOG” and invoking getFinancials() the developer can obtain a handle named
“GOOG.f.” Using this handle with the elements “IS” for income statement and “A”
for annual and the attribute name “Diluted Normalized EPS” we obtain a series of four
earnings per share figures in reverse chronological order, starting with the most recent.
This comes in quite handy, as EPS growth, the ratio of any two of these EPS figures, can
be calculated. The EPS growth is a unitless, normalized figure which can be compared
with other EPS growth figures because the growth is not based upon the share price. The
growth is a gross return figure. For example, the GOOG EPS growth rate from the end
of 2013 to the end of 2014 is seen above as 1.048.

In order to prepare the MVO4 directory with cache files full of prices, we need the
following initial logic. We set the size of the array of symbols, lab, and the start and end
dates for populating the MVO4 directory with cache files.

library(tseries)
library(quantmod)
dir <- 'MVO4'
len <- 1006
isQtrly = FALSE
if(isQtrly) back = 5 else back = 4
if(isQtrly) stmt = 'Q' else stmt = 'A'
res <- readSubDirs(dir)
D1 <- res[[1]]
D2 <- res[[2]]
lab <- res[[3]]
D <- D1 + D2

start <- "2011-02-09"
end <- "2015-02-09"
isPlotInAdjCloses <<- FALSE
isCacheEnabled <<- TRUE
prices <- matrix(rep(NA,len*D),nrow=len,ncol=D)
#Must run acquirePrices if cache files do not yet exist:
library(tseries)
prices <- acquirePrices(prices,lab,len,D,D1,D2,dir,

start=start,end=end,isSubDir=TRUE)

138 The Sharpe Ratio

dir <- 'QMDM'
createDirs(dir,isSubDir=FALSE)

The following block of code will read the previously prepared quarterly or annual
income statements into our data frame and call R function na.omit() to clear out
records with spotty data. The Income Statement Data Frame named cleanedISDF will
be returned. If this is the first time it has been run, it will not find the file and will send an
NA back to the calling routine. If the file that is there does not contain income statement
information for at least 50 percent of the tickers, the routine will send an NA back to
the calling routine. In either NA case, the calling routine will need to obtain the income
statement figures using the quantmod getFinancials() function.

readAndCleanISDF <- function(expectedLab,
dir='QMDM',stmt='A') {

setwd(paste(homeuser,"/FinAnalytics/",dir,"/",sep=""))
fn <- paste("IncomeStmts",stmt,".csv",sep="")
#File must exist
if(file.exists(fn)) {

ISDF <- read.csv(fn,header = TRUE)
relevantLab <- intersect(expectedLab,ISDF[,1])
#count number of matching tickers: must have at least half
if(length(relevantLab) > .50*expectedD) {

#Remove entries with missing income stmt info
cleanedISDF <- na.omit(ISDF)
lab <- as.character(cleanedISDF[,1])
D <- length(lab)
cleanedISDF

} else NA #missing income stmt recs
} else NA #no file

}

By using quantmod getFinancials(), one can obtain three years of annual growth
figures for a large set of stocks for comparison. The logic becomes a function with a
singly-nested for-loop shown below. Inside the for-loop are four successive tryCatch
statements to check for the presence of financial figures and Net.Income, Total.Revenue,
Gross.Profit, and Dil.Norm.EPS.

obtainIncomeStmtFigures <- function(lab,dir='QMDM',isQtrly=TRUE) {
#Read income stmt records via quantmod package
#Only need to execute once for ETF
D = length(lab)
if(isQtrly) back = 5 else back = 4
if(isQtrly) stmt = 'Q' else stmt = 'A'
ncol = (2+4*back)
#Try to read cached income stmts
ISDF <- readAndCleanISDF(lab,

dir=dir,stmt='A')
if(!is.null(dim(ISDF))) return(ISDF)
print("Income stmt file not found: using getFinancials()")

7.4 The Quantmod Package 139

ISDF <- data.frame(matrix(nrow=D,ncol=ncol))
#colnams(ISDF) <- c("symbol","netinc",
"totrev3yr","gsprof3yr","dneps3yr")
for(d in 1:D) {

symbol = lab[d]
basedate = NA
netinc = rep(NA,back); totrev = rep(NA,back)
gsprof = rep(NA,back); dneps = rep(NA,back)
print(symbol)
isFound <- TRUE
tryCatch({

getFinancials(symbol, src="google")
}, error = function(e) {

print(e); isFound <- FALSE
netinc <- rep(NA,back); totrev <- rep(NA,back)
gsprof <- rep(NA,back); dneps <- rep(NA,back)

})
if(isFound) {

tryCatch({
Net.Income<-eval(parse(text=paste(

symbol,'.fIS',stmt,'["Net Income",]',sep='')))
if(is.numeric(Net.Income[1])) {

netinc = round(Net.Income,2)
} else {

netinc = rep(NA,back)
}

}, error = function(e) {
print(e); netinc <- rep(NA,back)

})
tryCatch({

Total.Revenue<-eval(parse(text=paste(
symbol,'.fIS',stmt,'["Revenue",]',sep='')))

if(is.numeric(Total.Revenue[1])) {
totrev = round(Total.Revenue,2)

} else {
totrev = rep(NA,back)

}
}, error = function(e) {

print(e); totrev <- rep(NA,back)
})
tryCatch({

Gross.Profit<-eval(parse(text=paste(
symbol,'.fIS',stmt,'["Gross Profit",]',sep='')))

if(is.numeric(Gross.Profit[1])) {
gsprof = round(Gross.Profit,2)

} else {
gsprof = rep(NA,back)

}
}, error = function(e) {

print(e); gsprof <- rep(NA,back)
})

140 The Sharpe Ratio

tryCatch({
Dil.Norm.EPS<-eval(parse(text=paste(

symbol,'.fIS',stmt,'["Diluted Normalized EPS",]',sep='')))
if(is.numeric(Dil.Norm.EPS[1])) {

basedate = names(Dil.Norm.EPS)[1]
dneps = round(Dil.Norm.EPS,2)

} else {
dneps = rep(NA,back)

}
}, error = function(e) {

print(e); dneps <- rep(NA,back)
})

}
#print(basedate)
items = c(symbol,basedate,netinc,totrev,gsprof,dneps)
if(length(items) == ncol)

ISDF[d,] = items
}
#ISDF #return income stmt net 3yr growth rates
ISDF

}

getFinancials() is a tricky utility to use. The handle coming back is accessed via
eval() because it does not seem to be able to go into a traditional R variable. (This
returned handle, for example NASDAQ ticker PBIB, appears in the next section below.)
Secondly, errors are common when the requested figures do not exist for a stock ticker.
Hence, we make use of the R tryCatch() function to gracefully set empty values into
variables. Once we have a source of gathering income statement figures, we rely upon
it to write these to a CSV file for repeated consumption. Once the file is prepared by
obtainIncomeStmtGth(), it can be written to a file and read back in later.

The next block of code finds all the possible candidate stock tickers in two files. After
finding all the ticker symbols to query, the code block acts as an ETL (extract, translate,
load) program which writes the resulting ISDF data frame out to a file.

writeISDF <- function(ISDF,dir='QMDM',stmt='A') {
createDirs(dir)
labNYSE <- as.character(

read.csv("NYSE/NYSEclean.txt",
header=TRUE,sep="\t")[,1])

labNASQ <- as.character(
read.csv("NASDAQ/NASDAQclean.txt",

header=TRUE,sep="\t")[,1])
lab <- c(labNYSE,labNASQ)

ISDF <- obtainIncomeStmtFigures(lab,dir,isQtrly)
savedISDF <- ISDF
colnames(ISDF) <- c("symbol","basedate",

paste("netinc",0:(back-1),sep=""),

7.5 Measuring Income Statement Growth 141

paste("totrev",0:(back-1),sep=""),
paste("gsprof",0:(back-1),sep=""),
paste("dneps",0:(back-1),sep=""))

fileName = paste("IncomeStmts",stmt,".csv",sep="")
write.csv(ISDF,fileName,row.names = FALSE)

}
#Check first to see if run is necessary
if(!file.exists(paste(homeuser,"/FinAnalytics/",dir,"/IncomeStmts",

stmt,".csv",sep=""))) {
writeISDF(ISDF,stmt=stmt)

}
ISDF <- obtainIncomeStmtFigures(lab,dir='QMDM',isQtrly=FALSE)
dim(ISDF)

Our tryCatch(), and other exception handling above in obtainIncomeStmtFigures(), will
produce NA results on our large income statement figure array for missing data ele-
ments. As a practical matter, graceful handling of erroneous results is an important issue
in data science. R is particularly handy for data engineering by anticipating imperfect
datasets, i.e., datasets with NAs, Infs, and NaNs.

The risk of using too short a range of daily prices for long-term investing is illus-
trated in Figure 7.3. When performing data mining using historical prices for a set of
stocks, the stock STRM rises to the top of the heap on a chart from February 2013 to
February 2014. It appears to be the best of the group when considering the 252 daily
prices blended onto the same chart as gross returns. When downloading 1006 prices
from February 2011 to February 2015, however, one can observe that the investor in
STRM is not going to be thrilled at the performance in the last quarter of the chart, the
most recent year, due to the significant drawdown. This case of STRM points out the
risks of using a single year of historical prices. Consistency is hard to demonstrate in
only one year.

7.5 Measuring Income Statement Growth

Gross return is simply the new figure divided by the initial figure. Positive gross returns,
however, can result from both the initial and final figure being negative values. For
example, Porter Bancorp, Inc. (NASDAQ:PBIB) has the following annual net income:

> symbol='PBIB'
> getFinancials(symbol, src="google")
[1] "PBIB.f"
> PBIB.fISA["Net Income",]
2014-12-31 2013-12-31 2012-12-31 2011-12-31

-11.15 -1.59 -32.93 -107.31

Computing one year’s net income growth using the gross return method, we obtain
the “rosy” 24.5 gross return figure below, which would make a program believe the

142 The Sharpe Ratio

Figure 7.3 Two price time series: one year and four years. On the top is February 2013 to February 2014
which looks terrific to the investor of STRM. On the bottom is a longer series from February
2011 to February 2015. It shows the bigger picture that STRM was in a bullish regime which
ended quite abruptly. Interestingly, the “head and shoulders” top seen around day 170 in the top
chart also appears, but 252 days later in the bottom chart, around day 422.

stock candidate should be desired, when, in fact, it has a very pessimistic outlook as an
investment candidate because all net income is negative!

netincgth = −11.15/− 1.59 = 7.012579. (7.3)

So we modify the gross return formula, which was meant for purely nonnegative values,
to return NA. We eliminate the possibility of two negative figures making the gross
return positive. We do this to be conservative, eliminating negative income statements
and negative income statement growth.

#Compute gross returns or growth rates
#Use abs() and sign() to force NA when not positive

7.5 Measuring Income Statement Growth 143

calcGth <- function(a,b) {
if(is.na(a) || is.infinite(a) ||

is.na(b) || is.infinite(b) || abs(a) < .001)
return(NA)

if(sign(a) == -1 && sign(b) == -1)
return((-abs(b)/abs(a)))

if(sign(a) == -1 && sign(b) == +1)
return(NA)#((-a+b)/-a)

if(sign(a) == +1 && sign(b) == -1)
return(NA)#(-(a+abs(b))/a)

return(round(abs(b)/abs(a),2)*sign(b))
}
#Unit tests:
calcGth(1.25,1.75)
calcGth(-1.25,1.75)
calcGth(1.25,-1.75)
calcGth(-1.25,-1.75)
calcGth(-1.25,NA)
calcGth(1/0,1.75)
calcGth(.0005,1.75)

Plotting the income statements helps us identify errant computations. The final code
version which handles dividing by zero and NA figures and negative growth appears
below. If we run the plotIncomeStmts() function on a slice of ten consecutive rows of
ISDF, we can see the candidates’:

• net income growth;
• total revenue growth;
• gross profit growth;
• diluted net earning per share growth.

plotIncomeStmtGth() is a test function to display any region of data in the income state-
ment data frame, ISDF. The unit test statements at the bottom of the upcoming code
block will display these four attributes in series.

plotIncomeStmtGth <- function(ISDF,back) {
#input: income stmt data frame: D x 17

par(mar=c(4,4,2,1))
par(mfrow=c(2,2))
mapToCol <- function(d)

if(d==7) 1 else if(d==8)
2 else if(d==15) 3 else if(d==23) 4 else d

mainVec = c("Net Income Growth","Total Revenue Growth",
"Gross Profit Growth","Diluted Norm EPS Growth")

D = dim(ISDF)[1]
for(initFld in 2+c(1:4*back)) {

isPlotted = FALSE
for(d in 1:D) {

symbol = as.character(ISDF[d,1])
print(symbol)

144 The Sharpe Ratio

finalFld = initFld - (back-1)
initAmt = as.double(ISDF[d,initFld])
finalAmts = as.double(ISDF[d,initFld:finalFld])
gthAmts = c()
for(i in 1:back)

gthAmts = c(gthAmts,calcGth(initAmt,finalAmts[i]))
print(gthAmts)
if(initFld == 2+4*back) ylim=c(0.5,3.0) else ylim=c(0.5,3.0)
if(d == 1 || !isPlotted) { #initFld is gth baseline col

if(!is.na(gthAmts[1])) {
isPlotted = TRUE
plot(gthAmts,xlab="Years",

type='o',ylim=ylim,ylab="Gross Return",
main=mainVec[(initFld-1)/back])

}
} else {

if(!is.na(gthAmts[1]))
lines(gthAmts,type='o',

col=mapToCol(d))
}
if(!is.na(gthAmts[1]))

text(back-.05,gthAmts[back]-.01,symbol,cex=.75)
}
cols <- sapply(c(1:D),mapToCol)
print("------------")

}
}
#Unit test:
ISDFSlice=ISDF[(match('PCLN',ISDF[,1])-3):

(match('PCLN',ISDF[,1])+6),]
ISDFSlice
plotIncomeStmtGth(ISDFSlice,back)

The resulting plots are depicted in Figure 7.4. It seems clear that PCLN has the most
consistent growth positive rates of the ten neighbor candidates in the data frame in this
small sample.

7.6 Sharpe Ratios for Income Statement Growth

The first figure we need for a Sharpe Ratio is the return. In this case, we will use gross
returns. Without returns, our program will be trying to compare absolute revenue fig-
ures, which are much different in magnitude. For example, let’s look at the stock Union
Pacific, symbol UNP, and its two nearest neighbors in the ISDF data frame derived by
calling the quantmod package.

> ISDFSlice=ISDF[(match('UNP',ISDF[,1])-1):
+ + (match('UNP',ISDF[,1])+1),]
> ISDFSlice

7.6 Sharpe Ratios for Income Statement Growth 145

Net Income Growth

Years

G
ro

ss
 R

et
ur

n

PCAR
PCCC

PCHPCLN

PCMI

PDCO

Total Revenue Growth

Years

G
ro

ss
 R

et
ur

n

PCARPCCCPCH

PCLN

PCMI

PCTIPCYG

PDCE

PDCO

Gross Profit Growth

Years

G
ro

ss
 R

et
ur

n

PCARPCCC

PCH

PCLN

PCMI

PCTI

PCYG

PDCE

PDCO

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Diluted Norm EPS Growth

Years

G
ro

ss
 R

et
ur

n
PCAR
PCCC

PCH

PCLN

PCMI

PCTI

PDCO

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 7.4 Computed growth rates as gross returns on the four years of annual income statements for
common stocks, accessed via the getFinancials() utility. PCLN appears to have the highest
consistent growth of the ten candidates. Those with negative growth rates are omitted via special
cases in the algorithm. The year markers below mark the beginning of the respective year.

symbol basedate netinc0 netinc1 netinc2 netinc3
2087 UNP 2014-12-31 5180.00 4388.00 3943.00 3292.00
2088 UNS 2014-12-31 50.12 21.33 29.44 53.89
2089 UNT 2014-12-31 136.28 184.75 23.18 225.92

totrev0 totrev1 totrev2 totrev3 gsprof0 gsprof1
2087 23988.00 21963.00 20926.00 19557.00 17891.00 16114.00
2088 1784.36 1788.09 1797.59 1780.57 533.38 538.19
2089 1572.94 1351.85 1315.12 1207.50 319.99 346.28

gsprof2 gsprof3 dneps0 dneps1 dneps2 dneps3
2087 15175.00 13971.00 5.69 4.69 4.12 3.34
2088 563.46 543.95 2.28 2.06 1.92 2.54
2089 371.35 368.46 3.62 3.59 3.94 4.72

We can see above that UNP has total revenue figures that are ten to 20 times UNF and
UNS. One thing we notice is that the income statement reporting is not all done on the
same date. If it is early 2015, for example, we would like annual figures to be reported

146 The Sharpe Ratio

Index

ba
se

da
te

dvec

ba
se

da
te

0 500 1500 2500

20
09

20
11

20
13

20
15

0.
00

0
0.

01
0

0.
02

0
0.

03
0

2008 2010 2011 2012 2013 2015

Figure 7.5 Scatter plot and histogram of the company income statement base dates. The most common date
is 2014-12-31, seen on the right-hand histogram, where we are basing our analysis, and many
base dates are within one or two months from that date.

on 2014-12-31. We can see from the following code run and Figure 7.5 that there, while
2014-12-31 is by far the most popular reporting base date, are others, depending upon
the company’s accounting and reporting cycle.

> #Take time out and look at the basedates.
> par(mfrow=c(1,2))
> dvec <- as.Date(ISDF[,2])
> plot(dvec,ylab="basedate",col=4)
> hist(dvec,breaks=100,col=4,ylab="basedate",main="")
> maxd = max(dvec)
> maxd
[1] "2015-02-01"
> #Below we can see the population of end periods:
> sum(dvec=="2014-12-31")/length(dvec)
[1] 0.5526681
> sum(dvec=="2014-09-30")/length(dvec)
[1] 0.04054054
> sum(dvec=="2014-06-30")/length(dvec)
[1] 0.04608455
> sum(dvec=="2014-03-31")/length(dvec)
[1] 0.03915454
> sum(dvec=="2013-12-31")/length(dvec)
[1] 0.1046431

We can see from the above results that only 55 percent of the base dates are exactly the
ones we would expect, and also that the highest base date is 2015-02-01. That leaves
45 percent unaccounted for so far. The histogram gives us comfort, however, that the
majority of the base dates are within range of what we need. 78 percent of the base
dates are on the quarterly boundaries that we would expect. We can find this by adding
up the five figures from 0.5526681 to 0.10464431 above.

7.6 Sharpe Ratios for Income Statement Growth 147

Returning to the income statement figures themselves, we can scale these figures to a
common base because company sizes are scaled in the stock market by the number of
outstanding shares. If UNP has income statement figures which are ten times larger than
a smaller company, then the chances are that the number of shares held by investors is
roughly ten times the smaller company. When converting the figures to gross returns,
they will behave like common share prices. All of the scaled figures will become gross
returns and will be based upon the initial three-year back figures beginning at 1.0. This
will be done in the function findGth(), below. In this function, the R mapply() function is
used to apply our calcGth() function column-wise to the data frame. This very powerful
R feature makes coding up the conversion to gross returns about as simple a task as we
can expect.

findGth <- function(ISDF) {
ISgthDF <- ISDF[,c(1:14)] #sets schema
ISgthDF[,3] <- mapply(calcGth,ISDF[,6],ISDF[,5])
ISgthDF[,4] <- mapply(calcGth,ISDF[,10],ISDF[,9])
ISgthDF[,5] <- mapply(calcGth,ISDF[,14],ISDF[,13])
ISgthDF[,6] <- mapply(calcGth,ISDF[,18],ISDF[,17])

ISgthDF[,7] <- mapply(calcGth,ISDF[,5],ISDF[,4])
ISgthDF[,8] <- mapply(calcGth,ISDF[,9],ISDF[,8])
ISgthDF[,9] <- mapply(calcGth,ISDF[,13],ISDF[,12])
ISgthDF[,10] <- mapply(calcGth,ISDF[,17],ISDF[,16])

ISgthDF[,11] <- mapply(calcGth,ISDF[,4],ISDF[,3])
ISgthDF[,12] <- mapply(calcGth,ISDF[,8],ISDF[,7])
ISgthDF[,13] <- mapply(calcGth,ISDF[,12],ISDF[,11])
ISgthDF[,14] <- mapply(calcGth,ISDF[,16],ISDF[,15])

ISgthDF[,1] <- as.character(ISDF[,1])
#dnepsgth2 means Dil.Net.EPS gth based upon two
#figures: one 2 years back and one 3 years back
colnames(ISgthDF) <- c("symbol","basedate",

"netincgth2","totrevgth2","gsprofgth2","dnepsgth2",
"netincgth1","totrevgth1","gsprofgth1","dnepsgth1",
"netincgth0","totrevgth0","gsprofgth0","dnepsgth0")

ISgthDF
}

Once the new ISgthDF data frame has the computed the gross returns in place, the
R colnames() function relabels our columns with the income statement growth attribute
name and how many years back the return represents.

Let us now revisit UNP and its neighbors, this time in the newly constructed data
frame, ISgthDF. After scaling via the findGth() we can see that the gross returns are
numbers near 1.0 as we expect for all three companies, UNF, UNP, and UNS, regardless
of the initial figures.

148 The Sharpe Ratio

> ISgthDF <- findGth(ISDF)
> cleanedISgthDF <- na.omit(ISgthDF)
> ISgthDF <- cleanedISgthDF
> ISgthDFSlice=ISgthDF[(match('UNP',ISgthDF[,1])-1):
+ (match('UNP',ISgthDF[,1])+1),]
> ISgthDFSlice

symbol basedate netincgth2 totrevgth2 gsprofgth2
1297 UNF 2014-08-30 1.24 1.11 1.09
1298 UNP 2014-12-31 1.20 1.07 1.09
1299 UNS 2014-12-31 0.55 1.01 1.04

dnepsgth2 netincgth1 totrevgth1 gsprofgth1 dnepsgth1
1297 1.24 1.23 1.08 1.13 1.22
1298 1.23 1.11 1.05 1.06 1.14
1299 0.76 0.72 0.99 0.96 1.07

netincgth0 totrevgth0 gsprofgth0 dnepsgth0
1297 1.03 1.03 1.03 1.02
1298 1.18 1.09 1.11 1.21
1299 2.35 1.00 0.99 1.11

We can also compare UNP to its transportation industry section peers by using match()
and placing those subscripts into a four-element vector with which to index ISgthDF.

> ISgthDF[c(match('CNI',ISgthDF[,1]),
+ match('KSU',ISgthDF[,1]),
+ match('NSC',ISgthDF[,1]),
+ match('UNP',ISgthDF[,1])),]

symbol basedate netincgth2 totrevgth2 gsprofgth2
275 CNI 2014-12-31 1.09 1.10 1.11
737 KSU 2014-12-31 1.14 1.07 1.09
915 NSC 2014-12-31 0.91 0.99 0.99
1298 UNP 2014-12-31 1.20 1.07 1.09

dnepsgth2 netincgth1 totrevgth1 gsprofgth1 dnepsgth1
275 1.15 0.97 1.07 1.04 1.09
737 1.07 0.93 1.06 1.07 1.17
915 1.00 1.09 1.02 1.03 1.09
1298 1.23 1.11 1.05 1.06 1.14

netincgth0 totrevgth0 gsprofgth0 dnepsgth0
275 1.21 1.15 1.17 1.24
737 1.43 1.09 1.12 1.25
915 1.05 1.03 1.08 1.09
1298 1.18 1.09 1.11 1.21
> lab <- as.character(ISgthDF[,1])
> D <- length(lab)

We find that going back two years from 2014-12-31, UNP beat its peers in many cat-
egories except for CNI for the most recent Gross Profit Growth (gsprofgth0 = 1.11 for
UNP vs. gsprofgth0 = 1.17 for CNI). Going back one year or last year, KSU was the one
peer to best compete with UNP. In the most recent year, KSU had Net Income Growth
of 43 percent (netincgth0 = 1.43).

7.6 Sharpe Ratios for Income Statement Growth 149

Now that the gross returns are in place in the ISgthDF data frame, we again use
another form of the R apply function, called apply() this time, to apply the mean() and
sd() statistical functions across specific columns, selected by the cols vector to find our
two key elements of the Sharpe Ratio. By calling findIncomeStmtSR(), which operates
by dividing the means by the standard deviations, we indeed have the Sharpe Ratios of
our favorite four income statement metrics as well as obtaining the four scatter plots of
Figure 7.6.

findIncomeStmtSR <- function(ISgthDF,cols,
main="") {

#Find Income Stmt Sharpe Ratio
SRvec <- apply(ISgthDF[,cols],1,mean)/

apply(ISgthDF[,cols],1,sd)
plot(SRvec,cex=0,main=main)
text(SRvec,ISgthDF[,1],cex=.75)
SRvec

}

Net Income Gth SR

Index

S
R

ve
c

AAN
AAPABB
ABC
ABM
ACCACCOACN
ACWADCADM
ADS
AEOAERAGCOAGMAGNAGUAGXAIAIR
AITAJG
AKSALBALGALJALKALV
ALX

AME

AMP
AMRCAMTAMTD

AN

ANFANHANNANRANWAOLAOS
APD
ARE
ARG

ARSDARWASGNASH
ASRASX
AT

ATR
ATU
ATWAVBAVDAVT
AVY
AWIAXEAXLAXLL
AXP
AXR
AYIAZN

AZO

AZZB
BA

BAHBALTBAMBAXBBLBCBCEBCRBDC
BDX
BGBGSBHBHEBHIBHPBIDBIG
BIO

BKEBLK
BLL
BLTBMIBMRBMSBMYBORNBPBPIBPLBRBRFSBRK.ABRS

BT

BUDBWCBWSBXCBXPBYDBYICABCACICAECAGCAH
CAJ

CALX
CAMCATCATOCBDCBGCBI
CBLCBM
CBSCBTCBZCCC

CCE

CCICCJCCKCCL
CCU
CDICECEACEB
CEC
CELCEOCFCFI
CFN
CGACGICHA

CHD

CHE
CHHCHL

CHSCHSP

CHT

CIEN
CIGCIMCIR

CLCLB

CLC
CLD

CLNYCLS

CLX
CMG
CMICMNCMOCMPCMRECNICNKCNQ
CNS
CNWCNXCOCOGCOH

COL

COOCOP
COV
CPCPACPBCPSCPTCRCRD.ACRICRL
CRM
CRR
CRSCSHCSLCSSCSV

CSX

CTB

CTC

CUBCUKCVCCVDCVECVGCVICVO

CVSCVX
CW
CXCXOCXWCYDCYH

CYT

DALDANDARDCI
DCM

DDDDSDE
DEGDEIDELDEODFT
DG

DGXDHI
DHR
DHXDIN

DIS

DK

DKS
DLBDLR

DLX

DNB
DNPDNR

DO

DOVDOWDPM

DPSDPZ
DRCDRI
DRQ
DST
DSW
DV

DVA

DW

DXDYE
EAT
EBFEBSEC
ECL
EDUEFC
EFXEGP

EL

ELS
EMC
EMEEMN
EMRENBENIENLENRENS
ENVENZEOG

EPD

EPRERJ
ESC
ESLESSETBETHETMETPEVEVREWEXLEXPEXPREXRFFCFDO

FDS

FDXFICOFIIFISFLFLOFLR

FLS

FLT
FMC
FMS
FRMFRO

FRT
FT
FTIFTKFULFUNFURFXCMGGBLGCAGCAPGCIGCO
GDP
GE

GEFGEOGESGGBGGGGHC
GHL
GIBGILGIM
GIS
GLFGLPGLTGLW
GM

GMK

GMT

GNRCGOF

GOV

GPC

GPIGPK
GPNGPSGPX
GRAGRTGSGSHGSKGTYGWR

GWW
HHAEHALHARHBIHCP

HD

HE

HEI

HEPHES

HF

HFCHGGHGRHIHIWHLFHLSHMCHME
HNIHNT

HOG
HON
HOT
HPHPTHPYHRBHRC

HRL

HRS
HSY

HTGC

HUB.A

HUNHVT

HXL

HXMIBAIBMICBIDTIEXIFFIGTIHSIL
IMIMAXIMN

INFYINGRINT

INXNIPIPIIRIRM
IT

ITWIVZIXJAHJBLJBTJCIJEC
JNJ

JOYJRNJW.A

JWN

KKAI

KAMN

KAR

KEX

KFYKGCKKDKMB

KMP

KMT

KMX

KNDKNLKNMKNXKOKOFKRKS
KSS
KSU
KWR
KYO

LAD

LAZ
LB

LDL

LEALEGLEN
LH

LHOLIILL

LLL

LLYLNN

LOLOW

LRNLRY
LTM
LUKLUV
LUX
LVSLXKLXU
LYB
LYVLZB

M

MAA
MACMAINMANMBTMCC
MCDMCK

MCO

MCS

MD

MDPMDTMEDMEI

MFA

MG
MGA

MHK

MHRMICMIL

MJN

MKC
MLIMLMMLR

MMC

MMM

MMPMMSMNR
MO

MOG.AMOH

MON

MOS

MPXMR
MRFMRKMROMS
MSCIMSM

MTD

MTNMTRN

MTX

MTZ
MWEMWVMXLMXTNNATNCT
NEUNGLSNGS
NIENJ

NKE

NLSNLSNNMMNMRNNINNNNOAH

NOC
NOVNP
NPDNPKNPO
NPTNNRNRP

NRT

NSC
NSP

NSR

NTG
NTLNTT

NTZ
NUE

NVO

NVR
NVS

OOASODC

OII

OISOLNOLP

OMC

OMEOMIONEOPKORANORB
ORCL
OSKOXMOXY
PAAPACPAGPBHPBIPBR

PCP

PDS

PEB

PEP

PFE
PG
PGIPHPHIPHX
PII

PIKEPIRPKGPKIPKOPKXPLLPLOW

PLT
PM

PMCPMTPOL
POT
PPGPPOPPS

PSA

PSBPSOPT
PTR

PULSPVHPWR

PX

PZERRAI
RAS
RAX
RBA
RBCRCL

RDY

REGRESRGCRGR
RHIRHT
RIO
RJF
RKT
RL

RMD

ROG

ROK

ROL

ROP

RPMRRC
RRTSRS

RSG

RSORST

RTN

RUKRWTRYN
SAHSAMSAPSARSB
SBH

SCCO

SCISCLSCSSDRLSESEMSEMGSEPSFSFLSFUN

SGU
SHWSIG
SJM
SKMSKTSLBSLGSLWSMGSMP

SNA

SNH
SNISNN
SNPSNX
SNYSONSPASPGSPHSPWSQM
SRT
SSDSSI

SSL

SSLTSSSSTSTESTJSTNSTOSTONSTV

STWD

STZSUSUISUNESUPSWFTSWISWKSWM
SWSSWYSXISXLSXTSYKSYT

SYY

TTATALTAPTARO
TBI

TCAPTCK
TDCTDGTDWTDYTEFTEITELTEN
TEO
TERTEVATEXTG
TGH
TGITGPTGS

THOTHS

TIF
TISITJX
TKCTKR
TLK
TLP

TMTMHTMOTNCTNHTOLTOTTPX

TR

TRCTRGPTRNTRPTRWTSTSMTSNTSO
TSSTSU

TTC

TTM

TU

TUPTV
TW

TWCTWO
TWX
TXTXTTYTYG

UA

PBU ABUUFIUFS
UGP
UHTUIS

UL

UMC

UN

UNF

UNP

UNSUNTUPSURI
USNAUSPHUTI

UTX

UVVVALE

VAR
VCOVFCVGVGRVIVVLOVMIVMWVPGVRSVSHVSIVTR
VVIVZ
WABWAG

WAT

WBCWCCWCNWDRWESWGOWHR
WHXWIT
WLKWLLWM

WMT

WNCWNRWNS
WOR
WPZWRE

WSM

WSO

WSTWTS
WTWWUWWWWXWY
WYN
XECXINXNYXOMXOXOXRS
XRX

YOKU
YPFYUMYZCZEP

ZMH

ZNHAAONAAPLAAWWABAXABCD
ABCOABTLACASACATACETACIW
ACORACPWADATADBEADEP

ADI

ADP

ADSKADTNADVSAEISAFAMAFFXAFOPAGEN
AHGPAIMCAIRMAIRTAKAMAKRXALCOALGNALGTALOGALOTALTRAMATAMCCAMCN

AMGN
AMKRAMOT
AMOVAMSGAMSWAANDEANIK
ANSS
APAGF

APEI

APOL
APPY

APSA

ARAY
ARCCAREXARIIARKRARLPARMHARNAARTWASEIASFIASMIASML

ASNA

ASTC

ASTE

ASTMATAIATECATNI

ATRC

ATRI
ATRO
ATRS
ATVI
AVAVAVGOAVIDAVNWAWREBAXS
BBBY
BBGIBBRG

BCPC

BCRXBDMSBEAVBECNBELFABELFBBGFV
BGMD
BIDUBIIB
BIOLBJRIBKCC
BLDPBLINBLKBBMRNBNSO
BOOMBPHXBRCDBRCMBREWBRKR
BRLI

BSDMBSETBVSNBWEN

BWLDCA
CAAS
CAKE
CALDCALICALM
CASM

CASS

CASYCATMCBMXCBPO

CBRL

CBRXCCMPCDNSCDTICDXSCDZI
CECE
CERN
CERSCETVCGNX

CHDNCHKP

CHRWCHYCHYRCIDM
CIMTCLCT

CLDX

CLFD
CLNECLNTCLRO

CMCSA
CMTLCNMDCNQRCNSLCNTYCOHR
COKE
COLMCORE
COSI

COSTCPGI
CPLA

CPRTCPSI

CRAYCRDSCREGCRMT
CRNTCRRCCRUS
CRVL
CRWN
CRWS

CRZOCSCOCSGPCSGS

CSII

CSPI

CTAS
CTCMCTCTCTGCTIBCTRP

CTSH

CTXS
CUTR
CVLT
CWSTCWTR
CXDC
CYTXDAKTDAVEDENNDESTDGIIDGLY
DHRMDIOD
DISCADISCBDISCKDISHDJCODLIA
DLTRDMLP
DORMDOVR
DOX

DRAMDSCI
DSGXDSWL

DTLKDTV

DXCMDYAXEBAY
EBIX

ECHOECOLECPG
EDAPEDGWEDSEDUCEEFTEFIIEFUTEGHT

EGOV

ELGXELON

ELRC
ELSEEMLENSGENTGERICERIIESLT
ESSX
EXAC
EXLPEXLS
EXPD
EXPE

EXPO

EXXIEZCH

FALC

FARO

FAST

FCFS

FEICFEIMFELE
FFIV

FHCOFINL
FISVFIZZ
FLEXFLIR
FLMLFLWS
FLXSFNGNFONR
FORDFORMFORRFORTY
FOSL

AXOF XOF
FRED
FSCFSTRFTNTFTR
FWLT
FWRD

GAIAGAMEGASS

GBDC

GENCGEOSGIGM
GIII

GILDGIVNGKGLDCGLPWGMCRGNCMA
GNTXGOLD

GOOG

GPICGPORGPRCGRMN
GSOL

GT
GTIM
GTLSGUIDGURE
HAIN
HASHAYNHCKTHCOMHCSGHEESHELEHGSH
HIBB
HIHOHIMX
HITTHMSYHNHHNRG
HNSN
HOFTHOLI
HOTRHRZN

HSIC

HSNI
HSTM

HTCH
HTHTHTLD
HTWR
HUBGHURCHURNHWCCHWKNIACIIBKRICAD

ICFI

ICLRICUI
IDSY

IDXX

IGTEIIJIIILG
IIVI

IKAN

IKNX

ILMNIMKTAINFAINPH
INTCINTL
INTU
INTXINVE
IOSP
IPAR
IPCMIPGP
IPHSIPXLIRBTIRDM
IRWDISCA
ISISISNSISRGISSC
ITRN
IVACIVANIXYSJACK

JBHT

JBLUJBSSJCOMJCTCF
JJSF

JKHY

JOBSJOUTJSTKALUKBALBKELYAKELYBKEQUKGJIKLACKLICKOOLKTCCKTOSKVHILABLLAMRLANCLAWSLCUT
LECOLFUS
LIMELINTALINTBLIOXLIVE
LIWA

LKQ

LLEXLLNW
LLTC

LMAT

LMNR
LMNXLNCELNDCLOCMLOOK

LOPE

LPLA
LPNT
LQDTLRADLRCX
LSTR
LTRX
LULULWAY

MANH

MARMASIMATMATW
MAYSMBISMCHPMCRIMCRLMDCAMDLZMDSOMELIMENT
MERUMGAM

MGIC

MGLN
MGRC

MHGC

MIDD

MINDMINIMITKMITLMKSI
MKTXMLAB
MLNK
MMSIMNDLMNDO
MNGA
MNROMNSTMNTXMOBIMOCOMORNMPELMPWRMRLN
MRTN

MRVLMSFTMSGMSTRMTSCMTSL

MWIV

MXIM
MYGN
MYLMYRGNAIINATHNATINATRNAUH
NBSNCMI

NDAQ
NDSN
NEOG
NEONNFLXNICENILENINENKTRNLSTNMRXNNBRNPSP
NSIT

NSPH

NSSCNSYSNTAPNTCT
NTES
NTIC

NTRS

NURO

NUTR

NVAX

NVDA
NVEC
NVMINVTLNXTM
NYMTNYMXNYNY
OBCIODFL
OFLX

OLEDOMAB
OMCL
OMEXONEQOPEN

ORLY

OSISOSNOSUR
OTEX
OTIVOUTR

OVRL

OVTIOXBT

PACB

PACRPAMTPATKPATR

PAYX

PCARPCCC

PCH

PCLN

PCMIPCYO

PDCO

PDFSPDIIPEGAPERI
PETMPETS
PFINPFSWKIIHP IIHPPICO
PKOHPLAB
PLCE
PLKI
PLPC
PLUG
PLUSPLXSPMDPNNT
PNRAPNRG
PODD

POOL

PPHM
PRAAPRFTPRGSPRIM
PRMWPRSCPRTS

PRXL
PSEC
PSMT

PSUN
PTENPTNRPWRDPWXPXLW

PZZA

QADAQADBQBAK
QCOM
QQQQSII

QTWW
QUIK

RAND

RAVNRCIIRCKYRCMTRDARDNTRDWRRECNREDFREFRRELVREMYRENTRFIL
RGDX
RGLD
RIBTRITTRMCFRMTI
RNETROLLROSE
ROST
RRGBRRSTRSTIRUSHARUSHBRYAAY
SAASSAIASANMSAPESATSSBGISBUXSCHLSCLNSCOKSCSCSCSS
SCVLSEIC

SENEASENEBSGCSGENSGMASGOC
SGRPSHEN
SHLDSHLMSHLOSHOO
SHORSHPG

SIAL

SILC

SIRO

SKBISLABSLGNSLMSLMAPSLP
SLRCSLTCSMCI
SMRT
SMSISNAKSNCRSNDK
SNHY

SNMX
SNPSSODASONCSONS

SORL

SPSPANSPCHASPCHBSPILSPNSSPSCSPTNSPU

SRCL

SSNCSTLDSTMPSTRASTRNSTRT
STRZA

STXSTXSSURGSUTRSWKS
SWSH
SYKESYMCSYNASYNL
SYNT
TAIT

TAXI
TAYDTBOWTCRDTCXTEAR

TECD

TECH

TESOTESSTFMTGATHOR

THRM

THTITILETINYTITN

TLF

TMNG
TRMB

TRNS

TRNXTRS

TSCO

TSLATST

TTEC

TWERTWINTWMCTXN

TXRH

TYPEUACL
UCTTUEICUEPSUFPIUFPTUG
UHALULTA
ULTI

UNFI

UNIS
UNTKUNXLUPI
URBNUSEGUSLMUSMO

USTR

UTHRUTMDVALU

VASC

VDSI
BAIV AIV

VIRC
VIVO

VLGEAVLTCVODVPRTVRA
VRML
VRNT

VRSK

VRSN
VRTU

VSCI

VSEC
VTNRVTSSWAVXWDC
WDFC
WEN

WERNWEYSWFM
WILCWINAWIREWLBWMARWOOFWPCSWRES

WRLD

WSCI
WSTGWVVI

WWD

WWWWWYNNXLNXXRAY
YHOOYONG
YRCWZAGGZBRAZIXI
ZUMZ

Total Revenue Gth SR

Index

S
R

ve
c

AAN
AAP

ABB

ABC

ABM

ACCACCO

ACN

ACW

ADC

ADM

ADS

AEO

AER
AGCO

AGM

AGNAGU

AGXAI
AIR

AIT

AJGAKS
ALBALGALJ

ALKALV

ALX

AME

AMP
AMRC

AMT

AMTD

AN

ANF

ANH

ANN

ANRANW

AOL

AOS

APDARE
ARG

ARSDARW

ASGN

ASH
ASR

ASX

AT

ATR
ATU
ATWAVBAVD

AVT

AVY

AWI

AXE

AXL

AXLL

AXP

AXR

AYI

AZN

AZO

AZZB
BA

BAH

BALT

BAM

BAX
BBL
BC

BCE

BCR

BDC

BDX

BG

BGS

BH

BHE

BHI

BHP

BID

BIG

BIO

BKEBLK

BLL

BLTBMIBMRBMSBMY
BORN

BP

BPIBPL

BR

BRFSBRK.A

BRS

BT

BUD

BWC

BWS

BXC

BXP

BYD

BYI

CAB
CACICAECAG

CAH
CAJ

CALX

CAM

CAT

CATO

CBD

CBG
CBI

CBL
CBM
CBS

CBT

CBZCCC
CCE

CCI

CCJ

CCK
CCL

CCU

CDI
CECEA

CEB

CEC

CEL
CEO
CF
CFI
CFN

CGACGICHA

CHDCHE

CHH

CHLCHS
CHSP

CHT

CIEN

CIGCIM

CIR

CL

CLB

CLC

CLD

CLNY

CLS

CLX

CMG
CMI
CMN

CMOCMP
CMRE

CNI
CNK

CNQ

CNSCNW

CNXCOCOGCOHCOL

COO

COV

CP

CPA
CPB

CPS

CPT
CR

CRD.A

CRI

CRL

CRM

CRR

CRSCSH

CSL
CSS

CSV

CSX

CTB

CTC

CUB

CUK
CVC
CVDCVE

CVGCVI
CVO
CVS

CVX

CW

CX

CXO

CXW

CYDCYH
CYT

DALDAN

DAR

DCI

DCM
DD

DDS

DEDEG

DEI

DELDEO

DFT

DG

DGX

DHI

DHR
DHX
DIN

DIS

DK

DKS

DLBDLR

DLX

DNB

DNP

DNRDO

DOV

DOW

DPM

DPS

DPZ

DRCDRI

DRQ

DST
DSW

DV

DVA
DW
DX
DYE

EAT

EBF

EBS

EC

ECL
EDU

EFC

EFX

EGP

EL

ELS

EMC

EME
EMN

EMR

ENB
ENI
ENL

ENR

ENSENV
ENZ

EOG

EPD

EPR

ERJ

ESC

ESL

ESS

ETB

ETH
ETM

ETP

EV

EVR

EW

EXLEXP

EXPR

EXR

F

FC

FDO

FDS
FDX

FICO

FII

FIS

FL

FLO
FLR

FLSFLT
FMC

FMS

FRMFRO

FRT

FT

FTI

FTK

FUL

FUN

FURFXCM
GGBL

GCA

GCAP
GCI
GCO
GDP

GE

GEF

GEO
GES
GGB

GGG

GHC

GHL

GIB

GIL

GIM
GIS
GLF
GLP

GLT

GLW

GM

GMK

GMT

GNRC
GOF
GOV

GPC

GPIGPKGPN

GPS

GPX
GRAGRT

GS

GSH

GSK
GTY

GWR

GWW

H

HAE
HAL
HAR
HBI

HCP

HD

HE

HEI

HEPHES

HF

HFCHGG

HGR

HI

HIW

HLF

HLS

HMC

HME

HNI

HNT

HOGHON

HOTHPHPT

HPYHRB
HRC

HRL

HRS

HSY

HTGC

HUB.A

HUN
HVTHXL

HXM
IBA

IBM

ICB
IDT

IEX

IFF

IGT

IHS

ILIM

IMAX

IMN

INFY
INGR

INT

INXN

IPIPI

IR

IRMIT

ITW

IVZIXJAHJBL
JBT

JCI

JECJNJ

JOY

JRN

JW.A

JWNK

KAI

KAMN

KAR
KEX
KFY
KGC

KKD

KMB

KMP

KMT

KMX

KND
KNLKNM

KNX

KO

KOF

KR
KS

KSS

KSU

KWR

KYO
LADLAZ

LB

LDL

LEA

LEG
LEN

LH

LHO

LII

LL

LLL

LLY
LNN

LO
LOW

LRNLRY

LTM

LUK

LUV

LUX
LVS
LXK
LXU
LYB

LYV

LZB

M

MAAMAC
MAIN
MAN

MBTMCC

MCD

MCKMCOMCS

MD

MDP

MDT

MEDMEI

MFA

MG
MGA

MHK
MHRMIC
MIL

MJN

MKC

MLIMLMMLR

MMC

MMM

MMPMMSMNR

MO

MOG.A

MOH

MON

MOS
MPX

MR

MRF

MRK

MRO
MS

MSCI
MSM

MTD

MTN
MTRN
MTX

MTZ
MWE

MWV

MXLMXT

N

NATNCT

NEU

NGLSNGSNIENJ

NKE

NLS

NLSN

NMM
NMR

NNI

NNN
NOAH

NOC

NOV

NP

NPD

NPK
NPONPTN

NR

NRP

NRT

NSCNSP

NSRNTG

NTL

NTT

NTZ

NUE
NVO
NVRNVS

OOAS

ODC

OII

OISOLN

OLP

OMC

OME

OMI

ONE

OPK

ORAN

ORB

ORCL

OSK
OXMOXY

PAA
PAC

PAG

PBH

PBI

PBR

PCP

PDS

PEB

PEP

PFE

PGPGI

PH

PHI
PHX

PII

PIKE

PIR

PKG

PKI

PKOPKX

PLL

PLOW

PLT

PM

PMC
PMT
POL

POT

PPG

PPO
PPS

PSA

PSB
PSO

PT

PTR

PULS

PVHPWR

PX

PZE

RAI

RAS
RAX
RBA

RBC

RCL

RDY
REG

RES

RGC

RGR

RHIRHT

RIO

RJF

RKT
RL

RMD

ROG

ROK

ROL

ROP

RPM

RRC

RRTSRS

RSG

RSO

RST

RTN

RUK

RWT

RYN

SAH

SAMSAP

SARSB

SBH

SCCOSCI

SCL

SCS

SDRL
SE

SEM

SEMG

SEPSF
SFLSFUNSGU

SHW

SIG

SJM

SKM

SKT

SLBSLG

SLW

SMG

SMP

SNA

SNH

SNI

SNN

SNPSNX

SNY

SON

SPA
SPG

SPH
SPW
SQMSRT

SSD

SSISSL

SSLT

SSS

ST
STE

STJ

STN

STO
STON
STVSTWDSTZ

SU
SUI

SUNE

SUP

SWFT

SWI

SWK
SWM

SWS

SWY

SXI

SXL

SXT
SYK

SYT

SYY

T

TA

TALTAP

TARO
TBI

TCAP

TCK

TDC
TDGTDW

TDY
TEF
TEITEL

TEN
TEO

TER
TEVATEXTG
TGH
TGI

TGP

TGS
THO
THS

TIF

TISI

TJX

TKC
TKR

TLK

TLP

TM

TMH

TMO
TNCTNHTOL
TOT

TPX

TR

TRCTRGP
TRN
TRP

TRW

TS
TSM

TSN

TSOTSS
TSU

TTC

TTM

TU

TUPTVTW
TWC

TWO
TWX

TX

TXT
TYTYG

UAPBU ABU
UFI
UFS

UGP

UHT

UIS

ULUMCUN

UNF

UNP

UNS

UNT

UPS

URI

USNA

USPHUTI

UTX

UVV

VALE

VAR

VCO
VFCVG

VGR
VIVVLOVMI

VMW

VPG

VRS

VSH

VSI

VTR
VVI

VZ

WAB

WAG

WAT

WBC

WCCWCN

WDR
WESWGO

WHR

WHX

WIT

WLK
WLL

WM

WMT

WNC

WNRWNS
WOR
WPZ

WRE

WSM

WSO

WST

WTS

WTW

WU

WWW

WX

WY

WYN

XECXINXNY

XOM

XOXO

XRS

XRX

YOKU

YPFYUM

YZC

ZEP

ZMH

ZNH

AAON

AAPL
AAWW
ABAX
ABCDABCO
ABTLACAS
ACAT
ACET

ACIW
ACOR
ACPWADAT
ADBE

ADEP
ADI

ADP

ADSK
ADTN

ADVS

AEISAFAM

AFFX

AFOPAGEN

AHGP

AIMC
AIRMAIRT

AKAM

AKRXALCO

ALGN

ALGT

ALOG
ALOTALTRAMATAMCCAMCN

AMGN

AMKR

AMOT
AMOVAMSGAMSWAANDEANIK

ANSS

APAGFAPEI

APOL

APPY
APSA
ARAY

ARCC

AREX
ARII

ARKR

ARLP

ARMH

ARNA
ARTWASEI

ASFI

ASMI
ASMLASNAASTC

ASTE

ASTM

ATAI

ATEC

ATNI
ATRC

ATRI

ATROATRS

ATVI

AVAVAVGO

AVID

AVNW
AWRE

BAXS

BBBY

BBGI

BBRG

BCPCBCRX

BDMS

BEAV

BECN

BELFABELFB

BGFV

BGMDBIDUBIIBBIOL

BJRI

BKCC
BLDP

BLIN
BLKB

BMRNBNSO
BOOM

BPHX

BRCD
BRCMBREW
BRKR

BRLI

BSDM

BSET
BVSN
BWENBWLDCA
CAAS

CAKE

CALD

CALI

CALM

CASM

CASS

CASY
CATMCBMXCBPO

CBRL

CBRX

CCMP
CDNS

CDTI
CDXSCDZICECE

CERN
CERSCETVCGNX

CHDN

CHKP

CHRW

CHY

CHYR
CIDM

CIMT

CLCT
CLDXCLFD
CLNE

CLNT
CLRO

CMCSA

CMTL

CNMD

CNQR

CNSLCNTY

COHR

COKE

COLM

CORE

COSI

COST

CPGI

CPLA

CPRTCPSI

CRAY

CRDS

CREG

CRMT

CRNT

CRRC

CRUS

CRVL

CRWN

CRWS
CRZO

CSCOCSGP

CSGS

CSIICSPI

CTAS

CTCM

CTCT

CTGCTIB
CTRP

CTSH

CTXS

CUTR

CVLT

CWST
CWTR
CXDCCYTX

DAKT
DAVE

DENN

DEST

DGII

DGLYDHRMDIOD
DISCADISCBDISCK

DISH

DJCODLIA

DLTR

DMLP

DORMDOVRDOX

DRAM

DSCI
DSGX
DSWL

DTLK

DTV

DXCM
DYAX

EBAY

EBIXECHO

ECOL

ECPG
EDAP

EDGW

EDS

EDUC
EEFT

EFII

EFUT

EGHT

EGOV
ELGX

ELON

ELRC

ELSE

EML

ENSG

ENTGERII

ESLT

ESSX

EXAC

EXLP

EXLS
EXPD

EXPE

EXPO

EXXIEZCH
FALC
FARO
FASTFCFS
FEIC

FEIM

FELE

FFIV

FHCO

FINL

FISV

FIZZ

FLEX
FLIR

FLML

FLWS

FLXSFNGN
FONRFORDFORM

FORR

FORTY

FOSL

AXOF XOF

FRED

FSC

FTNT

FTR

FWLT

FWRD

GAIAGAME

GASS

GBDC
GENCGEOSGIGM

GIII

GILD

GIVN

GK
GLDC

GLPW

GMCR

GNCMA
GNTX

GOLD

GOOG

GPIC
GPORGPRC
GRMN
GSOL

GT

GTIMGTLSGUIDGURE

HAIN

HAS

HAYN

HCKT

HCOM

HCSG

HEES

HELEHGSH

HIBB

HIHO
HIMX

HITT

HMSYHNHHNRGHNSN

HOFT

HOLI
HOTRHRZN

HSIC

HSNI

HSTM

HTCH
HTHT

HTLDHTWR

HUBG

HURC
HURN

HWCC

HWKN
IACI
IBKR
ICAD

ICFI

ICLRICUI

IDSY

IDXX

IGTE

IIJI
IILGIIVI
IKAN

IKNX

ILMN

IMKTA

INFA

INPH

INTC

INTL

INTU

INTXINVEIOSPIPAR

IPCM

IPGP

IPHS

IPXLIRBT

IRDM

IRWD

ISCA

ISISISNSISRGISSC
ITRNIVAC
IVANIXYS

JACK

JBHT

JBLU

JBSS

JCOMJCTCF

JJSF

JKHY

JOBS

JOUT

JST

KALUKBALB

KELYAKELYB

KEQUKGJI
KLAC
KLIC
KOOL
KTCCKTOS
KVHI
LABL

LAMR

LANCLAWSLCUT

LECO

LFUS

LIME

LINTALINTB
LIOX

LIVELIWA

LKQ

LLEX
LLNW
LLTC
LMAT

LMNR
LMNX

LNCELNDCLOCMLOOK

LOPE

LPLA
LPNT

LQDTLRADLRCX
LSTR
LTRX
LULU

LWAY

MANH

MAR

MASI

MATMATWMAYS
MBISMCHPMCRI

MCRL
MDCA

MDLZ

MDSOMELI

MENT

MERU

MGAM

MGIC

MGLN

MGRC

MHGC
MIDD
MIND

MINI

MITK

MITL

MKSI
MKTX

MLAB

MLNK

MMSI

MNDL

MNDO
MNGA

MNRO

MNST

MNTXMOBIMOCO

MORN

MPEL

MPWR
MRLN

MRTN

MRVL

MSFT

MSG

MSTR

MTSCMTSLMWIV

MXIM

MYGN

MYL

MYRGNAII

NATHNATI

NATR

NAUH

NBSNCMINDAQ

NDSN

NEOG

NEON

NFLX

NICE
NILE

NINENKTRNLST

NMRX

NNBR

NPSP

NSIT

NSPH

NSSC

NSYS

NTAP

NTCT

NTESNTIC

NTRS

NURO

NUTR

NVAX
NVDA

NVEC

NVMI
NVTL

NXTM

NYMTNYMX

NYNY
OBCIODFL

OFLX

OLED

OMAB

OMCL

OMEX
ONEQOPEN

ORLY

OSIS
OSN

OSUROTEX

OTIV
OUTR
OVRLOVTIOXBTPACBPACR
PAMT

PATK
PATR

PAYX

PCARPCCC

PCH

PCLN
PCMI

PCYO

PDCO

PDFSPDII

PEGA

PERI

PETM
PETS

PFINPFSW
KIIHP IIHPPICO

PKOH

PLAB

PLCE

PLKI

PLPC

PLUG

PLUSPLXS

PMD

PNNTPNRA

PNRGPODD

POOL

PPHM

PRAA
PRFTPRGS
PRIMPRMW
PRSCPRTS

PRXL

PSEC

PSMT

PSUN

PTENPTNRPWRD
PWX
PXLW

PZZA

QADAQADB

QBAKQCOMQQQQSIIQTWWQUIKRAND

RAVN

RCII

RCKYRCMT
RDA

RDNT
RDWR
RECN

REDF
REFR

RELV
REMY

RENTRFIL
RGDXRGLD
RIBT
RITT

RMCF

RMTI

RNET
ROLLROSE

ROSTRRGBRRST

RSTI
RUSHARUSHB
RYAAYSAAS
SAIA

SANMSAPE
SATS
SBGI

SBUX

SCHLSCLNSCOK
SCSCSCSS

SCVL

SEIC
SENEASENEB

SGC
SGEN
SGMA
SGOC
SGRP

SHENSHLD
SHLM
SHLO
SHOOSHORSHPG

SIAL

SILC

SIRO

SKBI

SLAB

SLGN

SLMSLMAPSLP

SLRCSLTC
SMCI

SMRT

SMSISNAK
SNCR

SNDK
SNHY

SNMX
SNPS

SODA

SONC

SONS
SORLSPSPAN

SPCHASPCHB
SPIL
SPNS

SPSC

SPTNSPU

SRCL

SSNCSTLD

STMP

STRA

STRN

STRT
STRZA

STXSTXS

SURG

SUTR
SWKS

SWSH

SYKE
SYMC

SYNA
SYNL

SYNT

TAITTAXITAYDTBOWTCRD

TCX

TEAR

TECD

TECH
TESOTESS

TFM

TGA
THORTHRM

THTI
TILE

TINYTITN

TLF

TMNG
TRMBTRNS

TRNX

TRS

TSCO

TSLA
TST

TTEC

TWERTWIN

TWMC

TXN

TXRH

TYPE
UACL
UCTT
UEICUEPS
UFPI

UFPT

UG
UHAL

ULTA

ULTI

UNFI

UNIS
UNTK
UNXL
UPI

URBN

USEG
USLM

USMO

USTR

UTHR

UTMD
VALU

VASC

VDSI

BAIV AIV
VIRC

VIVO

VLGEA

VLTC
VODVPRT
VRA

VRML

VRNT

VRSKVRSNVRTU

VSCI

VSEC

VTNR
VTSSWAVXWDC

WDFC

WEN

WERN
WEYSWFM

WILC

WINA

WIRE
WLB

WMAR
WOOF

WPCS

WRES

WRLD

WSCIWSTG
WVVI

WWD

WWWW

WYNNXLNXXRAY

YHOO

YONG

YRCW

ZAGGZBRA

ZIXI
ZUMZ

Gross Profit Gth SR

Index

S
R

ve
c

AAN

AAP

ABB
ABC
ABM
ACCACCO

ACN

ACW

ADC

ADM

ADS

AEOAER
AGCOAGM

AGN

AGU

AGXAI

AIR

AIT

AJG
AKS

ALB

ALG

ALJ
ALK
ALV

AME

AMPAMRC

AMT

AMTD

AN

ANFANH
ANN

ANR
ANWAOL
AOS

APDARE
ARG

ARSDARW
ASGN
ASHASR
ASX
AT

ATRATU

ATWAVBAVD

AVT

AVY

AWI

AXE

AXL
AXLL

AXP

AXR
AYI
AZN

AZO

AZZB

BA

BAH

BALTBAM

BAX
BBL

BC

BCR
BDC

BDX

BG
BGS
BH

BHE
BHI

BHP
BID

BIG

BIO

BKEBLK

BLL

BLT
BMI
BMR

BMS

BMY
BORNBPBPI

BPL

BR

BRFSBRK.A

BRS
BT

BUD

BWC

BWS

BXCBXP

BYD

BYI

CAB

CACI

CAE
CAG

CAH

CAJ
CALX

CAM

CAT
CATO

CBD

CBG

CBI

CBL

CBM
CBS
CBTCBZCCC
CCE

CCI

CCJ

CCK
CCL

CCU
CDI

CE

CEA
CEB

CEC

CELCEO
CFCFI

CFN

CGACGICHA

CHD

CHE

CHH

CHL

CHS
CHSP

CHT

CIEN
CIG

CIM
CIR

CL

CLB

CLCCLD

CLNY

CLS

CLX

CMG

CMICMNCMOCMP
CMRE

CNICNK
CNQ

CNS

CNW

CNXCOCOGCOH
COL
COO

COPCOV

CP

CPA

CPB

CPSCPTCRCRD.ACRICRL

CRM

CRR

CRSCSHCSL

CSS

CSV

CSX

CTB

CTC

CUBCUKCVCCVD
CVECVGCVI

CVO

CVS

CVX

CW

CX

CXOCXW

CYDCYHCYTDALDAN

DAR

DCI

DCM

DDDDS

DE
DEG

DEI

DEL
DEO

DFT

DG

DGX

DHI

DHRDHX

DIN

DISDK

DKS
DLBDLR

DLX

DNB

DNP

DNR
DODOV

DOW

DPM

DPS

DPZ

DRC
DRI

DRQ

DST

DSW

DV

DVA

DW

DX
DY
E

EAT

EBFEBS
EC
ECL
EDU

EFC

EFX

EGP

EL

ELS

EMC
EME

EMNENB
ENIENL

ENRENS

ENV
ENZ
EOG

EPD

EPR

ERJ
ESCESL
ESS
ETB
ETH
ETMETP
EV

EVR

EW

EXLEXP

EXPR

EXR

F

FC
FDO
FDS
FDX
FICO

FII

FIS

FL

FLO
FLR

FLS

FLT
FMC
FMS

FRM
FRO

FRT

FT
FTI
FTK

FUL

FUN

FURFXCM
G

GBL

GCA
GCAPGCI
GCO
GDP

GE

GEF

GEO
GESGGB
GHC

GHL

GIBGIL
GIM

GIS

GLFGLP

GLT

GLW
GM

GMK
GMT

GNRC
GOF
GOV
GPC

GPI

GPKGPNGPSGPX

GRA

GRT

GS

GSH

GSK
GTYGWR

GWW

H

HAE

HALHARHBI

HCP

HD

HEHEI

HEP
HESHF

HFC
HGG

HGR

HI

HIW

HLF

HLS

HMC
HME

HNI

HNT

HOG

HON

HOT

HPHPTHPY

HRB

HRC

HRLHRS
HSY

HTGC

HUB.A

HUN

HVT
HXL

HXM
IBA

IBM

ICB
IDT

IFF

IGT

IHS

ILIM
IMAXIMN
INFYINGR

INT
INXN

IP
IPI

IR

IRM

IT

ITW

IVZIXJAHJBL
JBTJCI

JEC
JNJ

JOY
JRN

JW.A

JWN

K
KAI

KAMN

KAR

KEX

KFY

KGC
KKDKMB

KMP

KMT

KMX

KND
KNLKNM
KNX

KO

KOF

KR

KS

KSS

KSU
KWR

KYO

LADLAZLB

LDLLEA
LEG

LEN
LHO
LII
LL

LLL

LLYLNN
LO

LOW

LRN
LRYLTM

LUK

LUV

LUXLVS
LXK

LXU

LYB

LYV
LZB

M

MAAMACMAIN
MAN

MBTMCC

MCD

MCK
MCO
MCS

MD

MDP

MDT

MEDMEI

MFA
MG

MGA

MHKMHRMICMIL

MJN

MKC

MLI
MLMMLR

MMC

MMM

MMPMMSMNRMO
MOG.A

MOH

MON

MOS
MPX

MR

MRF
MRK
MRO
MS

MSCIMSM

MTD

MTN
MTRN
MTX

MTZ

MWEMWV
MXLMXT

N

NATNCT

NEU
NGLSNGS

NIENJ

NKE

NLS
NLSN
NMM
NMRNNINNN
NOAH

NOC
NOV
NP

NPD

NPKNPONPTN
NR

NRP

NRT
NSC
NSP

NSRNTG
NTLNTTNTZ
NUE

NVONVRNVS
OOASODC

OII

OISOLN

OLP

OMC

OME

OMIONE

OPK

ORAN

ORB

ORCL

OSK
OXMOXYPAA

PAC

PAG

PBH

PBI

PBR

PCP

PDS

PEB

PEP
PFE

PG

PGI

PH
PHI

PHX

PII

PIKE
PIRPKG
PKI

PKOPKX

PLL

PLOW

PLT

PM
PMC

PMT

POL

POTPPGPPO

PPS

PSA

PSB

PSO

PT

PTRPULSPVH
PWR

PX

PZE

R

RAIRAS
RAX
RBA
RBC

RCL

RDY
REG

RES

RGC

RGR

RHIRHT

RIO

RJF

RKT
RL

RMD

ROG

ROK

ROL

ROP

RRC
RRTS

RS

RSG

RSO

RST
RTN
RUK

RWT
RYN

SAH

SAMSAP

SARSB

SBH

SCCOSCI
SCL

SCS

SDRL
SE

SEM
SEMGSEPSF

SFLSFUNSGU

SHW

SIG

SJM

SKM

SKTSLB
SLG

SLW

SMGSMP

SNA

SNH
SNI
SNN
SNP
SNX
SNY

SON

SPA

SPG

SPH

SPW

SQMSRT

SSD

SSISSL

SSLT

SSS

STSTE

STJ

STN

STOSTON
STVSTWDSTZ

SUSUI

SUNE
SUP

SWFT

SWI

SWK

SWM
SWS
SWY

SXI

SXL

SYK

SYT

SYY

T
TATAL

TAP

TARO

TBI
TCAP
TCKTDCTDG
TDW

TDY

TEF
TEI
TEL

TEN
TEO

TER

TEVA

TEXTG

TGH

TGI

TGP

TGS

THOTHS

TIF

TISI
TJX
TKC
TKR

TLK

TLP

TM

TMH

TMO

TNC

TNH

TOL
TOT

TPX

TR

TRC
TRGP
TRNTRPTRWTS
TSM
TSN
TSO

TSS

TSU

TTC

TTM

TU
TUP

TV

TW

TWCTWO
TWXTXTXTTY
TYG

UA
PBU ABU

UFIUFS

UGP

UHT

UISUL
UMC
UN

UNF

UNP

UNS
UNT

UPS

URI

USNA

USPHUTIUTX

UVV

VALE

VAR

VCOVFC
VG

VGRVIV
VLOVMI

VMW

VPG
VRSVSH

VSI

VTRVVI

VZ

WAB

WAGWAT

WBC
WCCWCNWDR
WES
WGO

WHR
WHX
WIT
WLK

WLL

WMWMT

WNCWNR

WNS

WORWPZ

WRE

WSM

WSO

WST

WTS

WTW

WU

WWW

WX

WY

WYN

XECXINXNY

XOM

XOXO

XRS

XRX

YOKU
YPF
YUM

YZC

ZEP

ZMH

ZNH
AAON
AAPL

AAWW
ABAXABCD

ABCO

ABTLACASACAT

ACET

ACIW

ACOR

ACPWADAT
ADBE
ADEP
ADI

ADP

ADSK
ADTN

ADVS

AEISAFAM

AFFX

AFOPAGEN

AHGP

AIMC
AIRM
AIRT

AKAM

AKRXALCO

ALGN

ALGT

ALOG

ALOTALTR
AMATAMCCAMCN

AMGN

AMKRAMOT
AMOVAMSGAMSWA

ANDE

ANIK

ANSS

APAGFAPEI

APOL

APPY

APSA

ARAY

ARCC
AREX
ARII

ARKR
ARLP
ARMH

ARNAARTWASEI

ASFI

ASMIASMLASNAASTC

ASTE

ASTM
ATAI
ATEC
ATNI

ATRCATRI
ATROATRS
ATVI
AVAVAVGO
AVID

AVNW
AWRE
BAXS

BBBY

BBGI

BBRG
BCPCBCRX

BDMS
BEAVBECN
BELFABELFB
BGFV

BGMD
BIDUBIIBBIOL

BJRI

BKCCBLDP
BLIN

BLKB

BMRN
BNSO

BOOM

BPHX

BRCD

BRCM

BREWBRKR

BRLI

BSDM

BSET

BVSN
BWEN

BWLD

CA

CAAS

CAKE

CALD
CALICALMCASM

CASS

CASYCATM

CBMX

CBPO

CBRL

CBRX

CCMPCDNS

CDTI
CDXSCDZI
CECE

CERN

CERS
CETV
CGNX

CHDN

CHKPCHRW

CHY

CHYRCIDM
CIMT
CLCT
CLDXCLFDCLNECLNT
CLRO

CMCSA

CMTL

CNMD

CNQR

CNSLCNTY

COHR

COKE

COLM

CORE

COSI

COST

CPGI
CPLA
CPRT
CPSI
CRAY

CRDS

CREG

CRMT

CRNT

CRRC

CRUS
CRVL

CRWN

CRWS
CRZO

CSCO
CSGP

CSGS

CSIICSPI

CTAS

CTCM

CTCT

CTGCTIB

CTRPCTSHCTXS

CUTR

CVLT

CWSTCWTRCXDCCYTX

DAKT
DAVE

DENN
DEST
DGII

DGLYDHRMDIOD

DISCADISCBDISCK

DISHDJCO
DLIA

DLTR

DMLP
DORM

DOVRDOX

DRAMDSCI

DSGX

DSWL
DTLK

DTV

DXCMDYAX

EBAY

EBIXECHO
ECOL

ECPG
EDAPEDGW
EDS

EDUCEEFT

EFII

EFUT

EGHT

EGOV
ELGX
ELON

ELRC
ELSE

EML
ENSG
ENTGERIC
ERII

ESLT

ESSX

EXAC

EXLP

EXLS

EXPD

EXPE

EXPO

EXXI
EZCHFALCFARO

FAST
FCFS
FEIC

FEIM

FELE

FFIV

FHCO

FINL

FISVFIZZ

FLEXFLIR

FLML

FLWS

FLXS

FNGNFONR

FORDFORM

FORR

FORTY

FOSL

AXOF XOF
FRED

FSC

FSTR

FTNT

FTRFWLTFWRD
GAIAGAME
GASSGBDC
GENCGEOSGIGM

GIII

GILD

GIVNGK

GLDC

GLPW

GMCR
GNCMA
GNTX
GOLD

GOOG

GPICGPORGPRC
GRMN
GSOL

GT
GTIMGTLS
GUIDGURE

HAIN

HAS

HAYN

HCKT

HCOM

HCSG
HEES
HELE
HGSH

HIBB

HIHOHIMX

HITT

HMSY
HNH

HNRGHNSN

HOFT

HOLIHOTRHRZN

HSIC

HSNI

HSTM

HTCH
HTHTHTLDHTWR

HUBG
HURC

HURN

HWCC

HWKNIACI
IBKR
ICAD

ICFI

ICLR

ICUI
IDSYIGTEIIJI

IILG

IIVI
IKAN

IKNX

ILMN

IMKTA

INFA

INPH
INTC

INTL
INTU

INTXINVEIOSP
IPAR

IPCM

IPGP

IPHSIPXL
IRBT

IRDM

IRWD

ISCA

ISIS

ISNS

ISRGISSC
ITRN
IVAC
IVAN
IXYS

JACK

JBHT

JBLU

JBSSJCOMJCTCF

JJSF

JKHY

JOBS

JOUT

JSTKALU

KBALB

KELYAKELYB

KEQUKGJIKLAC
KLICKOOLKTCCKTOS

KVHI

LABL

LAMR

LANCLAWS

LCUT

LECOLFUS

LIME

LINTALINTB

LIOX

LIVE
LIWA

LKQ

LLEX
LLNWLLTC

LMAT

LMNR
LMNX
LNCELNDC
LOCMLOOK

LOPELPLA

LPNT
LQDTLRADLRCX
LSTR
LTRX
LULULWAY

MANHMAR

MASI

MAT
MATW
MAYSMBISMCHPMCRI
MCRLMDCA

MDLZ

MDSO

MELI

MENT

MERU

MGAM

MGIC

MGLNMGRC

MHGCMIDD
MIND

MINI

MITK

MITL

MKSI

MKTXMLAB
MLNK

MMSI

MNDL

MNDO

MNGA

MNRO
MNST

MNTXMOBI

MOCO

MORN
MPEL

MPWR

MRLN

MRTN

MRVL

MSFT

MSG

MSTR

MTSC
MTSLMWIVMXIM

MYGN

MYL
MYRGNAII

NATH

NATI

NATR

NAUH

NBS
NCMI
NDAQ

NDSN

NEOG

NEONNFLX

NICENILENINE

NKTRNLST
NMRXNNBR
NPSP

NSIT

NSPH

NSSC

NSYSNTAP

NTCT

NTES

NTIC

NTRS

NURO

NUTR

NVAX

NVDANVEC
NVMINVTL

NXTM

NYMT
NYMX
NYNY
OBCIODFL

OFLX

OLEDOMAB
OMCL

OMEX
ONEQOPEN

ORLY

OSIS

OSN

OSUR
OTEX

OTIV
OUTROVRLOVTI
OXBTPACB
PACR
PAMT

PATK

PATR

PAYX

PCAR

PCCC

PCH

PCLNPCMI

PCYO

PDCO

PDFS

PDII

PEGA

PERI

PETM

PETS

PFINPFSW
KIIHP IIHP

PICO
PKOHPLAB
PLCE

PLKI

PLPC

PLUG

PLUS
PLXS
PMD

PNNT

PNRA

PNRG

PODD

POOL

PPHM

PRAA

PRFT

PRGS

PRIM
PRMW
PRSCPRTSPRXL
PSEC

PSMT

PSUN
PTEN
PTNRPWRD

PWX

PXLW
PZZA

QADAQADB

QBAK
QCOM
QQQQSIIQTWWQUIKRAND
RAVN

RCII

RCKYRCMT
RDARDNT

RDWR

RECN

REDF
REFR

RELV
REMY

RENTRFILRGDXRGLDRIBTRITT

RMCF

RMTI

RNET
ROLLROSE

ROST

RRGB

RRST

RSTIRUSHARUSHBRYAAYSAAS
SAIA

SANM
SAPESATSSBGI

SBUX

SCHLSCLNSCOK

SCSC
SCSS
SCVL

SEIC

SENEASENEBSGCSGENSGMA
SGOC

SGRPSHEN
SHLDSHLM
SHLO

SHOO
SHORSHPG

SIAL

SILC

SIRO

SKBI

SLABSLGN

SLMSLMAP
SLP

SLRCSLTCSMCI

SMRT

SMSISNAK

SNCR

SNDK

SNHY
SNMXSNPS

SODA
SONC
SONS
SORL

SPSPAN
SPCHASPCHBSPIL
SPNS

SPSC

SPTNSPU
SSNC
STLD

STMP

STRASTRN
STRTSTRZA
STX

STXSSURG
SUTRSWKS
SWSH

SYKESYMC
SYNA
SYNL
SYNTTAITTAXITAYDTBOWTCRD
TCX

TEAR

TECDTECH

TESO
TESS

TFM

TGA
THORTHRMTHTI
TILE

TINYTITN

TLF

TMNG
TRMBTRNSTRNX

TRS

TSCO

TSLA
TST

TTEC

TWERTWIN

TWMC

TXN

TXRH

TYPE

UACLUCTT

UEIC

UEPSUFPI
UFPT

UG

UHAL

ULTA
ULTI

UNFI

UNIS

UNTK

UNXL
UPIURBN

USEGUSLM

USMO

USTR

UTHR

UTMD
VALU

VASC

VDSI

BAIV AIV

VIRCVIVO
VLGEA

VLTC
VODVPRT
VRAVRML

VRNT

VRSK
VRSN
VRTU

VSCIVSECVTNRVTSSWAVXWDC

WDFCWEN
WERN
WEYS

WFM

WILC

WINA

WIREWLB
WMAR

WOOF

WPCS

WRES

WRLD

WSCI

WSTG

WVVI
WWD

WWWW
WYNNXLNXXRAY

YHOO

YONGYRCWZAGGZBRA

ZIXIZUMZ

0 500 1000 1500

−
50

0
50

10
0

15
0

20
0

0 500 1000 1500

0
50

10
0

15
0

20
0

0 500 1000 1500

0
50

10
0

15
0

20
0

0 500 1000 1500

−
50

0
50

10
0

15
0

20
0 Earning per Share Gth SR

Index

S
R

ve
c

AANAAPABBABC

ABM

ACCACCO
ACN
ACW

ADC

ADM

ADS

AEOAERAGCOAGM

AGN
AGUAGXAIAIR
AIT
AJG
AKSALB
ALG
ALJALK
ALVALX

AME

AMPAMRCAMT
AMTD

AN

ANFANHANN
ANR
ANWAOL
AOS
APD
ARE
ARG

ARSDARW
ASGN

ASH
ASRASX
AT

ATRATUATWAVBAVD
AVTAVY
AWIAXEAXLAXLL
AXP

AXR
AYIAZN

AZO

AZZB
BA

BAHBALTBAM

BAX

BBL
BC

BCE
BCR

BDC

BDX
BG

BGS
BH

BHE
BHIBHPBID
BIG
BIO

BKE

BLKBLL
BLTBMIBMR
BMS
BMYBORNBPBPIBPL
BR

BRFSBRK.ABRS
BT

BUDBWCBWSBXCBXPBYD
BYICABCACI
CAE

CAG
CAHCAJ

CALX
CAMCAT
CATO
CBDCBGCBICBLCBM

CBS
CBT
CBZ
CCC

CCE

CCICCJCCKCCL
CCU

CDI

CECEACEBCEC
CELCEOCFCFI

CFN

CGACGICHA

CHDCHE

CHH
CHL

CHSCHSP

CHT

CIEN
CIGCIMCIR

CL
CLB

CLC
CLD

CLNY

CLSCLX
CMG
CMICMNCMOCMP

CMRECNI
CNK
CNQ
CNS
CNW
CNXCOCOGCOH
COL
COOCOPCOVCPCPA

CPB

CPSCPTCRCRD.A
CRICRLCRM

CRR

CRSCSH
CSLCSSCSV

CSX

CTB

CTC

CUBCUKCVCCVDCVECVGCVICVO

CVS

CVXCW
CXCXOCXWCYDCYHCYTDALDANDAR
DCI
DCM
DDDDSDE

DEGDEIDEL
DEO
DFT

DG
DGX
DHI

DHR

DHXDIN

DIS

DK

DKS

DLBDLR

DLX

DNBDNPDNR
DO

DOVDOWDPM

DPSDPZ
DRCDRI
DRQ
DSTDSWDVDVA

DW

DXDYE

EAT

EBFEBSECECLEDUEFC

EFX
EGP

EL

ELS

EMC
EME

EMNEMR

ENBENIENL
ENR
ENS

ENVENZEOG

EPD
EPR
ERJ
ESC

ESL
ESSETBETHETM
ETPEVEVREW
EXL
EXPEXPREXRFFCFDO

FDS

FDXFICOFIIFISFLFLOFLR

FLSFLT

FMC
FMSFRMFRO

FRT
FT
FTI
FTKFULFUNFURFXCMGGBLGCAGCAPGCIGCOGDP

GE

GEFGEOGESGGBGGGGHC
GHL
GIBGILGIM
GIS
GLFGLP
GLTGLWGMGMK
GMTGNRCGOF

GOVGPC
GPI
GPK
GPNGPSGPX
GRAGRTGSGSHGSKGTYGWR

GWW

HHAEHALHARHBI

HCP

HD

HE

HEI

HEPHES

HF

HFCHGGHGRHIHIWHLF
HLS

HMCHME
HNI
HNT

HOG

HON
HOTHPHPTHPY
HRBHRC

HRL

HRS
HSY

HTGC

HUB.A

HUNHVT

HXL

HXMIBA

IBM

ICBIDTIEXIFF
IGTIHS
IL
IMIMAXIMN

INFYINGR
INT

INXNIPIPIIRIRM

IT
ITWIVZIXJAH
JBL
JBTJCIJECJNJ
JOYJRNJW.A
JWN

KKAI

KAMN

KAR

KEX

KFYKGCKKDKMB

KMP

KMT

KMX

KNDKNLKNMKNX
KO

KOFKRKS

KSS
KSUKWR
KYOLADLAZ
LB

LDLLEALEG
LEN
LH

LHO
LII
LL

LLL

LLYLNNLO
LOW
LRNLRY
LTM

LUK
LUV
LUX
LVS

LXKLXU
LYB

LYVLZB

M

MAAMACMAINMANMBTMCC
MCD
MCK
MCO

MCS

MD

MDP

MDT

MEDMEI

MFA

MG

MGA

MHK

MHR
MICMILMJN

MKC

MLIMLM
MLR

MMC

MMM

MMPMMSMNRMO

MOG.A

MOH

MON

MOS

MPXMR
MRFMRKMROMS
MSCIMSM

MTD

MTNMTRNMTXMTZ
MWEMWV
MXLMXTNNATNCTNEUNGLS
NGS
NIENJ

NKE

NLSNLSNNMMNMRNNI
NNN

NOAH

NOC
NOVNP
NPDNPKNPO
NPTN

NRNRP

NRT
NSC

NSP

NSR

NTG
NTLNTT

NTZ
NUE

NVO

NVRNVSOOAS
ODC

OII

OISOLN

OLP
OMC
OME
OMI
ONE
OPKORANORB

ORCL

OSKOXMOXYPAAPAC
PAGPBH
PBIPBR

PCP

PDSPEB
PEP
PFE
PG
PGIPH

PHI

PHX

PII

PIKEPIRPKGPKIPKOPKX

PLL

PLOW

PLT
PMPMC
PMTPOL
POTPPG
PPOPPS
PSA

PSBPSOPT

PTR

PULS
PVHPWR

PX

PZE

R

RAI
RAS
RAX

RBA

RBCRCL
RDY
REGRESRGCRGR
RHIRHT
RIO

RJF

RKT
RLRMD

ROG

ROK

ROL

ROP

RPMRRC
RRTSRS

RSG

RSORST

RTN

RUK
RWTRYN
SAH
SAM
SAP
SARSB
SBHSCCO
SCISCL
SCS

SDRLSESEMSEMGSEPSFSFLSFUN
SGUSHWSIGSJMSKMSKT
SLB
SLGSLWSMGSMP

SNA

SNH

SNISNNSNPSNX
SNY
SON
SPASPGSPHSPWSQM
SRT
SSDSSI

SSL

SSLTSSS
STSTE

STJ

STNSTO
STONSTV

STWD

STZSUSUISUNE
SUPSWFTSWISWKSWM
SWS
SWY
SXI
SXL
SXT
SYKSYT
SYY

TTATALTAPTARO
TBI

TCAPTCK
TDC
TDGTDW
TDY
TEFTEI
TEL
TEN
TEO
TERTEVATEXTGTGHTGITGPTGS
THOTHSTIFTISITJX
TKCTKRTLK
TLP
TM

TMH

TMOTNCTNH
TOLTOTTPX
TR

TRCTRGP
TRN
TRPTRWTSTSMTSNTSO

TSS

TSU

TTC

TTM

TU
TUPTV

TW

TWCTWO
TWX
TXTXTTYTYG

UA

PBU ABUUFIUFS
UGP
UHTUIS

UL

UMC

UN
UNF

UNP

UNS
UNT
UPS

URI
USNAUSPH

UTIUTXUVVVALE

VAR

VCO

VFC

VGVGR
VIVVLOVMIVMWVPGVRSVSHVSIVTRVVIVZ
WABWAG
WAT

WBCWCCWCN
WDR
WESWGOWHR
WHX
WIT

WLKWLLWM

WMT

WNCWNRWNS
WOR
WPZWRE

WSM

WSO

WST

WTS
WTWWUWWW
WXWY

WYN

XECXINXNYXOMXOXOXRS

XRX

YOKU
YPFYUM
YZCZEP
ZMH
ZNHAAONAAPL

AAWWABAX
ABCD
ABCO
ABTLACASACAT
ACETACIW
ACORACPWADAT
ADBEADEP

ADI

ADP

ADSKADTNADVSAEISAFAMAFFXAFOPAGEN
AHGP
AIMCAIRMAIRTAKAMAKRXALCO
ALGN
ALGTALOGALOTALTRAMATAMCCAMCN

AMGN
AMKRAMOT
AMOVAMSGAMSWAANDE
ANIK
ANSS

APAGF

APEI

APOL
APPYAPSAARAY
ARCCAREXARIIARKRARLPARMH
ARNAARTWASEI
ASFI
ASMIASML
ASNA
ASTC
ASTE
ASTMATAIATEC
ATNI

ATRC

ATRI
ATRO

ATRS

ATVI
AVAV
AVGO
AVID

AVNWAWRE

BAXS

BBBY
BBGIBBRG

BCPC

BCRXBDMSBEAVBECNBELFABELFBBGFVBGMD
BIDUBIIB
BIOL
BJRIBKCC
BLDPBLINBLKBBMRNBNSOBOOM
BPHXBRCDBRCMBREWBRKR
BRLI

BSDMBSETBVSNBWEN

BWLDCA

CAAS
CAKE
CALDCALICALM
CASM

CASS

CASYCATMCBMX
CBPO
CBRL

CBRXCCMPCDNS
CDTICDXSCDZI
CECECERN
CERSCETV
CGNX

CHDN

CHKP

CHRWCHYCHYRCIDM
CIMTCLCT
CLDX
CLFD
CLNE
CLNTCLROCMCSACMTL
CNMD
CNQR
CNSLCNTY
COHR
COKECOLM
CORE

COSI

COSTCPGICPLACPRT
CPSI
CRAY
CRDSCREGCRMT
CRNT
CRRC
CRUSCRVLCRWN

CRWS

CRZOCSCOCSGPCSGS

CSII

CSPI
CTASCTCMCTCTCTGCTIBCTRP

CTSH

CTXS

CUTR
CVLT
CWSTCWTR
CXDC
CYTX
DAKTDAVEDENNDESTDGII
DGLY
DHRMDIODDISCADISCBDISCK
DISH
DJCODLIA
DLTRDMLP
DORM
DOVRDOX

DRAMDSCI
DSGX
DSWL

DTLK

DTV
DXCMDYAXEBAY
EBIXECHOECOLECPG
EDAPEDGWEDSEDUCEEFTEFIIEFUTEGHT

EGOV

ELGX
ELON

ELRC

ELSEEML

ENSG

ENTGERICERIIESLT
ESSX
EXAC
EXLPEXLSEXPDEXPE

EXPO

EXXIEZCHFALC
FARO

FAST
FCFSFEIC

FEIM

FELEFFIV

FHCO
FINL

FISV

FIZZ
FLEX

FLIR

FLML
FLWSFLXSFNGNFONR
FORDFORMFORRFORTY

FOSL

AXOF XOFFRED
FSCFSTRFTNTFTRFWLT

FWRD

GAIAGAMEGASS
GBDC

GENCGEOSGIGM
GIII

GILDGIVNGKGLDCGLPWGMCRGNCMAGNTXGOLD

GOOG

GPICGPORGPRCGRMNGSOLGTGTIM
GTLS
GUIDGUREHAINHAS
HAYNHCKTHCOMHCSGHEES
HELE
HGSH
HIBB
HIHOHIMX
HITTHMSYHNHHNRG
HNSN
HOFTHOLI
HOTRHRZN

HSIC

HSNIHSTM

HTCH
HTHT
HTLD
HTWR
HUBG
HURC

HURN

HWCCHWKNIACIIBKR
ICAD

ICFI

ICLR
ICUI
IDSY

IDXX

IGTEIIJIIILGIIVI
IKAN

IKNX

ILMNIMKTAINFA
INPH
INTCINTL

INTU

INTXINVE
IOSPIPAR
IPCMIPGP
IPHSIPXLIRBTIRDMIRWD
ISCA
ISISISNSISRGISSC
ITRN
IVACIVANIXYS

JACKJBHT
JBLU

JBSSJCOMJCTCF

JJSF

JKHY

JOBSJOUTJSTKALUKBALBKELYAKELYBKEQUKGJIKLACKLIC
KOOL
KTCCKTOSKVHI
LABL
LAMR
LANC
LAWSLCUT
LECOLFUS
LIME
LINTALINTB
LIOXLIVE
LIWA

LKQ

LLEXLLNW
LLTCLMATLMNRLMNXLNCELNDC
LOCMLOOK

LOPE

LPLALPNTLQDTLRADLRCXLSTR
LTRX
LULULWAY

MANH

MAR
MASI
MATMATWMAYS
MBISMCHPMCRIMCRLMDCA

MDLZ

MDSOMELIMENT
MERUMGAM
MGIC
MGLN

MGRC

MHGC

MIDD

MIND
MINI
MITKMITLMKSI
MKTXMLAB
MLNK

MMSI

MNDLMNDO
MNGA
MNROMNST
MNTXMOBIMOCO
MORN
MPELMPWRMRLN

MRTN

MRVL

MSFT

MSGMSTRMTSCMTSL

MWIV

MXIMMYGN
MYLMYRGNAII
NATH
NATINATRNAUH
NBS
NCMI
NDAQ
NDSN
NEOG
NEONNFLXNICENILENINENKTRNLSTNMRXNNBR
NPSP

NSIT

NSPH

NSSCNSYSNTAP
NTCTNTES
NTIC

NTRS

NURO

NUTR

NVAX

NVDA
NVEC
NVMINVTLNXTM
NYMT
NYMXNYNY
OBCIODFL
OFLX

OLEDOMAB
OMCL

OMEXONEQ
OPEN

ORLY

OSIS
OSNOSUR
OTEX
OTIVOUTR
OVRL
OVTIOXBT

PACB

PACRPAMTPATKPATR

PAYX
PCAR
PCCC

PCH

PCLN

PCMI
PCYO

PDCO

PDFSPDIIPEGAPERI
PETMPETS
PFINPFSWKIIHP IIHPPICO

PKOHPLABPLCEPLKI

PLPC
PLUG
PLUSPLXSPMDPNNT
PNRA
PNRG
PODD

POOL

PPHM
PRAAPRFTPRGSPRIM
PRMWPRSCPRTS

PRXL

PSEC

PSMT

PSUN

PTEN
PTNRPWRDPWXPXLW

PZZA

QADAQADBQBAK

QCOM
QQQQSIIQTWWQUIK

RAND

RAVNRCIIRCKYRCMTRDARDNTRDWRRECN
REDFREFRRELVREMYRENTRFIL

RGDX

RGLDRIBTRITTRMCFRMTI
RNETROLLROSE
ROST

RRGB

RRSTRSTIRUSHARUSHBRYAAY
SAASSAIASANMSAPESATSSBGI
SBUX
SCHLSCLNSCOK

SCSC
SCSS
SCVLSEIC

SENEASENEBSGC
SGENSGMASGOCSGRPSHEN
SHLDSHLMSHLOSHOO
SHORSHPG

SIAL

SILC

SIRO

SKBISLAB
SLGN
SLMSLMAP

SLP

SLRCSLTCSMCI
SMRT
SMSISNAKSNCRSNDK
SNHY

SNMX

SNPS

SODA

SONC

SONS

SORL
SP

SPANSPCHASPCHBSPILSPNS
SPSCSPTNSPU

SRCL

SSNC
STLDSTMP
STRA
STRNSTRTSTRZASTXSTXSSURGSUTRSWKS
SWSH
SYKE
SYMC
SYNASYNL
SYNT
TAIT

TAXI
TAYDTBOWTCRDTCX
TEAR

TECDTECH
TESOTESS
TFM
TGATHORTHRMTHTITILE
TINYTITN

TLF

TMNG

TRMB

TRNS

TRNX
TRS

TSCO

TSLATST

TTEC
TWERTWINTWMCTXN

TXRH

TYPEUACL
UCTTUEICUEPSUFPIUFPTUGUHALULTA
ULTI

UNFI

UNISUNTKUNXLUPI
URBN
USEG
USLMUSMO

USTR

UTHRUTMDVALU
VASC
VDSI

BAIV AIV

VIRC
VIVO

VLGEAVLTCVODVPRTVRA
VRMLVRNT

VRSK

VRSN
VRTU

VSCI

VSECVTNRVTSSWAVXWDC

WDFC

WEN
WERNWEYSWFM
WILCWINA
WIREWLBWMAR
WOOF

WPCSWRES

WRLD

WSCI
WSTG
WVVI

WWD

WWWW
WYNNXLNXXRAYYHOOYONG
YRCWZAGGZBRAZIXI
ZUMZ

Figure 7.6 Four growth rate mean returns over volatility. These are Sharpe Ratios of income statement
metrics by stock ticker.

150 The Sharpe Ratio

We have four income statement growth metrics and we could consider those
candidates as either the best in any category or the best in all categories. For the case
that we need to use the strictest criteria, “all,” our function findBestAllIncomeStmtSR()
will take in the Sharpe Ratio vectors for the four income statement figures, find out
which candidate stocks, identified by their index in the data frames, will meet a given
minimum threshold, thresh. Only those stocks which meet the threshold in all four will
be marked TRUE in the indAllSR Boolean vector which is returned by the function.

findBestAllIncomeStmtSR <- function(
vecSR1, vecSR2, vecSR3, vecSR4, thresh=50) {
#From 4 SR vectors, find those that meet thresh
indVec1SR = vecSR1 > thresh
indVec2SR = vecSR2 > thresh
indVec3SR = vecSR3 > thresh
indVec4SR = vecSR4 > thresh
indAllSR = indVec1SR & indVec2SR &
indVec3SR & indVec4SR

indAllSR
}

Stitching the pieces together, our Sharpe Ratio function above, findIncomeStmtSR() is
called once for each income statement attribute.

par(mfrow=c(2,2))
cols <- c(3,7,11) #netincgth2, netincgth1, netincgth0
ignSR <- findIncomeStmtSR(ISgthDF,cols,

main="Net Income Gth SR")

cols <- c(4,8,12) #totrevgth2, totrevgth1, totrevgth0
trgSR <- findIncomeStmtSR(ISgthDF,cols,

main="Total Revenue Gth SR")

cols <- c(5,9,13) #gsprofgth2, gsprofgth1, gsprofgth0
gpgSR <- findIncomeStmtSR(ISgthDF,cols,

main="Gross Profit Gth SR")

cols <- c(6,10,14) #dnepsgth2, dnepsgth1, dnepsgth0
esgSR <- findIncomeStmtSR(ISgthDF,cols,

main="Earning per Share Gth SR")

Figure 7.6 has our four income statement metric Sharpe Ratios from running the code
above. The highest tickers bubble to the top of the chart. If we hand-pick the top two of
each and plot their historical prices for five years, from 2010 to 2015, we see drawdowns
in the price plot of Figure 7.7, produced by the code below. Note that the getHistPrices()
quote utility code appears in Section 8.6.

#Let us look at price charts for top two of each
#PLL no longer exists as a ticker, May, 2015
topSRlab <- c('ROL','JKHY','WIT','ULTI',

7.6 Sharpe Ratios for Income Statement Growth 151

0 200 400 600 800 1000 1200

1
2

3
4

5

days

ROL

JKHY

WIT

BWLD

WAB
POL
ULTI

Figure 7.7 Price history scaled via gross return for eight stocks: the top two from each of the four income
statement attributes. This is weaker than other possible criteria. Significant drawdowns occur in
our historical sample.

'POL','BWLD','PLL','WAB')
prices <- getHistPrices(topSRlab,rep(1/8,8),252*5-1,

start="2010-07-01",end="2015-06-30",
startBck1="2010-06-30",startFwd1="2010-07-02")

plotMultSeries(prices,topSRlab,rep(1/8,8),8,
cc="days",ret="",ylim=c(.6,5.5))

We can see vividly in the figure that it is not enough to have a good Sharpe Ratio in any
of the attributes. If this were our portfolio, we see large drawdowns for ULTI and POL,
leading us to rethink our criteria.

Intending to revise our criteria to be the stricter, requiring all four criteria to be equally
weighted, we now create a new data frame in the code below, called ISgthSRDF.

ISgthSRDF <- data.frame(as.character(ISgthDF[,1]),
ignSR,trgSR,gpgSR,esgSR)

colnames(ISgthSRDF) <- c("symbol","ignSR",
"trgSR","gpgSR","esgSR")

cleanedISgthSRDF <- na.omit(ISgthSRDF)
ISgthSRDF <- cleanedISgthSRDF
ISgthSRDF[match('UNP',ISgthSRDF[,1]),] #sample
ISgthSRDF[match('INTC',ISgthSRDF[,1]),] #sample
ISgthDF[match('UNP',ISgthDF[,1]),] #sample
ISgthDF[match('INTC',ISgthDF[,1]),] #sample

When we put this data frame together, we try a small test to see how an industrial, UNP,
compares to a technology stock, INTC, for the past three years for income statement
growth.

152 The Sharpe Ratio

0 200 400 600 800 1000 1200

1
2

3
4

5

days

HD

ROL

WSM

CASS

ORLY

POOL
TXRH

UNFI

Figure 7.8 Stricter criteria yield a more positive gross return history: eight stocks which were the top in the
combined income statement Sharpe Ratio competition.

> ISgthSRDF[match('UNP',ISgthSRDF[,1]),] #sample
symbol ignSR trgSR gpgSR esgSR

1298 UNP 24.61656 53.5 43.17975 25.25137
> ISgthSRDF[match('INTC',ISgthSRDF[,1]),] #sample

symbol ignSR trgSR gpgSR esgSR
2073 INTC 4.709579 25.0735 10.57691 5.084924

We know that, for this time window, technology stocks such as INTC are outshone
by those which take advantage of very high oil prices to outcompete their peers in the
transportation sector, such as UNP. To be sure of the figures, we consult Google Finance
and find that these Sharpe Ratios appear to be correct. We can calculate that the INTC
Diluted Normalized EPS growth is 1.43 versus 1.70 for UNP. Spotting a lower Diluted
Normalized for INTC in 2013 than in 2011, we now know that this figure will penalize
it due to negative growth. Knowing from Figures 7.7 and 7.8 that using the stricter
criteria of findBestAllIncomeStmtSR(), we can now use it in the large on our thousands
of candidates.

The following code block finished with our best candidates from an income statement
growth view so far. In Figure 7.8, rather than hand-picking the best eight from each chart,
we set a proper threshold into the strict function findBestAllIncomeStmtSR() which will
skim off the “cream of the crop” with the following code:

ind8SR <- findBestAllIncomeStmtSR(
ignSR,trgSR,gpgSR,esgSR,thresh=40)

sum(ind8SR)
top8SRlab <- as.character(ISgthSRDF[,1])[ind8SR]
top8SRlab
prices <- getHistPrices(top8SRlab,rep(1/8,8),252*5-1,

start="2010-07-01",end="2015-06-30",

7.6 Sharpe Ratios for Income Statement Growth 153

startBck1="2010-06-30",startFwd1="2010-07-02")
plotMultSeries(prices,top8SRlab,rep(1/8,8),8,

cc="days",ret="",ylim=c(.6,5.5))

The results of the thresh = 40 run of findBestAllIncomeStmtSR() is ind8SRlab, a vector
of tickers or labels.

> top8SRlab
[1] "HD" "ROL" "WSM" "CASS" "ORLY" "POOL" "TXRH" "UNFI"

Figure 7.8 is produced by running the remainder of the code on the eight tickers to obtain
daily price quotes.

Following this same process, we expand the candidate selection to thresh = 25 in
order to give the optimizing engine coming up in Chapter 8 a chance to combine ISSR
selection with price history in its weighting scheme.

> indAllSR <- findBestAllIncomeStmtSR(
+ ignSR,trgSR,gpgSR,esgSR,thresh=25)
> sum(indAllSR)
[1] 33
> topSRlab <- as.character(ISgthSRDF[,1])[indAllSR]
> D = length(topSRlab)
> len = dim(ISgthSRDF)[1]
> topSRlab
[1] "AME" "AZO" "CSX" "CTC" "EL" "FDS" "HD"
[8] "KAMN" "KMP" "MD" "MMM" "MTD" "NKE" "NRT"

[15] "PCP" "PX" "ROK" "ROL" "SNA" "UA" "WSM"
[22] "CASS" "HSIC" "IKNX" "JKHY" "NTRS" "ORLY" "PAYX"
[29] "PCLN" "POOL" "SIAL" "TXRH" "UNFI"

Figure 7.9 shows us that there are some candidates of the 33 which achieve a 300 percent
to 400 percent gross return when collecting their price history with the following code
block. The suspiciously flat line at 1.0 are quotes for CTC. KMP and CTC are no longer
quoted in Yahoo! or Google Finance, so must be eliminated; thus D becomes 31 before
portfolio optimization.

The function plotIncomeStmtSRTops() takes one of the four income statement Sharpe
Ratio (ISSR) vectors and an indicator Boolean vector which indicates the highest Sharpe
Ratios as TRUE for the ISSR vector and plots, with the stock ticker name, the ratios.
The rnorm() R normal variate function dithers the tickers, names horizontally to attempt
to randomly separate them for better readability. This works to a degree, but when the
density is higher, one needs to investigate the R data structure to find specific results.

plotIncomeStmtSRTops <- function(isSRvec,indAllSR,
lab,minSR,maxSR,type=1) {

set.seed(200)
par(mar=c(4,4,2,1))
par(mfrow=c(1,1))
numPoints = length(isSRvec[indAllSR])

154 The Sharpe Ratio

0 200 400 600 800 1000 1200

2
4

6
8

10
12

Days

AME

ARG

AZO
BT

CSXFDSGPN

HD

KAMN

MD
MMM
MTD

NRT

PX
ROKROL

UA

WSM

CASS
HSICIKNXJKHY

NTRS

ORLY

PAYX

PCLN

POOL
TXRHUNFI
WRLD

Figure 7.9 D = 33 candidate stock tickers and their in-sample performance. Clearly for this time window,
UA has the best in-sample price behavior for this set of high income statement Sharpe Ratio
(ISSR) stocks. ORLY, PCLN, and HD also have high gross returns.

if(type == 1) {
plot(rep(type,numPoints),isSRvec[indAllSR],cex=0,

xlim=c(0,5),main="All Income Stmt Gth SR",
ylim=c(minSR,maxSR),xlab="Income Stmt Gth Type",ylab="SR")

} else {
points(rep(type,numPoints),isSRvec[indAllSR],cex=0)

}
text(rep(type,numPoints)+.20*rnorm(numPoints),

isSRvec[indAllSR],ylim=c(minSR,maxSR),
as.character(lab[indAllSR]),cex=.75,col=type)

}
maxSR <- max(ignSR[indAllSR],trgSR[indAllSR],

gpgSR[indAllSR],esgSR[indAllSR])
minSR <- min(ignSR[indAllSR],trgSR[indAllSR],

gpgSR[indAllSR],esgSR[indAllSR])
plotIncomeStmtSRTops(ignSR,indAllSR,ISgthSRDF[,1],minSR,maxSR,1)
plotIncomeStmtSRTops(trgSR,indAllSR,ISgthSRDF[,1],minSR,maxSR,2)
plotIncomeStmtSRTops(gpgSR,indAllSR,ISgthSRDF[,1],minSR,maxSR,3)
plotIncomeStmtSRTops(esgSR,indAllSR,ISgthSRDF[,1],minSR,maxSR,4)

The plot, shown in Figure 7.10, becomes cluttered quickly. ORLY automotive parts can
be seen in all four series. Many cannot be seen, but it is possible to inquire about any
given ticker with a code sequence such as that in the output below for UA athletic wear.

> #track UA's IS SR for all 4 categories
> UAidx = match('UA',ISgthSRDF[,1])
> ignSR[UAidx]; trgSR[UAidx]; gpgSR[UAidx]; esgSR[UAidx]

1283
35.77816

7.7 Exercises 155

0 1 2 3 4 5

50
10

0
15

0
20

0

All Income Stmt Gth SR

Income Stmt Gth Type

S
R

AME

AZO

CSX

CTC

EL

FDS

HD

KAMN

KMP
MD

MMM

MTD

NKE
NRTPCP PX

ROK

ROL

SNA

UA

WSM

CASS

HSIC

IKNX

JKHY

NTRS

ORLY

PAYX

PCLNPOOL

SIAL

TXRH

UNFI

AME

AZO

CSX

CTC

ELFDS

HD

KAMN

KMP

MD

MMM

MTD

NKE
NRT

PCP

PX

ROK

ROL

SNA

UA

WSM

CASS

HSIC

IKNX

JKHYNTRS

ORLY

PAYX

PCLN

POOL

SIAL

TXRH

UNFI

AME

AZO

CSX

CTC

EL

FDS

HD

KAMN

KMP

MD

MMM

MTD
NKE

NRT

PCP

PX
ROK

ROL

SNA

UA

WSM

CASS

HSICIKNX JKHY

NTRS

ORLY

PAYX

PCLN

POOL

SIAL

TXRH

UNFI

AME
AZO

CSX

CTC

EL

FDS

HD

KAMN

KMP MDMMM

MTD

NKE

NRT
PCP

PX
ROK

ROL

SNAUA

WSM

CASS

HSIC

IKNX

JKHY

NTRS

ORLY

PAYXPCLN

POOL

SIAL

TXRH
UNFI

Figure 7.10 33 candidate stock tickers and their income statement Sharpe Ratios (ISSR) for 1 = Income
Growth, Net; 2 = Total Revenue Growth; 3 = Gross Profit Growth; 4 = Diluted Normalized
Earning per Share Growth.

1283
35.50081

1283
25.49725

1283
25.36479

Even though the UA ticker is obscured by others, we can see from the match() and
array-indexing operations that the ISSRs are 35.78, 35.50, 25.50, and 25.36.

Now that we have developed Sharpe Ratio logic for the price and income statement
datasets by stock ticker, these can be used in subsequent optimization and learning
algorithms in upcoming sections.

7.7 Exercises

7.1. Finding Best Sharpe Ratios

Write another version of pruneBySharpe() called myPruneBySharpe() in R, which
uses the negative subscript feature introduced in Chapter 2 to eliminate prices

156 The Sharpe Ratio

in the prices matrix and ticker symbols in the lab vector and adjust the value
of the D scalar. Use the list() operator to return the three variables for prices,
ticker symbols, and indepSharpes. Use any of the code from pruneBySharpe() you
need. Use the unit test from the pruneBySharpe() function of Chapter 7 for testing
myPruneBySharpe(). Show the output of testing myPruneBySharpe().

7.2. Data Visualization for Income Statement Growth

Produce the plot in Figure 7.10 by locating and running the code which invokes
findBestAllIncomeStmtSR(). Experiment and find a better way to separate the ticker
symbols horizontally by storing them in a list or dictionary as necessary, rather
than the purely random method of Section 7.6. Imagine a radius around them of an
appropriate length which you will determine in order to prevent most conflicts in
the plot.

7.3. Error Handling with Datasets

Use the elimSyms() code from Section 4.10 on Securities Data Cleansing to per-
form a unit test function called ESUT() of this utility. The function performs a
cleaning of the prices matrix and lab vector based upon what transpired in the
acquirePrices() process as recorded in the files of the form bad*.txt. Write a unit
test using at least 20 tickers you choose and disqualify 30 percent of those tickers
using one of the bad*.txt files. Hint: You may use the first three lines of code from
APUT() to assign dir, l1, l2 in a similar way. Best to choose ESUT as the dir name.
Create a badsyms.txt file in each of the two sub-directories NYSE and NASDAQ
to form two lists of symbols to eliminate from prices and lab.

8 Markowitz Mean-Variance
Optimization

This chapter focuses on an applied statistical approach to the data mining of equi-
ties, price trends in order to gain insight into selecting the most desirable portfolios
on the basis of return, volatility, and inter-security time series correlation. Historical
prices can very well tell the story of the times of the data collection: volatile, trending
bullish or bearish, oscillating or crashing, based upon what market events have occurred.
Figure 3.3 shows the price behavior of several stocks with the Great Recession in the
early portion of the charts. Generally, some securities are very sensitive to the events of
the times while others manifest a higher degree of independence. In any case, the simu-
lations ensure that each security is treated analytically according to its historical nature.

Classically, when analyzing desirable equities portfolios, one can focus on two very
different approaches. They are

• fundamental analysis of company balance sheets, which can involve factors for book
equity to market equity ratios, etc. (Fama and French, 1995, 1996); or

• the price behavior of their common stock in the global market (Markowitz, 1952,
1959; Ruppert, 2011).

In later chapters we will consider the former analysis, but in our financial analytics
experiment in this chapter, we choose the latter, which is consistent with the approach
of many market practitioners. The raw price behavior of the common stock is recorded
and can be observed and obtained by participants worldwide. The publicly available
price data is the driver. The theory surrounding the analysis of the prices in portfolios
began in the 1950s.

Depending upon the return and volatility of the historical prices, as well as the covari-
ance of an individual security to the remaining securities, preference is given to those
with higher return and lower volatility and lower covariance.

8.1 Optimal Portfolio of Two Risky Assets

The basic idea of a portfolio is to place a set of securities into a basket with weights rep-
resenting the amount of investment in each. Each investment return is a random variable.
In the case of two investment returns, X and Y , if a and b are the investment weights, we
are interested in how the variance of the portfolio turns out. We know from the derivation
in Section 3.6 that:

158 Markowitz Mean-Variance Optimization

Var(aX + bY) = E(aX + bY)2 − E2(aX + bY)

= a2Var(X) + b2Var(Y) + 2abCov(X, Y).

The special case of two risky assets in a portfolio, where Var(X) > 0 and Var(Y) > 0,
is an especially good example to see optimization at work. As an investor, we are always
interested in minimizing risk, which corresponds to minimizing the variance.

If we assume that our first weight a = wd represents the debt portion of a portfolio
which would hold fixed income securities such as a bond and that our second weight
b = we represents the equity portion of a portfolio which would hold stocks, then the
two weights must make up the whole portfolio so:

wd + we = 1.

Actually, it is not necessary for either a or b to represent any particular type of invest-
ment, we simply chose debt and equity as an example. Substituting in a = wd and
b = we = 1 − wd and using some differential calculus for finding the minimum, we can
determine a formula for the minimum variance debt proportion. Our new formula for
the portfolio variance appears below:

σ 2
P = w2

dσ
2
d + (1 − wd)2σ 2

e + 2wd(1 − wd)σde

= w2
dσ

2
d + σ 2

e − 2wdσ
2
e + w2

dσ
2
e + 2wdσde − 2w2

dσde.

Now we take the derivative with respect to wd since we are interested in the best
weight for the debt portion. We will also obtain the best weight for the equity portion
since there are only two portions in this case.

∂σ 2
P

∂wd
= 2wdσ

2
d − 2σ 2

e + 2wdσ
2
e + 2σde − 4wdσde = 0

wd(2σ 2
d + 2σ 2

e − 4σde) = 2σ 2
e − 2σde

wd = 2σ 2
e − 2σde

2σ 2
d + 2σ 2

e − 4σde
.

The minimum variance portfolio debt proportion is

wd = σ 2
e − σde

σ 2
d + σ 2

e − 2σde

= σ 2
e − σdσeρ

σ 2
d + σe2 − 2σde

since Cov(X, Y)σXY = σXσYρ for any two random variables X and Y . And so the
minimum variance portfolio equity proportion is

we = 1 − wd.

To visualize this relation, below is an R program which will plot it.

mu_d = .05
mu_e = .12
sigma_e = .30
sigma_d = .20

8.1 Optimal Portfolio of Two Risky Assets 159

sigma_de = .003
w_d = seq(0,1,.01)
mu_P = vector(length=length(w_d))
sigma_P = vector(length=length(w_d))
sr_P = vector(length=length(w_d))

Initialization code is above and sets up the five parameters and vectors to record 100
values for μP, σP, and μP/σP, the Sharpe ratio. Below is the main loop which iterates
and constructs the curves in those vectors.

for(u in 1:length(w_d)) {
mu_P[u] = mu_d*w_d[u] + mu_e*(1-w_d[u])
sigma_P[u] = sqrt(w_d[u]^2*sigma_d^2 +

(1 - w_d[u])^2*sigma_e^2 +
2*w_d*[u](1 - w_d[u])*sigma_de)

sr_P[u] = mu_P[u] / sigma_P[u]
}
par(mfrow=c(1,2))
plot(sigma_P,w_d,type="l",ylab="w_d",col=6)
ind_min_var_P = sigma_P == min(sigma_P)
w_d[ind_min_var_P]
points(sigma_P[ind_min_var_P],w_d[ind_min_var_P])
text(sigma_P[ind_min_var_P]+.04,w_d[ind_min_var_P],

paste("<-(",round(sigma_P[ind_min_var_P],4),",",
w_d[ind_min_var_P],")"),cex=.75)

Figure 8.1 depicts the curve and optimal wd. By inspecting the Boolean array
ind_min_var_P, we find that the minimum value of σP = 0.1702 or 17.02 percent when
wd = 0.70. The code above is for the leftmost plot of Figure 8.1. The code below is for
the rightmost plot.

0.18 0.22 0.26 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sigma_P

w
_d

<−(0.1702 , 0.7)

0.18 0.22 0.26 0.30

0.
05

0.
07

0.
09

0.
11

sigma_P

m
u_

P

<−(0.1702 , 0.071)

<−(0.1887 , 0.0871)

Figure 8.1 Two weights, wd and we share a portfolio. The value for wd which yields the minimum variance
portfolio is depicted on the left plot. The value for μP which yields the minimum variance
portfolio appears below the value for μP which yields the tangency or best Sharpe ratio portfolio
on the right plot. The plots assume μd = 0.05,μe = 0.12, σe = 0.30, σd = 0.20, σde = 0.003,
0 ≤ wd ≤ 1.

160 Markowitz Mean-Variance Optimization

#Now plot sigma_P as a function of mu_P
plot(sigma_P,mu_P,type="l",ylab="mu_P",col=2)
mu_P[ind_min_var_P]
points(sigma_P[ind_min_var_P],mu_P[ind_min_var_P])
text(sigma_P[ind_min_var_P]+.045,mu_P[ind_min_var_P],

paste("<-(",round(sigma_P[ind_min_var_P],4),",",
mu_P[ind_min_var_P],")"),cex=.75)

By inspecting the Boolean array ind_opt_p, we find that the value of σP = 0.1887 or
18.87 percent when wd = 0.47.

ind_opt_P = sr_P == max(sr_P)
mu_P[ind_opt_P]
points(sigma_P[ind_opt_P],mu_P[ind_opt_P])
text(sigma_P[ind_opt_P]+.045,mu_P[ind_opt_P],

paste("<-(",round(sigma_P[ind_opt_P],4),
",",mu_P[ind_opt_P],")"),cex=.75)

Figure 8.1 depicts three important concepts in Portfolio Theory.

• The efficient frontier is the entire curve of the rightmost plot of Figure 8.1. All along
the curve, we can see what the optimal variance is for a given level of return.

• The minimum variance portfolio has a return and variance is the lower of the two
selected points in the rightmost plot of Figure 8.1.

• The tangency portfolio which has the best Sharpe ratio is the upper of the two selected
points in the rightmost plot of Figure 8.1.

8.2 Quadratic Programming

The formula for portfolio optimization can be recognized and cast into a Quadratic Pro-
gramming (QP) problem. When using R, fortunately, there is a quadprog package for
solving these problems using a well-known fast algorithm published in 1982 and 1983
(Goldfarb and Idnani, 1982, 1983). The R package is quite useful for solving mean-
variance problems in finance. Quadratic Programming has been around for decades;
however, having it available in a language for statistical computing is new. solve.QP() is
the name of the solver function within the package. Its specification appears below:

Usage

solve.QP(Dmat, dvec, Amat, bvec, meq=0, factorized=FALSE)

Arguments

Dmat
matrix appearing in the quadratic function to be minimized.

dvec
vector appearing in the quadratic function to be minimized.

8.2 Quadratic Programming 161

Amat
matrix defining the constraints under which we want to
minimize the quadratic function.

bvec
vector holding the values of b_0 (defaults to zero).

meq
the first meq constraints are treated as equality
constraints all further as inequality constraints
(defaults to 0).

factorized
logical flag: if TRUE, then we are passing R^(-1) (where
D = R^T R) instead of the matrix D in the argument Dmat.

Specifically, quadratic programming as implemented in the quadprog package mini-
mizes the objective function as in

argmin
b

(
1

2
bTDb − dTb

)
under constraint ATb ≥ b0, (8.1)

where D is p × p and A, a matrix of constants, is either p × p (this form states only
inequality constraints) or p × (m + kp), for m equality and k sets of p inequality con-
straints, and b, a vector of solution variables, is either p × 1 or (m + kp) × 1. We will
discuss constraints shortly.

If we focus purely on QP for the time being, independent of the business problem
of portfolio optimization, we can examine this key mechanism, that of implementing a
solution to Formula 8.1. Let us say we want to solve a relatively simple mathematical
minimization problem to find the optimal b (Laber and Zhou, 2013):

argmin
b

(
x2

1 + 2x2
2 + 4x2

3 − x1 − x2 + 5x3

)
u. c. x1 + x3 ≤ 1 and x1 ≥ 5 and x2 ≤ 0.

Translating this problem into the matrix notation of Formula 8.1, we now have

D = 2

⎡
⎣1 0 0

0 2 0
0 0 4

⎤
⎦ and b = [x1 x2 x3]T and d = [1 1 − 5]T (8.2)

and the (equality) constraint constants are

AT =
⎡
⎣−1 0 −1

1 0 0
0 −1 0

⎤
⎦ and b0 = [−1 5 0]T . (8.3)

Now, the R program which solves for [x1 x2 x3]T is run with the following results:

> library(quadprog)
> library(tseries)
> P = 2*diag(c(1,2,4))

162 Markowitz Mean-Variance Optimization

> d = c(1,1,-5)
> At = matrix(0,nrow=3,ncol=3)
> At[1,] = c(-1,0,-1)
> At[2,] = c(1,0,0)
> At[3,] = c(0,-1,0)
> b0 = c(-1,5,0)
> P

[,1] [,2] [,3]
[1,] 2 0 0
[2,] 0 4 0
[3,] 0 0 8
> d
[1] 1 1 -5
> At

[,1] [,2] [,3]
[1,] -1 0 -1
[2,] 1 0 0
[3,] 0 -1 0
> b0
[1] -1 5 0
> xHat = solve.QP(P, d, t(At), b0)$solution
> xHat
[1] 5 0 -4

Note that b = [x1 x2 x3]T = [5 0 − 4]T meets the constraints of x1 + x3 ≤ 1 and x1 ≥ 5
and x2 ≤ 0 so our constraints are met.

The third argument to solve.QP() is confusing. Formula 6.1 states the constraints in
terms of AT , but the third argument to the solver is specified as A itself. So the R code
above populates a matrix variable which represents AT called At and then that variable
is transposed before supplying it to the solver. This is important and tricky!

8.3 Data Mining with Portfolio Optimization

With introductory experience with QP behind us, we can now apply it to financial data.
In 1952 an analytic technique was invented by Harry Markowitz to optimize portfolios of
equities. The emergence of this portfolio optimization approach began with his doctoral
research (Markowitz, 1952, 1959). The very novel portion was the accounting that was
made for risk in the portfolio. This work has been cited numerous times and used by
investment advisors and fund managers throughout the world. Another researcher, Bill
Sharpe extended the ideas while speaking of capital asset prices (Sharpe, 1964).

We call upon this Portfolio Theory to provide formal justification for comparing and
blending equity securities on a long-term basis. Long-only is our strategy and we take
advantage of publicly available data sources: daily closing prices. Portfolio Theory due
to Markowitz and Sharpe (Sharpe, Alexander, and Bailey, 1999) can be used to classify
investments in portfolio P:

• Begin with R an N × p dimensional log return time series matrix where R =
(R1, . . . , Rp). Our goal is to find the optimal w = (w1, . . . , wp)T . This w was known

8.3 Data Mining with Portfolio Optimization 163

as b in Section 8.2. We define size N portfolio return vector RP = Rw. When we
have p time series of stock prices: Sij at time i for equity security j, log returns are
Rij = ln(Sij/Si−1j). Note that if the S1,js are interest rates, then we simply set Ri,j = Si,j

for all i and j since we expect the Si,js to be normally distributed. The full matrix of
returns is

R =

⎡
⎢⎢⎢⎣

R11 R12 . . . R1p

R21 R22 . . . R2p
...

...
. . .

...
RN1 RN2 . . . RNp

⎤
⎥⎥⎥⎦ . (8.4)

We can find

E {R} = μ =
⎡
⎢⎣
μ1
...
μp

⎤
⎥⎦ (8.5)

and cov(R) = � which is of shape p × p. Finding these matrices is a prelude to
Markowitz-style mean-variance optimization.

• Now define E {RP} = μP = (μ1, . . . ,μp)Tw = (E {R1} , . . . , E
{
Rp

}
)Tw where μj =

1
N

∑N
i=1 Ri,j.

• Ranking investment choices and eliminating some altogether according to principles
of higher return and less volatility and to the Sharpe Ratio:

E {RP} − μf

σP

where E {RP} = wTμ and

σP =
√

wT�w

A requirement for solve.QP() is that � must be positive semidefinite (PSD). For this
condition to hold, reducing its size by eliminating weak candidates and their returns
will increase the chances of � being PSD.

Using QP for portfolio optimization entails finding the optimal variance portfolio
given a mean using the objective function:

wT�w, (8.6)

where � is p × p subject to both inequality and equality constraints (Karoui, 2009;
Ruppert, 2011). Unlike in Section 8.2 above, we have both equality and inequality con-
straints, denoted eq and neq. Considering the vector, b, from Formula 8.1, we will state
the equality constraints firstly as

AT
eqb = beq, (8.7)

so that

AT
eq =

[
eT

μT

]
(8.8)

where eT = (1, . . . , 1) a vector of p ones and μT = (μ1, . . . ,μp)

164 Markowitz Mean-Variance Optimization

and

beq =
[

1
μP

]
. (8.9)

Applying Formula 8.1, in our case D = 2�, d = 0, and b = w. So

μTw = μP = μT
P = (μTw)T = wTμ, (8.10)

and

eTw = 1 = 1T = (eTw)T = wTe. (8.11)

We can restate Formula 8.7 as

AT
eqb =

[
eT

μT

]
w =

[
eTw
μTw

]
=
[

1
μP

]
= beq. (8.12)

The inequality constraints can be stated as

Aneqb ≥ bneq, (8.13)

where Aneq is p × p (although it can in general be p × kp) and bneq is p × 1.
Now, we consider the specific inequality constraints which amount to the “no short

sales” constraint, a single equality constraint, stated simply as

for all i, 1 ≤ i ≤ p, wi ≥ 0, (8.14)

but, more formally, as

AT
neq = diag(p) and bneq =

⎡
⎢⎢⎢⎢⎢⎣

0
.
.
.
0

⎤
⎥⎥⎥⎥⎥⎦ , (8.15)

where diag() is a diagonal matrix of size p×p with 1s on the diagonal and 0 everywhere
else, and bneq is equal to the vector of zeroes of size p so that Formula 8.13 is now stated
in the form of Formula 8.12 using the specifics of Formula 8.14.

In order to form A and b we have the components for the equality and inequality or
“no short sales” condition, so now

Amat = [Aeq | Aneq],

where A is p × (p + 2) and

bvec = [beq
T | bneq

T]T .

In Section 8.5 we will see a concrete example.

8.4 Constraints, Penalization, and the Lasso 165

8.4 Constraints, Penalization, and the Lasso

Portfolio optimization is a very interesting application of non-linear optimization tech-
niques. Since we have already discussed equality and inequality constraints in the
portfolio optimization context, general optimization is worth diving into briefly in order
to understand better what is going on with the optimization algorithm solve.QP(), the
quadratic programming routine. Generally speaking, there is a domain in p-dimensions
and the function to be optimized, f , is a surface in (p + 1) dimensions. For example, if
p = 2, as in our upcoming examples, then the function f is a surface in three dimensions.
Optimizing consists of finding the domain point, x ∈ R

p, which gives us a minimal or
maximal point in terms of the value of f . In the Markowitz and Sharpe tradition, we
typically desire a mean return and then want the portfolio with the lowest covariance
for that return. So we are finding a minimum point for the variance, or, equivalently, the
standard deviation of the portfolio.

Constraints are conditions placed upon f which must be met for the optimization
to be useful and valid. Our discussion of constraints here will be general, as we have
already begun discussing portfolio optimization constraints. As we have seen in the prior
section, constraints are specified as equalities and inequalities. Before the constraints
become matrix form, we can think of the conditions in the form most commonly known
as the Karush–Kuhn–Tucker (KKT) conditions stated as the main function followed by
inequality and equality constraints:

minimize f (x) subject to gi(x) ≤ 0 and hj(x) = 0

where i ∈ {1, . . . , l} and j ∈ {1, . . . , m}
where there are l inequalities and m equalities. The full equation for the KKT method is
expressed

x∗ = argmin
x

f (x)

= argmin
x

L(x, λ, μ)

= argmin
x

f (x) +
l∑

i=1

gi(x) +
m∑

j=1

hj(x),

where L(x, λ, μ) is known as the Lagrangian and depends also on λ and μ, which are
vectors of Lagrange multipliers. For minimization, solving the above is accomplished
by solving the system of equations in p + l + m dimensions where x is p-dimensional:

∇f (x) +
l∑

i=1

∇gi(x) +
m∑

j=1

∇hj(x) = 0, (8.16)

where ∇f is the gradient, a p-dimensional vector of partial derivatives. We discuss an
example of the KKT conditions for optimization below.

We can also apply a slightly less general but also highly useful technique of finding
the Lagrangian equation for the optimization situation so long as we are purely focusing

166 Markowitz Mean-Variance Optimization

on equality constraints. Here is an illustration of the technique with a simple example.
There is a need to minimize a formula as in:

minimize xTx subject to A x = b.

In this case, we will limit our example to p = 2 or two dimensions. We can think of
x = (x, y) so, considering our third dimension as the function value, we have the three
dimensional parabolic surface where f (x) = z = x2+y2. Now we know that, without the
constraints, the minimum value of the function would be the domain point (0, 0) when
z = 0. However, we have an equality constraint, forcing us to consider the entire surface
x2 + y2 intersected with the plane Ax = b. If we try a simple plane where x + y = 2, we
can express that in our KKT form as h(x) = x + y − 2 = 0 or in matrix form as

Ax =
[

1 1
1 1

] [
x
y

]
=
[

2
2

]
= b.

Figure 8.2 depicts the contour of the f (x) = z with the equality constraint.
Another way to find the minimum of the same function is by using Lagrange mul-

tipliers. The Lagrangian method is not as general as the KKT method because of the
limitation of pure equality constraints. For our example function and constraint here, we
can apply it nonetheless. To obtain the Lagrangian form, we start with the expression
for the function and add into the formula to be minimized the constraint equations:

minimize f (x) subject to gi(x) = 0 where i ∈ {1, . . . , m}.

With the Lagrangian, we use one λ multiplier for each equality constraint. We have
one constraint in this example. If we rewrite the matrix equation Ax = b as x + y = 2
then our Lagrangian is written as

L(x, y, λ) = argmin
(x,y)

{
x2 + y2 + λ(x + y − 2)

}
.

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

Figure 8.2 Contour plot of parabolic surface f (x, y) = x2 + y2 with constraint x + y = 2 and solution
(x, y) = (1, 1) on the left. On the right is the plane z = −2x − 2y + 4, our constraint when
λ = −2.

8.4 Constraints, Penalization, and the Lasso 167

We take the derivative of L with respect to each of x, y, and λ and set those to zero, then
solve the equations:

∂L
∂x

= 2x + λ = 0 (8.17)

∂L
∂y

= 2y + λ = 0 (8.18)

∂L
∂λ

= x + y − 2 = 0. (8.19)

By subtracting Equation 8.18 from 8.17 and dividing each side by 2, we get

x − y = 0.

From Equation 8.19 we also know that

x + y = 2.

Adding these two remaining equations, we determine that x = 1 and y = 1. The domain
point for the minimum is at x = (x, y) = (1, 1) with a value of z = x2 + y2 = 2. We can
see the solution point in Figure 8.2. We can also use Equation 8.18 to find that λ = −2
in our three-equation system. Our equality constraint Ax = b, which was written as
Lagrange multiplier λ(x + y − 2), is the plane z = −2x − 2y + 4 when λ = −2. This
plane is depicted on the right side of Figure 8.2.

While we are discussing constraints, this is a good point at which to introduce a
subject which has taken the machine learning community by storm. For many decades,
in statistics, the important concept of a shrinkage property has been developed. It is now
at the point where models are basically expected to have good shrinkage properties.
Shrinkage is the idea that a given solution is more beneficial if it involves fewer and
smaller parameter values. For example, in regression, it is our goal to not overfit a model
to the specific dataset that we see. We want to use initial training dataset(s) to help us
construct a model which can handle future test datasets which are not exactly like the
training datasets. That way we have a model with, perhaps, more variance from the
original test dataset.

Shrinkage can be achieved in many ways. One of the most popular ways is by adding
a penalizing constraint with a limit on the size of the norm of the solution vector. The
constraint, being an upper bound, has the effect of tightening or lassoing the results,
hence the name LASSO. Inventively, the name LASSO stands for Least Absolute Selec-
tion and Shrinkage Operator. Mathematically it is relatively simple. We will use small
letters, Lasso, for the name from now on.

In vector spaces, the 1 distance measure is the sum of the absolute value or magnitude
of each component. If we are in p dimensions, then the vector x has the 1-norm of∑p

i=1 |xi|. This is known as the Manhattan distance because we can picture walking
city blocks as pedestrians who need to keep to the streets due to the buildings blocking
any side paths. The 2 distance measure is the square root of the sum of the components

squared. If we are in p dimensions, then the vector x has the 2-norm of
√∑p

i=1 x2
i

which has the effect of summing the magnitude of each component, then adjusting the

168 Markowitz Mean-Variance Optimization

size back via the square root. This is known as the distance as the crow flies for obvious
reasons.

Of these two most common distance measures, for the Lasso, the 1 constraint is
chosen due to its ability to provide better shrinkage properties. Geometrically, in p = 2
dimensions, the 1 distance measure forces one of the two components to dominate,
forcing other components to zero. This can be seen in Figure 8.3 in the left plot. There is
a function to be minimized shown as the contour plot. The diamond is the 1 constraint,∑2

i=1 |xi| ≤ 1, appearing within the gradient of the function. Due to the diamond shape
of the constraint, the optimization algorithm is forced to choose between one of the
corner points of the constraint diamond, involving only the x or y component, because
those are the points which are most likely to have the minimum value of the function to
be minimized. So, we obtain shrinkage.

If, instead, the constraint were 2, the diamond shape would become a circle, and the
point on that circle that would be minimal for f (x, y) would involve a combination of x
and y components, and we would lose our shrinkage property. In the case of Figure 8.3
the observer can see that, following the contour of f (x, y) to the center or lowest z-valued
point at (0, 1), the Lasso diamond provides the sharp, distinct constraint with shrinkage.

More formally, to minimize the function

f (x, y) = (x − 1

2
)2 + (y − 2)2 subject to |x| + |y| ≤ 1 (8.20)

we employ the KKT conditions. We will rewrite Formula 8.20 above as

f (x, y) = (x − 1

2
)2 + (y − 2)2 subject to

g1(x, y) = x + y − 1 ≤ 0

g2(x, y) = x − y − 1 ≤ 0

g3(x, y) = −x + y − 1 ≤ 0

g4(x, y) = −x − y − 1 ≤ 0.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 8.3 Contour plot of parabolic surface f (x, y) = (x − 1
2)2 + (y − 2)2 with Lasso-style constraint of

|x| + |y| = 1 and solution (x, y) = (0, 1) on the left. On the right is the contour plot of the
constraint plane where z = x + 2y − 2 which is another form of the Lasso constraint. For
comparison purposes both plots have the Lasso-style constraint diamond for |x| + |y| = 1.

8.4 Constraints, Penalization, and the Lasso 169

Now, geometrically, we can see from Figure 8.3 that g2 and g4 are in a region of f which
is higher in value so only g1 and g3 are important. We have two KKT multipliers, λ1 and
λ3 corresponding to g1 and g3. Making use of the KKT formulation of Equation 8.16
the KKT gradients are

∇f (x, y) = (2x − 1, 2y − 4)

∇g1(x, y) = (1, 1)

∇g3(x, y) = (−1, 1),

so we can form our constraint solution equation with l = 2 inequality constraints as

∂f

∂x
+ λ1

∂g1

∂x
+ λ3

∂g3

∂x
= 0

and
∂f

∂y
+ λ1

∂g1

∂y
+ λ3

∂g3

∂y
= 0,

which can be calculated as

2x − 1 + λ1 − λ3 = 0

2y − 4 + λ1 + λ3 = 0.

So, combining all equations to obtain our p + l = 4 equation system, we now have

2x − 1 + λ1 − λ3 = 0

2y − 4 + λ1 + λ3 = 0

x + y = 1

−x + y = 1,

which can be written in matrix form as

Au =

⎡
⎢⎢⎣

2 0 1 −1
0 2 1 1
1 1 0 0

−1 1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x
y
λ1

λ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
4
1
1

⎤
⎥⎥⎦ = b

and solved as u = A−1b via a small R program with output below to (x, y, λ1, λ3) =
(0, 1, 3

2 , 1
2):

> A = matrix(c(2,0,1,-1,
+ 0,2,1,1,
+ 1,1,0,0,
+ -1,1,0,0),nrow=4,ncol=4)
> b = c(1,4,1,1)
> u = solve(A) %*% b
> u

[,1]
[1,] 0.0
[2,] 1.0
[3,] 1.5
[4,] 0.5

170 Markowitz Mean-Variance Optimization

which tells us that the KKT-form equation

x∗ = argmin
x

f (x) = argmin
x

L(x, λ, μ) = argmin
x

L((x, y), (λ1, λ3))

= argmin
x

{(x − 1

2
)2 + (y − 2)2 + λ1(x + y − 1) + λ3(−x + y − 1)},

is solved with x∗ = (0, 1) and λ = (3
2 , 1

2). Our two λ terms are penalizing to the mini-
mization problem because they increase the value of the overall formula to be minimized
so long as the λs are positive. We find, using λ = (3

2 , 1
2), that the two λ terms become

x + 2y − 2, which form a plane in (x, y, z) space. Figure 8.3 shows the function f (x, y)
with the Lasso constraint on the left. On the right, the Lasso constraint is shown again
against the contour of the plane where x + 2y − 2, which is our plane of interest when
λ1 = 3

2 and λ3 = 1
2 . We can see from the contour on the right that when the plane

intersects the plane where x+2y−2 = z = 0 is where we have our solution point where
(x, y) = (0, 1).

Many of the Markowitz simulations shown in the literature involve a small handful of
securities. These lower-dimensional simulations illustrate and instill confidence in the
technique, and they spark curiosity on how the algorithm behaves when a large number
of securities are being researched, hundreds here and in practice at investment firms. The
goal for a portfolio manager or individual investor would be to supply the simulation a
large number of candidate securities and see which of those candidates are marked as
securities with a good return–risk ratio in the overall portfolio. It would be in scenarios
like these that the true value of R language automation would be beneficial. While it
is not very common, other work in high-dimensional Markowitz portfolios has been
reported (Karoui, 2009).

In addition to return, measures of risk, including variance and covariance to the
remaining securities, are important. Those securities with low to negative covariance
to the others are favored even over those with higher Sharpe Ratios, due to their diver-
sification contribution. As an example, one of the stocks, AmerisourceBergen (ABC),
in the nine-dimensional case, is highly favored, as seen in Figure 3.3. The correlation is
low to the others, as seen in the correlation matrix plot where the trough is apparent at
the third row and column in Figure 3.4.

A natural progression of the Markowitz algorithm is scaling it up to many securities
and, therefore, dimensions. This allows large sets of securities to be data-mined to find
out if good values exist. Investors might not be aware of price characteristics until seeing
these candidates emitted as results in the portfolio simulation.

Here is an outline of the steps used in this experiment to mine the data. The specific
details which relate to code modules appear in Figure 8.5.

• Data collection
• Data pre-processing:

Visualization of data
Adjustment for splits

• Compute log returns
• Compute covariance matrix

8.5 Extending to High Dimensions 171

• Simulation and optimization
• Visualization and storing of results

The data pre-processing steps prior to the automation steps are important to the
knowledge discovery process when the results are revealed. Without them, inaccurate
conclusions result from the inaccurate data. By using data visualization to examine and
pay attention to the details of the data patterns, the automation steps can move ahead
properly. And the process repeats as the automation code is developed. In cases like
this, hundreds of charts are plotted to gain confidence of the validity of the data through
inspection as introduced in Section 4.5.

8.5 Extending to High Dimensions

What are the practical implementation issues of using internet-based historical prices
to measure key statistics in an R program? Without the data cleaning, incorrect returns,
volatilities, and covariances will be computed (Bennett, 2014). When dealing with large
datasets, the amount of data cleaning is commensurate to the dataset size.

We return to the huge stockdata dataset (Zhao, Liu, Roeder, Lafferty, and Wasserman,
2012). Our domain begins in the space of R

452 because 452 of the S&P 500 Index stocks
were kept in the index for the entire period of 2003 to 2008. We will be soon looking
at a sample of size just over 1,200 from R

452. The goal of huge is a somewhat different
from our goal in this chapter, but considering this available dataset, originally used for
graphical model structure learning experiments like those of Chapter 9, the large number
of securities will give portfolio optimization a robust test in higher dimensions. So, as is
commonly the case, an R package was used to leverage previous data collection work,
after pre-processing of the data, for testing.

For this first-time use of the solve.QP() optimizer, we will track each of the steps.
Data collection code and output is below. Leveraging the huge stockdata dataset can be
done in six lines of code:

> library(huge)
> data(stockdata)
> len = length(stockdata$data[,1])
> D = dim(stockdata$data)[2]
> prices = stockdata$data[,1:D]
> lab = stockdata$info[1:D,1]

Data pre-processing, including visualization of data and adjustment for splits, code, and
output, appears below. The findR() utility has the option to call the splitAdjust() utility.
If splitAdjusted == FALSE already, it will call it. We do need to adjust stockdata$prices
before we compute the log returns.

> isSplitAdjusted=FALSE
> daysPerYr=252; mufree = 0
> R <- findR(prices,

172 Markowitz Mean-Variance Optimization

+ isSplitAdjusted=isSplitAdjusted) #side affects prices
[1] "split adjusting MMM 2 188 140.54 69.07"
...
[1] "split adjusting ABC 2 755 83.77 41.48"
...
[1] "split adjusting AAPL 2 543 88.99 44.86"
...
[1] "split adjusting EBAY 2 167 109.52 55.41"
[1] "split adjusting EBAY 2 537 172.18 85.44"
...
[1] "reverse split adjusting 125 ISRG 125 -2 7.49 14.64"
...
[1] "split adjusting QCOM 2 408 69.17 34.92"
[1] "split adjusting HSY 2 366 92.03 45.74"
...
[1] "reverse split adjusting 32 TIE 32 -10 1.9 18.77"
...
> displayCharts(prices,lab,nrow=6,ncol=4,sleepSecs=5)
...
[1] "451 ZMH"
[1] "452 ZION"
> dim(R)
[1] 1257 452

Next comes the code to find the covariance matrix. We look at the upper-left corner of
the covariance matrix. Sharpe Ratios are computed as well for later.

> res <- findCovMat(R)
> meanv <- res[[1]]
> cov_mat <- res[[2]]
> diag_cov_mat <- res[[3]]
> sdevv <- res[[4]]
> round(cov_mat[1:8,1:8],4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1.3468 0.5412 0.3982 0.6838 0.7282 0.7022 0.5529 0.4677
[2,] 0.5412 2.4249 0.6008 0.9901 0.7854 0.8716 0.7769 0.8051
[3,] 0.3982 0.6008 1.5557 0.5182 0.4763 0.6424 0.5477 0.3988
[4,] 0.6838 0.9901 0.5182 5.0619 1.0390 1.4370 0.7675 0.8284
[5,] 0.7282 0.7854 0.4763 1.0390 4.1918 2.0683 0.9356 0.7662
[6,] 0.7022 0.8716 0.6424 1.4370 2.0683 9.0457 1.1346 0.6656
[7,] 0.5529 0.7769 0.5477 0.7675 0.9356 1.1346 5.7810 0.6727
[8,] 0.4677 0.8051 0.3988 0.8284 0.7662 0.6656 0.6727 3.6067
> Sharpe <- (meanv-mufree)/sdevv
> isSplitAdjusted <- TRUE
> isPlot <- TRUE

Simulation and optimization preparation code and output appears below. Our optimizer,
solve.QP() expects to know meq, the number of columns of the Amat matrix which are
dedicated to equality constraints, also known as m. As we examine the Amat constraint

8.5 Extending to High Dimensions 173

matrix for the solve.QP() optimizer, we note that it will be run essentially 1 or Lasso-
constrained due to Formula 8.14 and the top half of Formula 8.12. Combining these
conditions allows us to conclude that

p∑
i=1

|wi| = 1,

which is a stricter version of the classic Lasso
∑p

i=1 |wi| ≤ s constraint where s = 1
(Bruder, Gaussel, Richard, and Roncalli, 2013). The ones down the first column of Amat
below enforce the top half of Formula 8.12 and the ones down the diagonal of Amat and
zeroes in the last p positions of bvec enforce Formula 8.13. The good news is that, by
assuming no short sales, we are regularizing the covariance matrix and we can expect
shrinkage in the recommended weights.

> isShorting <- FALSE
> Amat <- cbind(rep(1,D),meanv,diag(1,nrow=D)) #no short sales
> Amat[1:8,1:10]

meanv
[1,] 1 -0.03242621779461 1 0 0 0 0 0 0 0
[2,] 1 0.05612769998105 0 1 0 0 0 0 0 0
[3,] 1 0.02688130530390 0 0 1 0 0 0 0 0
[4,] 1 0.10358295996890 0 0 0 1 0 0 0 0
[5,] 1 0.04075647559033 0 0 0 0 1 0 0 0
[6,] 1 0.00537512486044 0 0 0 0 0 1 0 0
[7,] 1 0.15014719119253 0 0 0 0 0 0 1 0
[8,] 1 0.02523113946413 0 0 0 0 0 0 0 1

The simulation and optimization and visualization steps are incorporated into the
function findWeights(). The code for this function appears below:

findWeights <- function(muP,cov_mat,Amat) {
bvec = c(1,muP,rep(0,D)) #no short sales
D <- dim(cov_mat)[1]
result = solve.QP(Dmat=2*cov_mat,dvec=rep(0,D),

Amat=Amat,bvec=bvec,meq=2)
result

}

Calling findWeights() in a loop with successively lower portfolio return goals allows us
to see how solve.QP() brings more candidates into the set of nonzero-weighted stocks
to diversify the portfolio. Figure 8.4 begins with finding the highest return possible,
depicted in the sort(meanv) output, then 11 successive output plots go from high to low,
33.65 percent return down to 3 percent return on a log return basis. We can see in the
first chart that the best individual stock return is 33.65 percent. We use that figure as
our initial goal for the first run. We see how the p = 452 stocks get introduced, little by
little, selected by having the best return for the risk they introduce into the portfolio.

par(mfrow=c(4,3))
maxMeanV <- max(meanv)
plot(sort(meanv),col=4)

174 Markowitz Mean-Variance Optimization

0.3366

MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKSAKAMLLA NGA ITAAA OM RTLAAMZNTMA GIA PXA PEA EEAABCAMGNVIA APA NOA IDA CPA HPAAPOLAAPLAMATKSDA TMDA XDB TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDABBBYBMSBRH KLB BIIB GIB YBB XSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHWCHKFNIC ICBC XVCCTASSXTC C OCSC XLC FLCCMECMSECC OK HOC LC HSTCCMCSACMACSCCPWRCOPGEC ZTS DE XNCGLWCOSTCVHLLED EDFD AVD IRD RHD IHD SVC IMC XSCDNRXRAYDRRDODVD NVDDOVDOWDD ETDDUKDNBETFCEMNEBAYSTRE PEWE XIE LCEEMCEMRETREOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF RTF XCF NEB OF XRFFITF CMF RLF SLF RILF CPG SIGEGDG SPG ICG EMG WWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH TSH LRHHCBKHUMHBANGET WTI GPI PI TGI FFI MBI CTNIINTUTTI MRI ZVI GRSI JBLSNJ CEJJDSUJNJJCIJOYGJPMJNPRYEKKMIK BMKKLACNEL GEL MLHL LLL RK TFK SSKLUKCNL DTL YLL EFIL KXLLLTCORMMBTM ISL WOL LTMLMARSAM IM CMMMATMKCMCDMHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBRNDAQNOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOMGCP EFP IKP PEPPNWPCP XP LPP GPP LR CNP LCP IBP DXP

PCLN

NGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRCKOR IHR IAR GSR FR THR NTRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT VRT YSH TXT NXT OST RET CHT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRTV RAV OLV CFV ONV ZV NSRVVMCWMTOPW SID GAW IPW TAWMWWFCRHW YW CDWWFMWMBWECWYNNXRX LEX LX XNLXYHOOYUMZMHZION MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKS
AKAM

LLA NGA ITAAA OM RTLAAMZNTMA GIA PXA PEA EEAABCAMGNVIA APA NOA IDA CPA HPAAPOLAAPLAMATKSDA TMDA XDB TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDABBBYBMSBRH KLB BIIB GIB YBB XSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHWCHKFNIC ICBC XVCCTASSXTC C OCSC XLC FLC

CME

CMSECC OK HOC LC HSTCCMCSACMACSCCPWRCOPGEC ZTS DE XNCGLWCOSTCVHLLED EDFD AVD IRD RHD IHD SVC IMC XSCDNRXRAYDRRDODVD NVDDOVDOWDD ETDDUKDNBETFCEMNEBAYSTRE PEWE XIE LCEEMCEMRETREOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF RTF XCF NEB OF XRFFITF CMF RLF SLF RILF CPG SIGEGDG SPG ICG EMG WWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH TSH LRHHCBKHUMHBANGET WTI GPI PI TGI FFI MBI CTNIINTU

ISRG

TTI MRI ZVIJBLSNJ CEJJDSUJNJJCIJOYGJPMJNPRYEKKMIK BMKKLACNEL GEL MLHL LLL RK TFK SSKLUKCNL DTL YLL EFIL KXLLLTCORMMBTM ISL WOL LTMLMARSAM IM CMMMATMKCMCDMHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBRNDAQNOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOMGCP EFP IKP PEPPNWPCP XP LPP GPP LR CNP LCP IBP DXP

PCLN

NGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRCKOR IHR IAR GSR FR THR NTRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT VRT YSH TXT NXT OST RET CHT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRTV RAV OLV CFV ONV ZV NSRVVMCWMTOPW SID GAW IPW TAWMWWFCRHW YW CDWWFMWMBWECWYNNXRX LEX LX XNLXYHOOYUMZMHZION

MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKS

AKAM

LLA NGA ITAAA OM RTLAAMZNTMA GIA PXA PEA EEAABCAMGNVIA APA NOA IDA CPA HPAAPOL
AAPL
AMATKSDA TMDA XDB TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDABBBYBMSBRH KLB BIIB GIB YBB XSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHWCHKFNIC ICBC XVCCTASSXTC C OCSC XLC FLC

CME

CMSECC OK HOC LC HSTCCMCSACMACSCCPWRCOPGEC ZTS DE XNCGLWCOSTCVHLLED EDFD AVD IRD RHD IHD SVC IMC XSCDNRXRAYDRRDODVD NVDDOVDOWDD ETDDUKDNBETFCEMNEBAYSTRE PEWE XIE LCEEMCEMRETREOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF RTF XCF NEB OF XRFFITF CMF RLF SLF RILF CPG SIGEGDG SPG ICG EMG WWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH TSH LRHHCBKHUMHBANGET WTI GPI PI TGI FFI MBI CTNIINTU

ISRG

TTI MRI ZVIJBLSNJ CEJJDSUJNJJCIJOYGJPMJNPRYEKKMIK BMKKLACNEL GEL MLHL LLL RK TFK SSKLUKCNL DTL YLL EFIL KXLLLTCORMMBTM ISL WOL LTMLMARSAM IM CMMMATMKCMCDMHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBRNDAQNOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOMGCP EFP IKP PEPPNWPCP XP LPP GPP LR CNP LCP IBP DXP

PCLN

NGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRCKOR IHR IAR GSR FR THR NTRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT VRT YSH TXT NXT OST RET CHT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRTV RAV OLV CFV ONV ZV NSRVVMCWMTOPW SID GAW IPW TAWMWWFCRHW YW CDWWFM

WMB

WECWYNNXRX LEX LX XNLXYHOOYUMZMHZION MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKS
AKAM

LLA NGA ITAAA OM RTLAAMZNGIA PXA PEA EEA

AMT

ABCAMGNVIA APA NOA IDA CPA HPAAPOL

AAPL

AMATKSDA TMDA XDB TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDABBBYBMSBRH KLB BIIB GIB YBB XSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHWCHKFNIC ICBC XVCCTASSXTC C OCSC XLC FLC

CME

CMSECC OK HOC LC HSTCCMCSACMACSCCPWRCOPGEC ZTS DE XNCGLWCOSTCVHLLED EDFD AVD IRD RHD IHD SVC IMC XSCDNRXRAYDRRDODVD NVDDOVDOWDD ETDDUKDNBETFCEMNEBAYSTRE PEWE XIE LCEEMCEMRETREOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF RTF XCF NEB OF XRFFITF CMF RLF SLF RILF CPG SIGEGDG SPG ICG EMG WWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH TSH LRHHCBKHUMHBANGET WTI GPI PI TGI FFI MBI CTNIINTU

ISRG

TTI MRI ZVIJBLSNJ CEJJDSUJNJJCIJOYGJPMJNPRYEKKMIK BMKKLACNEL GEL MLHL LLL RK TFK SSKLUKCNL DTL YLL EFIL KXLLLTCORMMBTM ISL WOL LTMLMARSAM IM CMMMATMKCMCDMHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBRNDAQNOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOMGCP EFP IKP PEPPNWPCP XP LPP GPP LR CNP LCP IBP DXP

PCLN

NGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRCKOR IHR IAR GSR FR THR NTRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT RET CHT
TSO

VRT YSH TXT NXT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRTV RAV OLV CFV ONV ZV NSRVVMCWMTOPW SID GAW IPW TAWMWWFCRHW YW CDWWFM

WMB

WEC
WYNN

XRX LEX LX XNLXYHOOYUMZMHZION MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKSAKAMLLA NGA ITAAA OM RTLAAMZNGIA PXA PEA EEA

AMT

ABCAMGNVIA APA NOA IDA CPA HPAAPOL

AAPL

AMATKSDA TMDA XDB TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDABBBYBMSBIIB GIB YBB

BLK

HRBXSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHWCHKFNIC ICBC XVCCTASSXTC C OCSC XLC FLC

CME

CMSECC OK HOC LC HSTCCMCSACMACSCCPWRCOPGEC ZTS DE XNCGLWCOSTCVHLLED EDFD AVD IRD RHD IHD SVC IMC XSCDNRXRAYVD NVDDODRRDDOVDOWDD ETDDUKDNBETFCEMNEBAYECLEIXSTRE PEWEEMCEMRETREOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF RTF XCF NEB OF XRFFITF CMF RLF SLF RILFGMECPG SIGEGDG SPG ICG WWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH TSH LRHHCBK

HUM

HBANGET WTI GPI PI TGI FFI MBI CTNIINTU

ISRG

TTI MRI ZVIJBLSNJ CEJJDSUJNJJCIJOYGJPMJNPRYEKKMIK BMKKLACNEL GEL MLHL LLL RK TFK SSKLUKCNL DTL YLL EFIL KXLLLTCORMMBTM ISL WOL LTMLMARSAM IM CMMMATMKC
MCD
MHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBRNDAQNOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOMGCP EFP IKP PEPPNWPCP XP LPP GPP LR CNP LCP IBP DXP

PCLN

NGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRCKOR IHR IAR GSR FR THR NTRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT RET CHT
TSO

VRT YSH TXT NXT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRTV RAV OLV CFV ONV ZV NSRVVMCWMTOPW SID GAW IPW TAWMWWFCRHW YW CDWWFM

WMB

WEC

WYNN

XRX LEX LX XNLXYHOOYUMZMHZION

MMMFNA TBA ECAADBEAMDAESDPAALFA TEAARGAKSAKAMLLA NGA ITAAA OM RTLAAMZNGIA PXA PEA EEA

AMT

ABCAMGNVIA APA NOA IDA CPA HPAAPOL

AAPL

AMATADMKSDA T XDB TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDABBBYBMSBIIB GIB YBB

BLK

HRBXSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHWCHKFNIC ICBC XVCCTASSXTC C OCSC XLC FLC

CME

CMSECC OK HOC LC HSTCCMCSACMACSCCPWRCOPGEC ZTS DE XNCGLWCOSTCVHLLED EDFD AVD IRD RHD IHD SVC IMC XSCDNRXRAYVD NVD
DO

DRRDDOVDOWDD ETDDUKDNBETFCEMNEBAYECL

EIX

STRE PEWEEMCEMRETREOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF RTF XCF NEB OF XRFFITF CMF RLF SLF RILF
GME

CPG SIGEGDG SPG ICG WWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH TSH LRHHCBK

HUM

HBANGET WTI GPI PI TGI FFI MBI CTNIINTU

ISRG

TTI MRI ZVIJBLSNJ CEJJDSUJNJJCIJOYGJPMJNPRYEKKMIK BMKKLACLLL RK TFK SSK

LH

NEL GEL MLLUKCNL DTL YLL EFIL KXLLLTCORMMBTM ISL WOL LTMLMARSAM IM CMMMATMKC

MCD

MHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBRNDAQNOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOMGCP EFP IKP PEPPNWPCP XP LPP GPP LR CNP LCP IBP DXP
PCLN

NGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRCKOR IHR IAR GSR FR THR NTRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT RET CHT
TSO

VRT YSH TXT NXT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRAV OLV CFV
VTR

ONV ZV NSRVVMCWMTOPW SID GAW IPW TAWMWWFCRHW YW CDWWFM

WMB

WEC

WYNN

XRX LEX LX XNLXYHOOYUMZMHZION MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKSAKAMLLA NGA ITAAA OM RTLAAMZNGIA PXA PEA EEA

AMT

ABCAMGNVIA APA NOA IDA CPA HPAAPOL

AAPL

AMAT

ADM

KSDA T TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDABDXBBBYBMSBIIB GIB YBB

BLK

HRBXSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHWCHKFNIC ICBC XVCCTASSXTC C OCSCCLF
CLX

CME

CMSECC OK HOC LC HSTCCMCSACMACSCCPWRCOPZTS DE XNC

CEG

GLWCOSTCVHIRD RHD IHD SVC IMC XSCDVALLED EDFDDNRXRAYVD NVD

DO

DRRDDOVDOWDD ETDDUKDNBETFCEMNEBAYECL

EIX

STRE PEWEEMCEMRETREOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF RTF XCF NEB OF XRFFITF CMF RLF SLF RILF
GME

CPG SIGEGDG SPG ICG WWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH TSH LRHHCBK

HUM

HBANGET WTI GPI PI TGI FFI MBI CTNIINTU

ISRG

TTI MRI ZVIJBLSNJ CEJJDSUJNJJCIJOYGJPMJNPRYEKKMIK BMKKLACLLL RK TFK SSK

LH

NEL GEL MLLUKCNL DTL YLL EFIL KXLLLTCORMMBTM ISL WOL LTMLMARSAM IM CMMMATMKC

MCD

MHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBRNDAQNOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOM

PEP

GCP EFP IKPPNWPCP XP LPP GPP LR CNP LCP IBP DXP
PCLN

NGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRCKOR IHR IAR GSR FR THR NTRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT RET CHT
TSO

VRT YSH TXT NXT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRAV OLV CFV

VTR

ONV ZV NSRVVMCWMTOPW SID GAWWM
WAT
WPIWFCRHW YW CDWWFM

WMB

WEC

WYNN

XRX LEX LX XNLXYHOOYUMZMHZION MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKSAKAMLLA NGA ITAAAALTR
MO

AMZNGIA PXA PEA EEA

AMT

ABCAMGNVIA APA NOA IDA CPA HPAAPOL
AAPL
AMAT
ADM

KSDA T TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDA

BDX

BBBYBMSBIIB GIB YBB

BLK

HRBXSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHW
CHK

FNIC ICBC XVCCTASSXTC C OCSCCLF

CLX

CME

CMSECC OK HOCCTSH

CL

CMCSACMACSCCPWRCOPZTS DE XNC

CEG

GLWCOSTCVHIRD RHD IHD SVC IMC XSC

DVA

LLED EDFDDNRXRAYVD NVD

DO

DRRDDOVDOWDD ETDDUKDNBETFCEMNEBAYECL

EIX

EW
STRE PEEMCEMRETREOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF RTF XCF NEB OF XRFFITF CMF RLF SLF RILFGMECPG SIGEGDG SPG ICG WWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH TSH LRHHCBK

HUM

HBANGET WTI GPI PI TGI FFI MBI CTNIINTU

ISRG

TTI MRI ZVIJBLSNJ CEJJDSUJNJJCIJOYGJPMJNPRYEKKMIK BMKKLACLLL RK TFK SSK

LH

NEL GEL MLLUKCNL DTL YLL EFIL KXLLLTCLMTORMMBTM ISL WOL LMARSAM IM CMMMAT
MKC

MCD

MHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBR
NDAQ
NOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOM

PEP

GCP EFP IKPPNWPCP XP LPP GPP LR CNP LCP IBP DXPPCLNNGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRCKOR IHR IAR GSR FR THR NTRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT RET CHT
TSO

VRT YSH TXT NXT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRAV OLV CFV

VTR

ONV ZV NSRVVMCWMTOPW SID GAWWM

WAT

WPIWFCRHW YW CDWWFM
WMB
WEC

WYNN

XRX LEX LX XNLXYHOOYUMZMHZION

MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKSAKAMLLA NGA ITAAAALTR

MO

AMZNGIA PXA PEA EEA

AMT

ABCAMGNVIA APA NOA IDA CPA HPAAPOLAAPLAMAT
ADM

KSDA T TBB XAB RCB KB CAB LLB IHB PVA YVA BVA OZA NA PDA
BDX
BBBYBMSBIIB GIB YBB

BLK

HRBXSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHW
CHK

FNIC ICBC XVCCTASSXTC C OCSCCLF

CLX
CME

CMSECC OK HOCCTSH

CL

CMCSACMACSCCPWRCOPZTS DE XNCCEGGLWCOSTCVHIRD RHD IHD SVC IMC XSC

DVA

LLED EDFDDNRXRAYVD NVD

DO

DRRDDOVDOWDD ETDDUKDNBETFCEMNEBAYECL

EIX
EW

STRE PEEMCEMR

ETR

EOGEQTEFXEQRCXE LEEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAFFHN
FE

FISVRTF XCF NEB OF XRFFITF CMF RLF SLF RILFGMEEGDG SPG ICG

GIS

GPCWWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DHHRLHSTHCBK
HUM
HBANGET WTI GPI PI TGI FFI MBI CTNIINTU
ISRG

TTI MRI ZVIJBLSNJ CEJJDSU

JNJ

JCIJOYGJPMJNPR

K

KEYMIK BMKKLACLLL RK TFK SSK

LH

NEL GEL MLLUKCNL DTL YLL EFIL KXLLLTC

LMT

ORMMBTM ISL WOL LMARSAM IM CMMMAT

MKC

MCD

MHPMCKMWVMDTWFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBR
NDAQ
NOVNSMNTAPNFLXNWLNFXNEMNWSANEEGASLBN EN INEKNJWNNSCNTRSNOCNUNVLSNUENVDAORLYOXYOMC

OKE
HP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOM

PEP

GCP EFP IKPPNWPCP XP LPP GPP LR CNP LCP IBP DXPPCLNNGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRC
RTN

GSR FR THRRAIKOR IHRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGOS ANS MJS MLSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT RET CHT
TSO

VRT YSH TXT NXT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRAV OLV CFV

VTR

ONV ZV NSRVVMCWMTOPW SID GAWWM

WAT

WPIWFCRHW YW CDWWFMWMB
WECWYNN

XRX LEX LX XNLXYHOOYUMZMHZION MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKSAKAMLLA NGA ITAAAALTR

MO

AMZNAEEGIA PXA PEA
AMT
ABCAMGNVIA APA NOA IDA CPA HPAAPOLAAPLAMATKSDA TMDA KB CAB LLB IHB PVA YVA BVA OZA NA PDABCRBAXBBTBDXBBBYBMSBIIB GIB YBB

BLK

HRBAB CMB
BXP
BSXBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHW

CHK
FNIC ICBC XVCCTASSXTC C OCSCCLF

CLX

CME

CMSECC OK HOCCTSH

CL

CMCSACMACSCCPWRCOPDE XNCSTZCEGGLWCOSTCVHIRD RHD IHD SVC IMC XSC

DVA

LLED EDFDDNRXRAYVD NVD

DO

DRRDDOVDOWDD ETDDUKDNBETFCEMNEBAYXIE LCE

EW

STRE PEEMCEMRETREOGEQTEFXEQRELEXCEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAFFHNFEFISVRTF XCF NEB OF XRFFITF CMF RLF SLF RILF EGDG SPG ICG EMG

GIS

GPCWWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCNSEH PH ZNHHPQNOH DH
HRL
HSTHCBKHUMHBANGET WTI GPI PI TGI FFI MBI CTNIINTUISRGIVZIRMITTJBLSNJ CEJJDSU

JNJ

JCIJOYGJPMJNPR

K

KEY
KMB
KIMKLACLLL RK TFK SSK

LH

NEL GEL MLLUKCNL DTL YLL EFIL KXLLLTC

LMT

ORMMBTM ISL WOL LMARSAM IM CMMMAT

MKC
MCD

MHPMCKMWV
MDT
WFRMRKMETMCHPMUMSFTMOLXTAPMONMWWISMSM OCMMURMYLNBR
NDAQ
NOVNSMNTAPNFLXNWLNFX
NEM

NWSANEEGASLBN EN INEKNJWNNSCNTRSNOC

NU

NVLSNUENVDAORLYOXYOMC
OKE

HP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOM

PEP

GCP EFP IKPPNWPCP XP LPP GPP LR CNP LCP IBP DXPPCLNNGP GP GFP DLP RGPPRUPSAPHMPWRQCOMDGXRSHRRC

RTN

FR THR
RSGRAIKOR IHRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGSLM

SJM
OS ANSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT RET CHTTSOVRT YSH TXT NXT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNHXSPUUTXUNMURBNRTV RAV OLV CFV ONV ZV NSRVVMCWMTSID GAW

WPO

WM
WAT
WPIWFCRHW YW CDWWFMWMB

WEC

WYNNXRX LEX LX XNLXYHOOYUMZMHZION MMMFNA TBA ECAADBEAMDDPAALFA TEA SEAARGAKSAKAMLLA NGA ITAAAALTR
MO

AMZN

AEE

TMA GIA PXA PEAABCAMGNVIA APA NOA IDA CPA HPAAPOLAAPLAMATKSDA TMDA KB CAB LLB IHB PVA YVA BVA OZA NA PDA
BCR

XDB TBB XABBBBYBMSBRH KLB BIIB GIB YBB XSB PXB AB CMBBMYBRCMCVC ACCOGCAMCPBCOFCAHKMXTAC LCCCELGLTC PNCCEPHCERNSCHWCHKFNIC ICBC XVCCTASSXTC C OCSCCLF

CLX

CMECMSCOHKOCCECTSH

CL

CMCSACMACSCCPWRCOPCNX

ED
STZ
CEGGLWCOSTCVHIRD RHD IHD SVC IMC XSC

DVA

DFLLED EDDNRXRAYVD NVDDO
D

RRDDOVDOWDD ETDDUKDNBETFCEMNEBAYXIE LCE

EW

STRE PEEMCEMRETREOGEQTEFXEQRELEXCEXPDESRXXOMFFIVFDOBTIF SIF XDF IIF TSAF VSIF EF NHF FITF CMF RLF SLF RILFFRXXCF NEB OF
FTR

EGDG SPG ICG EMG

GIS

GPCWWG TGRGSG DLIGHALHOGHARSAH GIH SRHHCPHCN
HNZ
HPHESHPQNOH DH
HRL
HSTHCBKHUMHBANGET WTI GPI PI TGI FFI MBI CTNIINTUZVI GRSI

IRM
ITTJBLSNJ CEJJDSU

JNJ

JCIJOYGJPMJNPR

K

KEY

KMB

KIMKLACKSS
KFT

LLL RK

LH

NEL GEL MLLUKCNL DTL YLL EFIL KXLLLTC

LMT

ORMMBTM ISL WOL LMARSAM IM CMMMAT

MKC

MCDMHPMCKMWV

MDT

WFRMRKMETMCHPMUMSFTMOLX
TAP
MONMWWISMSM OCMMUR
MYL
NBRNDAQ
NOVNSMNTAPNFLXNWLNFX

NEM

NWSANEEGASNKENINENBLJWNNSCNTRS
NOCNUNVLSNUENVDAORLYOXYOMCOKEHP LLPRI RACP IO LCROPDCOPAYXBTUJCPPBCTPOM

PEP

GCP EFP IKPPNWPCP XP LPP GPP LR CNP LCP IBP DXPPCLNPFGPGPGNDLP RGPPRUPSAPHMPWRQCOMDGXRSHRRC
RTN

FR THR

RSG
RAI

KOR IHRCOLROPROSTYWSRCDRSNDKERS EES BLS GCS ELSSHWSIALSPGSLM

SJM

OS ANSLUVKWS JTSSNWSSPLSSBUXTTS TOHSRCLUVS ITS NUS KYSSYMCSYYTROWBALT ET TGT VRT YSH TXT NXT OST RET CHT EIT XWT FIT OMTTJXBSU CYT NST SST KMTUNPUNH

UPS

XUTXUNMURBNRTV RAV OLV CFV ONV ZV NSRVVMCWMTSID GAW

WPO

IPW TAWMWWFCRHW YW CDWWFMWMB

WEC

WYNNXRX LEX LX XNLXYHOOYUMZMHZION

0 100 200 300 400

−
0.

1
0.

1
0.

3

Index

0 100 200 300 400

0.
0

0.
4

0.
8

muP = 0.3366

0 100 200 300 400

0.
0

0.
2

0.
4

muP = 0.3

0 100 200 300 400

0.
00

0.
15

0.
30

muP = 0.27

0 100 200 300 400
0.

00
0.

15
0.

30
muP = 0.24

0 100 200 300 400

0.
00

0.
10

0.
20

muP = 0.21

0 100 200 300 400

0.
00

0.
10

muP = 0.18

0 100 200 300 400

0.
00

0.
06

0.
12

muP = 0.15

0 100 200 300 400

0.
00

0.
06

muP = 0.12

0 100 200 300 400

0.
00

0.
06

muP = 0.09

0 100 200 300 400

0.
00

0.
04

0.
08

muP = 0.06

0 100 200 300 400

0.
00

0.
04

0.
08

muP = 0.03

Figure 8.4 Results from initial runs of solve.QP() with huge stockdata, all of the 452 stocks of the S&P, to
meet the highest return possible for the period 2003 to 2008. The first chart depicts the sorted
individual stock returns so that we can determine the best possible pure return without regard for
variance or covariance. The results from 11 runs appear after that with the weight, wi for stock i
on the vertical axis.

abline(h=maxMeanV,col=2)
text(D/2,maxMeanV,round(maxMeanV,4),col=4)
maxMeanV
for(muP in c(maxMeanV,.30,.27,.24,.21,

.18,.15,.12,.09,.06,.03)) {
result <- findWeights(muP,cov_mat,Amat)
if(length(result[[1]])>0 && !is.na(result[[1]][1])) {

summary(result)
w = result$solution
sum(w)
round(w,4)

8.5 Extending to High Dimensions 175

plot(1:length(w),w,cex=.01,
xlab=paste("muP =",round(muP,4)))

text(1:length(w),w,lab,col=4,cex=.75)
} else {

stop("NA result")
}

}

lab[w > 0.00001]
round(w[w > 0.00001],4)
t(w) %*% meanv

library(quadprog)
opt <- function(lab,meanv,cov_mat,isShorting,Nruns=100) {

if(isShorting) { #set the constraints matrix
Amat = cbind(rep(1,D),meanv)

} else {
Amat = cbind(rep(1,D),meanv,diag(1,nrow=D)) #no short sales

}

Let’s note that, from the second case above, when short_sales = FALSE, when D = 4,
for example,

Amat =

⎡
⎢⎢⎣

1 μ1 1 0 0 0
1 μ2 0 1 0 0
1 μ3 0 0 1 0
1 μ4 0 0 0 1

⎤
⎥⎥⎦

which is 4 × 6 in size where μi is the mean stock return for security i. Within the first
two columns of this matrix, Amat, is the right-hand side of constraint Equation 8.8.

u = 1/2
if(isShorting) {#set of Nruns possible target values

#for expect portfolio return
muP = seq(.05,.60,length=Nruns)

} else {
muP = seq(min(meanv)+.0001,max(meanv)-.0001,

length=Nruns) #no short sales
}
muP
sdP = muP # set up storage for sdev of port rets
weights = matrix(0,nrow=Nruns,ncol=D) #store port weights
W <- 4
u <- 1/2
find the optimal portfolios for each target expected return
for (i in 1:length(muP))
{

if(isShorting) {
bvec = c(1,muP[i]) # constraint vector

} else {
bvec = c(1,muP[i],rep(0,D)) #no short sales

176 Markowitz Mean-Variance Optimization

}
#print(paste(2*cov_mat,rep(0,D),Amat,bvec))

Let’s examine the constraints vector, bvec. The length is p + 2 or D + meq where the
first two positions correspond to the equality Equations 8.8 through 8.11. The remaining
p = D positions correspond to inequality Equations 8.13 and 8.14. When D = 4, bvec
looks like below:

bvec = [1 μP 0 0 0 0].

Within the first two columns of this vector, bvec is the right-hand side of Equation 8.9.
Matrices Amat and bvec appear as parameters to solve.QP() below:

isPlot = TRUE

result = solve.QP(Dmat=2*cov_mat,dvec=rep(0,D),
Amat=Amat,bvec=bvec,meq=2)

As stated in the usage summary in Section 8.2 above, the meq parameter to solve.QP()
tells us the number of equality constraint columns in the Amat matrix. So meq = 2 in
the calls to solve.QP() in the above code.

sdP[i] = sqrt(result$value)
#weights are contained in result solution
weights[i,] = result$solution

mufree = 1.3/daysPerYr # input value of risk-free int rate
sharpe =(muP-mufree)/sdP # compute Sharpe Ratios
ind = (sharpe == max(sharpe)) # Find maximum Sharpe Ratio

if(isPlot && (i%%10)==0) {
print(i)
par(mar=c(3.82,2.82,2.82,0.82))
par(mfrow=c(ceiling((min(10,D+3))/W),W)) #3 extra plots
for(d in 1:min(49,D)) {

plot(round(weights[,d],3),xlab=lab[d])
}
plot(weights[i,],xlab=paste("weights,i =",i))
plot(sharpe[1:i],xlab="sharpe",xlim=c(1,Nruns))
plot(muP[1:i],xlab="mu",xlim=c(1,Nruns))
Sys.sleep(5*u)

}
}
Sys.sleep(15*u)
round(weights[ind,],6)

The above section of code computes the Sharpe Ratio for all levels of muP and sdP, one
for each i, the mean and standard deviation of the log returns for the portfolio P, and
then displays the content of the current weights every 10th iteration of the

8.5 Extending to High Dimensions 177

load libraries

load stockdata prices load cached prices

elimSyms

displayCharts

findR

findCovMat

checkCovMat

pruneBySharpe

findCovMat

findR

isnaCheckCovMat

checkDeterminant

opt

plotMultSeries

getHistPrices

weightPortOOS

writeWeights

Figure 8.5 Sequencing for the Portfolio Optimizer (opt) including Pre-Processing Steps. Many of the
functions have appeared in prior chapters.

for (i in 1:length(muP))
w = vector(length=D)

loop as seen in Figure 8.6.
The remaining section of the opt() routine prints the weights greater than 0.001 after

the main loop completes. Figure 8.5 helps us understand the internal steps. Figures 8.6
and 8.7 depict the individual weights over the time steps and how stocks cluster for
volatility and mean return. Figure 8.8 depicts the final weights.

w[] = 0
for(d in (1:D)){

weight = round(weights[ind,d],3)
if(weight > .001)

w[d] = weight
print(paste(lab[d],weight*100,"%"))

}
for(i in 1:Nruns) if(ind[i]) print(i)
return(w)

}

178 Markowitz Mean-Variance Optimization

LH MCD PCG

0.
00

0

PRU

0.
00

RRC COL X

0.
00

VTR

WMB

0.
00

WYNN

0.
00

WEIGHTS,i = 80

0.
06

SHARPE

0.
10

MU

0 40 80

0.
00

0 40 80

0.
00

0.
12

0 40 80

0.
00

0 40 80

0 40 80 0 40 80

0.
00

0.
08

0 40 80

−
1.

0
1.

0

0 40 80

0 40 80

0.
00

0.
07

0 40 80 0 10 20 0 40 80

0 40 80 0 40 80

0.
8

1.
3

SD

Figure 8.6 Weight values from optimizer when run is 80 percent completed (i = 80). All current weights are
shown in the WEIGHTS plot. On the SHARPE chart one can see the peak is when i= 60.

Figure 8.7 Volatility vs. mean return for entire huge stockdata set of ticker symbols. 24 of these rise above
the Sharpe Ratio threshold.

8.6 Case Study: Surviving Stocks of the S&P 500 Index from 2003 to 2008 179

8.6 Case Study: Surviving Stocks of the S&P 500 Index from 2003 to 2008

The nine-dimensional case was used to illustrate the charting and correlations as
seen in Figure 3.3. However, using the huge stockdata dataset, the dimensions for
our experiment can now be increased to p = 452 log-normal random variables in p
dimensions of time series of 1,258 prices each.

The following code block will clean any bad prices, prune the candidates by Sharpe
Ratio, recheck the matrices for NAs and a bad determinant, and run the optimizer for
the huge stockdata dataset.

#huge case
res <- elimSyms(prices,lab,dir,isSubDir=FALSE)
prices <- res[[1]]
lab <- res[[2]]
R <- findR(prices)
D <- dim(prices)[2]
res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]
checkCovMat(cov_mat)
mufree <- 0
res <- pruneBySharpe(prices,lab,meanv,sdevv,.075)
prices <- res[[1]]
lab <- res[[2]]
R <- findR(prices)
res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]
sdevv <- isnaCheckCovMat(R)
checkDeterminant(prices,R,lab)
isShorting <- FALSE
daysPerYr <- 252
library(quadprog)
w <-opt(lab,meanv,cov_mat,isShorting)
t(cbind(lab[w > 0],w[w > 0]))

With these candidate stocks, the surviving candidates of the S&P 500 Index and their
split-adjusted times series, the simulation was run without problems, producing a select
handful of elite stocks which make a positive percentage contribution to the total port-
folio. The time to complete the simulation is 22 minutes when running the R code in
the RKWard environment on the Ubuntu Linux 11.10 (32-bit) operating system on an
AMD V140 processor with 2GB RAM. A second configuration runs with the simula-
tion code in the RStudio environment on Ubuntu Linux using Crouton under Google
ChromeOS operating system using a Celeron 2995U processor with 2 GB RAM. The
time to complete the simulation was less than one minute.

180 Markowitz Mean-Variance Optimization

5 10 15 20

0.
05

0.
10

0.
15

0.
20

Index

w

AMT

AAPL

BLK

CLF

CME

RNDIMCGEC

EIX

EQT

GME
HUM

ISRG

LMRO

MON

OXY

PCP

RRCSWN

TSOTIE

VLO

WMB

Figure 8.8 Zero and nonzero weight values for the 24 huge stockdata candidates. TIE and CVH may be
eliminated due to mergers occurring after the dataset was sampled, as discussed in Section 4.7.

Index

S
R

0 100 200 300 400

−
0.

05
0.

00
0.

05
0.

10

0 100 200 300 400

−
0.

05
0.

00
0.

05
0.

10

Index

S
R

Figure 8.9 Sharpe Ratios of surviving stocks of the S&P 500 Index, January 2003 to January 2008.

The following code sequence sets up and runs the optimizer. Figure 8.9 depicts the
Sharpe Ratio profile for this set of stocks.

#huge case
res <- elimSyms(prices,lab,dir,isSubDir=FALSE)
prices <- res[[1]]
lab <- res[[2]]

8.6 Case Study: Surviving Stocks of the S&P 500 Index from 2003 to 2008 181

R <- findR(prices)
D <- dim(prices)[2]
res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]
checkCovMat(cov_mat)
mufree <- 0
res <- pruneBySharpe(prices,lab,meanv,sdevv,.075)
prices <- res[[1]]
lab <- res[[2]]
R <- findR(prices)
res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]
sdevv <- isnaCheckCovMat(R)
checkDeterminant(prices,R,lab)
isShorting <- FALSE
daysPerYr <- 252
library(quadprog)
w <-opt(lab,meanv,cov_mat,isShorting)

Here are the portfolio weights from huge stockdata candidate stocks:

> t(cbind(lab[w > 0],w[w > 0]))
[,1] [,2] [,3] [,4] [,5]

[1,] "AMT" "AAPL" "BLK" "CME" "EIX"
[2,] "0.06" "0.145" "0.063" "0.18" "0.052"

[,6] [,7] [,8] [,9] [,10]
[1,] "GME" "HUM" "ISRG" "MON" "PCP"
[2,] "0.064" "0.06" "0.047" "0.108" "0.047"

[,11] [,12] [,13] [,14] [,15]
[1,] "RRC" "SWN" "TSO" "TIE" "WMB"
[2,] "0.019" "0.021" "0.057" "0.055" "0.024"

Via the optimizer, we go from having 26 candidates to 15 weighted stocks.
Our purpose is to report this experiment in financial analytics and present the process,

experience and results for this first large group of several hundred candidate stocks. In
the end, CME Group (CME) is the highest weighted stock in the simulated optimal
portfolio, followed by Apple Inc. (AAPL). 94 percent of the stocks (428 of 452) are
weighted at 0 and not used in the portfolio. The 24 stocks that are used are the most
desirable stocks in the period of the dataset. The candidate tickers are all displayed and
plotted in their standard deviation or volatility σ and average return, μ for the five year
sample period in Figures 8.7 and weights are in Figure 8.8.

The optimizer, opt(), works with a fixed set of historical prices. Once it has completed,
as time rolls forward, the analyst is, of course, very interested in how well the portfolio

182 Markowitz Mean-Variance Optimization

produces returns as new prices are revealed in the live market. After we have run the
optimizer and found a recommended vector of weights, w, for a given set of symbols,
lab, we can use the get.hist.quote() utility from the tseries package to call upon the
Yahoo! database for price quotes. Since the number of days with quotes per year can
vary a bit, there are three attempts to obtain the quotes. Any number of days can be
requested as determined by the start and end parameters. Adjacent start, startBck1 and
startFwd1 dates should be used as seen in the function getHistPrices().

The utility function weightPortOOS() provides an out-of-sample portfolio vector
portv, formatted as a gross return beginning at 1.0, using the lab, len, D, w, and prices
provided. If the prices matrix is not provided, it will be found using getHistPrices().
While typically using the w vector of weights, it can also apply a naive (1/D, . . . , 1/D)
equal vector of weights.

weightPortOOS <- function(lab,len,D,w,prices=NA,
start="2013-11-29",end="2014-11-28",
startBck1="2013-11-28",startFwd1="2013-11-27",
isNaive=FALSE,cached=NA) {#len x D prices

if(length(prices) == 1 && is.na(prices)) {
obtainedPrices = getHistPrices(lab,w,len,start=start,end=end,

startBck1=startBck1,startFwd1=startFwd1,cached=cached)
existLen = dim(obtainedPrices)[1]
prices = as.matrix(obtainedPrices[(existLen-len+1):existLen,])

}
numNonZeroWs = sum(ceiling(w))
portv = as.vector(rep(0,len))
D = length(w)
for(i in 1:len) {

for(d in 1:D) { #roll down a return line
if(w[d] > 0)

if(!isNaive)
portv[i] = portv[i] +

w[d]*prices[i,d]/prices[1,d]
else

portv[i] <- portv[i] +
(1/numNonZeroWs)*prices[i,d]/prices[1,d]

}
}
return(portv)

}
#unit test:
weightPortOOS(c('^GSPC'),252,1,c(1.0))
weightPortOOS(c('PCLN'),252,1,c(1.0))
weightPortOOS(c('^GSPC','PCLN'),252,2,c(.1,.9))

8.7 Case Study: Thousands of Candidate Stocks from 2008 to 2014

Using R’s tseries package, the function get.hist.quote() can provide recent daily price
quotes which are already split-adjusted. All that is needed is the ticker, the quote type

8.7 Case Study: Thousands of Candidate Stocks from 2008 to 2014 183

(“Adj”), and the start and end dates of the requested series. The cache implemented
in Section 4.9 works for our purposes with this time series. As explained in that sec-
tion, there are two directories, NYSE and NASDAQ, where the tickers and their cached
prices, named cached<ticker>.csv, are held.

Rather than burdening the portfolio optimizer with the mean return vector and covari-
ance matrix for over four thousand stock time series, we choose to eliminate those which
do not have desirable Sharpe Ratios. We discussed Sharpe Ratios extensively in Chapter
7. In Section 7.3, we covered how pruneBySharpe(), findCovMat(), findR(), isnaCheck-
CovMat(), and checkDeterminant() help us zero in on the final set of candidate stocks
for the optimizer, opt().

#Stocks: six years 2008 through 2014:
dir <- "MVO6"
start <- "2008-02-14"
end <- "2014-02-14"
isPlotInAdjCloses <- FALSE
isCacheEnabled <- TRUE
createDirs(dirs)
res <- readSubDirs(dir)
D1 <- res[[1]]
D2 <- res[[2]]
lab <- res[[3]]
len <- 1512
D <- D1 + D2
prices <- matrix(rep(NA,len*D),nrow=len,ncol=D)
library(tseries)
prices <- acquirePrices(prices,lab,len,D,D1,D2,dir,

start=start,end=end,isSubDir=TRUE)

Above we acquire the price vectors. Once available in prices, we can eliminate NA
prices, and find the covariance matrix so that we can find the Sharpe Ratio of every
security in the symbol list lab. After checking that matrix for anomalies, we can prune
the symbol list down via the Sharpe Ratio filter, pruneBySharpe(). Successful checking
for NAs and for bad determinants in sub-matrices allows us to proceed to the optimizer
step, opt().

res <- elimSyms(prices,lab,dir,isSubDir=TRUE)
prices <- res[[1]]
lab <- res[[2]]
R <- findR(prices)
D <- dim(prices)[2]
res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]
checkCovMat(cov_mat)
mufree <- 0
res <- pruneBySharpe(prices,lab,meanv,sdevv,.0456)

184 Markowitz Mean-Variance Optimization

prices <- res[[1]]
lab <- res[[2]]
R <- findR(prices)
res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]

sdevv <- isnaCheckCovMat(R)
checkDeterminant(prices,R,lab)
isShorting <- FALSE
daysPerYr <- 252

library(quadprog)
w <- opt(lab,meanv,cov_mat,isShorting)
par(mfrow=c(1,1))
maxw = max(w+.02)
plot(w,ylim=c(0.01,maxw))
text(w,lab,cex=.55,pos=3,col=4)
t(cbind(lab[w > 0],w[w > 0]))

This next routine, writeWeights(), finds out the number of nonzero-weighted securities
and writes them in descending weight order to a CSV file.

#Write out w and lab results to CSV file
writeWeights <- function() {

numNonZeroWs = sum(ceiling(w))
QPtype <- 1
setwd(paste(homeuser,"/FinAnalytics/",dir,"/",sep=""))
fileName = paste("resD",numNonZeroWs,"QP",toString(QPtype),

"Days",len,".csv",sep="")
if(file.exists(fileName))

stop(paste(getwd(),fileName,"already exists"))
contents = cbind(lab,w)
o <- order(-w)
write.csv(contents[o,][1:numNonZeroWs,],file=fileName)

}
writeWeights()

The final weights are determined by the optimizer after a strict Sharpe Ratio filter was
applied to a very large candidate set. Figure 8.10 depicts the situation after the call to
pruneBySharpe(). After this step, 44 stocks remain as candidates. The final 13 nonzero-
weighted stocks are shown in Figure 8.11. Figure 8.12 depicts performance in the market
for a one-year period from March 6, 2014 to March 5, 2015. The optimizer was given
a “cherry-picked” set of the highest Sharpe Ratio stocks to work with. Biotechnology
stocks like TARO and growth stocks like DLTR are selected in the Sharpe Ratio filter
based purely upon their six-year performance from February 14, 2008 to February 14,
2014. The optimizer chooses the weights with the set of constraints as discussed in
Section 8.5.

8.7 Case Study: Thousands of Candidate Stocks from 2008 to 2014 185

Index

S
R

0 500 1500 2500 3500

−
0.

05
0.

00
0.

05

0 500 1500 2500 3500

−
0.

05
0.

00
0.

05

Index
S

R

Figure 8.10 Sharpe Ratios of all four thousand-some candidates from February 2008 to February 2014. Some
simple analysis tells us that it is TARO leading the pack for this time period at index 1718. The
sorted Sharpe Ratios are on the right with the minimum threshold of 0.72 as the horizontal line.

ABC

AGN

AZO

LRHHQHWWGDHCYMB

HSYKW

OGRP IIPSMMPMM

RGR
SAM

SHW

SXL

TARO

BIIB HMRA CEWCWTXJTGDT

BOFI

CERNCSGP

DLTR

CNAL FSJJBBI SFCF MANHMNRO

NFLX

KRZO YLRO
PCLN

PLUS

ROSTSHOOSTRZATSCO

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 8.11 Zero and nonzero weight values for the four thousand-some candidates, using the cache files in
directory MVO6. The 13 nonzero weights separate from the zero weights.

186 Markowitz Mean-Variance Optimization

0 50 100 150 200 250

0.
9

1.
0

1.
1

1.
2

1.
3

Days

G
ro

ss
 R

et
ur

n Pa 1.198

S&P 1.12

Figure 8.12 Gross return for the 13 stock portfolio weighted by the optimizer for one year from February
2014 to February 2015, marked to the actual market and out-of-sample. The biotechnology
company TARO is the highest-weighted security and a surge in its price lifts the return of the
portfolio to overcome the S&P 500 Index price in the first 100 days.

> t(cbind(lab[w > 0],w[w > 0]))
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] "AGN" "AZO" "HSY" "KW" "RGR" "SAM" "SXL"
[2,] "0.111" "0.013" "0.056" "0.055" "0.021" "0.028" "0.131"

[,8] [,9] [,10] [,11] [,12] [,13]
[1,] "TARO" "BOFI" "DLTR" "NFLX" "PCLN" "PLUS"
[2,] "0.306" "0.084" "0.086" "0.035" "0.009" "0.065"

8.8 Case Study: Exchange-Traded Funds

Like mutual funds, Exchange-Traded Funds, or ETFs, offer the investor exposure to
various segments of the market. The investor can research the composition of each fund,
which is a portfolio of stocks, all by itself. ETFs are gaining in popularity due to fees
which are typically less than mutual funds for the same market segment. Like stocks,
their price varies as the market demand changes during the day.

If we obtain a source of ETF tickers and use our R utility get.hist.quote() to obtain
prices, then we can cache those prices for repeated runs of our Sharpe Ratio filter and
the optimizer with the steps as laid out in Figure 8.5. It is interesting to compare the
performance of ETFs to our earlier case studies of individual names from the NYSE
and NASDAQ exchanges. Our ETF time period is three years back from the middle of
2015 due to the fact that many interesting ETFs just got their start and do not have a
long history.

The controlling code for this case study is more abstract, now that all the utility
functions have been defined previously. Our utility routine, acquirePrices() discovers

8.8 Case Study: Exchange-Traded Funds 187

whether prices for a ticker symbol have already been found on the internet and cached.
If they have been found and cached, the routine will simply read the .csv cache file. The
cached dataset obtained via get.hist.quote() is, again, a directory of files under in the
ETF directory. The count is 1.25 million total rows in the 1,649 files for the ETF names
coming over from ETFdb.com, but about 27 percent of those rows are NA because of
the quote history for those names not being available or due to an error. The initial block
of code will set the date range for the price history, which is of length len. It also sets
the dir variable to find the caches prices and the lab vector of labels to the tickers found
in the ETFclean.txt file.

#ETFs:
dir <- "ETF"
start <- "2012-05-02"
end <- "2015-05-01"
len <- 754
daysPerYr = 252
isPlotInAdjCloses <- FALSE
isCacheEnabled <- TRUE
createDirs(dir,isSubDir=FALSE)
res <- readSubDirs(dir,isSubDir=FALSE)
D <- res[[1]]
lab <- res[[2]]
prices <- matrix(rep(NA,len*D),nrow=len,ncol=D)
library(tseries)
prices <- acquirePrices(prices,lab,len,D,D1,D2,

start=start,end=end,dir,isSubDir=FALSE)
sum(is.na(prices[1,]))
price1v <- ifelse(is.na(prices[1,]),-1000,prices[1,])
plot(price1v,col=4)

Once executed, this block of code will obtain the three years of prices and report on miss-
ing prices. Between one-third and one-quarter of the ETF tickers do not have obtainable
prices, as indicated by the following executed statements:

> sum(is.na(prices[1,]))
[1] 460
> price1v <- ifelse(is.na(prices[1,]),-1000,prices[1,])
> plot(price1v)

This is depicted in Figure 8.13 where, for display purposes, we have taken the liberty of
assigning −1000 to those tickers where the first price in prices[1,] are NA. The elim-
Syms() utility function, called in the code sequence below, will remove those tickers
with NA prices next, setting the stage for finding and checking the log return matrix,
R, and the covariance matrix in findCovMat() and checkCovMat() and, ultimately, prun-
ing the candidates by Sharpe Ratio. Figures 8.14 and 8.15 show the result of running
pruneBySharpe().

188 Markowitz Mean-Variance Optimization

0 500 1000 1500

−
10

00
0

10
00

20
00

30
00

40
00

50
00

Index

Figure 8.13 –1000 is assigned to ETF tickers with missing (NA) prices in order to depict the high density of
the missing data.

S
R

S
R

0 200 600
Index Index

1000

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0 200 600 1000

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Figure 8.14 Sharpe Ratios of the 1,193 ETFs with valid price quotes on the left. The sorted Sharpe Ratios are
on the right with the minimum threshold of 0.085 as the horizontal line.

res <- elimSyms(prices,lab,dir,isSubDir=FALSE)
prices <- res[[1]]
lab <- res[[2]]
sum(is.na(prices[1,]))==0 #assert there are no NA prices in first row
isSplitAdjusted <- TRUE
R <- findR(prices)

8.8 Case Study: Exchange-Traded Funds 189

0 20 40 60

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Index

VTVSDY

XLV

PFF

RSP
VYM

XLY

VCSH

IBB

XLP

VHT

USMV
PRFVOE

MINT

FXH

FBT

PKW

HYS

CWB

PGX

SCHD

BOND

VDC

FXG
IYH

PJP

IXJ

DON

PGF

DTNFVD

IHE
XPH

PWV
IYC

DHS

RPV
IHF

BIB

BSJF

IHI

BBH

RYH

JKD

FPXITA

PEYSPHQ

XTN

PBE

CSM

GSY

VONV

PPH

CURE

RTH
RWLKIERHSPBJ

PPA

DEF

JKITTFS

RXL

XHS
PSCHXAR

QQXT
PXLGPSL

IWL
IRY

UCC

KBWP

Figure 8.15 Mean log returns of the ETF candidates surviving the Sharpe Ratio filter. There are 76.

res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]
checkCovMat(cov_mat)
mufree <- 0
res <- pruneBySharpe(prices,lab,meanv,sdevv,.085)
prices <- res[[1]]
lab <- res[[2]]
sum(is.na(prices[1,]))

The remain steps leading to running the optimizer are as listed in the following code
sequence. A new covariance matrix based upon the pruned candidate list is needed, as
is a new R log return matrix.

R <- findR(prices)
res <- findCovMat(R)
meanv <- res[[1]]
cov_mat <- res[[2]]
diag_cov_mat <- res[[3]]
sdevv <- res[[4]]
R <- findR(prices)
sdevv <- isnaCheckCovMat(R)
checkDeterminant(prices,R,lab,isSubDir=FALSE)
isShorting <- FALSE
library(quadprog)
w <- opt(lab,meanv,cov_mat,isShorting)

190 Markowitz Mean-Variance Optimization

The covariance matrix needs to be checked for NA prices and for its determinant to
detect the PSD problem introduced in Section 8.3. Finally, the opt() optimizer function
is called and the plots in Figure 8.16 show that the optimal Sharpe Ratio is achieved
when the iteration index ranging from 1 to 100, i, is equal to 21. The next code block
plots the results of the optimizer run, depicted in Figure 8.17.

IWL IRY PXLC UCC

KBWP DRGS WEIGHTS,i = 100 SHARPE

MU

0 20 40 60 80−
1.

0
0.

0
1.

0

−
1.

0
0.

0
1.

0

−
1.

0
0.

0
1.

0

0.
00

0.
10

0.
00

0.
10

0.
00

0.
15

0.
0

0.
4

0.
8

−
0.

05
0.

10

0.
00

0.
15

0.
0

1.
0

2.
0

SD

0 20 40 60 80 0 20 40 60 80

0 20 40 60 80 0 20 40 60 80

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

0 20 40 60 800 20 40 60 80

Figure 8.16 Weight values from optimizer when run is 100 percent completed (i = 100). All current weights
are shown in the lower left-hand corner. On the SHARPE chart one can see the peak is when i =
21, as determined by the ind Boolean vector in the opt() routine.

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Index

VTVSDYXLVPFFRSPVYMXLYVCSHIBBXLPVHTUSMVPRFVOEMINTFXHFBTPKWHYSCWBPGXSCHD

BOND

VDC
FXG

IYH

PJP

IXJDONPGFDTNFVDIHEXPHPWVIYCDHSRPVIHFBIB

BSJF

IHIBBHRYHJKDFPXITAPEYSPHQXTNPBECSMGSYVONVPPHCURE
RTH
RWLKIERHSPBJPPADEFJKITTFSRXL

XHS

PSCH
XAR
QQXTPXLGPSLIWLIRYPXLCUCC

KBWPDRGS

Figure 8.17 Weight values for the surviving 78 tickers of the 1,681 ETFdb.com candidates. The nonzero
overlapping tickers in the lower-right corner are KBWP and DRGS.

8.8 Case Study: Exchange-Traded Funds 191

portv <- weightPortOOS(lab,len,D,w,
start=start,end=end,cached=c("BSJF"))

sp <- weightPortOOS(c('^GSPC'),len=len,1,c(1.0),
prices=NA,start=start,end=end)

par(mfrow=c(1,1))
plot(meanv,col=4,cex=0)
text(meanv,lab,cex=1,col=4)

plot(portv,type="l",ylim=c(.5,1.9),
main="",xlab="days")

lines(sp,type="l",col="green")
par(mfrow=c(1,1))
maxw = max(w+.025)
plot(w,ylim=c(0.01,maxw),col=4)
text(w,lab,cex=1,pos=3,col=4)
writeWeights()

To see the tickers and their weights which were favored by the optimizer, we can write
a simple R expression:

> t(cbind(lab[w > 0],w[w > 0]))
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] "BOND" "FXG" "PJP" "PGF" "BSJF" "PPH"
[2,] "0.565" "0.026" "0.079" "0.005" "0.141" "0.006"

[,7] [,8] [,9] [,10] [,11]
[1,] "RTH" "XHS" "XAR" "UCC" "KBWP"
[2,] "0.018" "0.069" "0.029" "0.003" "0.058"

We see the BOND ticker being quite dominant at 56.5 percent and suspect that the opti-
mizer may have been seduced into putting all it eggs into that basket by the data. A
good way to see what is going on is to bring back our visualization function, plotMult-
Series(), which was introduced in Figure 4.9 and listed in Section 4.8. Putting together
a brief exploratory code block, we have

displayCharts(prices,lab,nrow=3,ncol=4,sleepSecs=2)
interestingIdxs <- c(1,2,11,23,27,41)
p <- length(interestingIdxs)
lab[interestingIdxs]
meanv[interestingIdxs]
sdevv[interestingIdxs]
justLab <- c(lab[interestingIdxs],'^GSPC')
sAndPprices <- getHistPrices(c('^GSPC'),c(1.0),len,

start=start,end=end)
justPrices <- cbind(prices[,interestingIdxs],sAndPprices)
p <- p + 1
plotMultSeries(justPrices,justLab,rep(1/p,p),p,ylim=c(.9,2.8))

the output of which is displayed in Figure 8.18 and in the output block below. In the
figure, BOND and BSJF are shown at the bottom, and we can see in the R output below
that separating the mean and standard deviation, the components of the Sharpe Ratio,

192 Markowitz Mean-Variance Optimization

0 200 400 600

1.
0

1.
5

2.
0

2.
5

Days

VTV

SDY

VHT

BOND

PJP

BSJF

^GSPC

Figure 8.18 For return, we prefer the ETFs plotted in the top four price series which have more bullish and
not as smooth charts as compared to our two optimizer-favored ETFs, BOND and BSJF, which
appear as the bottom price series. The period is May 2012 to May 2015.

reveals that BOND and BSJF have a much lower mean return, less than 2 percent for
three years, which disqualifies them from candidacy from a simply common-sense rule
of thumb. Figure 8.18 makes us believe that they got into the recommended portfolio on
their good “defense,” low volatility, rather than their weak “offense.”

> lab[interestingIdxs]
[1] "VTV" "SDY" "VHT" "BOND" "PJP" "BSJF"
> meanv[interestingIdxs]
[1] 0.06314663 0.05890903 0.09524277 0.01882325 0.12179788 0.01863257
> sdevv[interestingIdxs]
[1] 0.7362232 0.6921851 0.8373464 0.2192034 1.0193671 0.1786221

Figure 8.19 shows us that the “optimized” portfolio performance does not beat the
benchmark in sample. With BOND at over 50 percent of the portfolio and a very low
return, the portfolio will not beat the S&P 500 Index. This analysis shows us how much
we must pay attention to the data. When moving to a new type of dataset, ETFs, we
cannot simply turn the algorithmic crank and expect to get an optimized portfolio in the
sense we are expecting! Exchange-Traded Funds present different historical time series
than our stocks did.

We can prepend these names to the badsyms.txt file to exclude them from candidacy.
Doing this reveals that VCSH is also in this camp of low return with low volatility where
the optimizer favors that, so they are prepended to that file as well.

With stocks, the prices are subject to noisy and idocratic nature of the live equities
market. An ETF, being a portfolio, can have a rather smooth price series. Our approach
is based on the Sharpe Ratio for both the filtering threshold step and the optimization

8.8 Case Study: Exchange-Traded Funds 193

0 200 400 600

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Days

Figure 8.19 Portfolio gross return of ETF portfolio which (includes BOND and BSJF) plotted against the
S&P 500 Index. The ETF portfolio has a lower gross return and appears in a darker color. The
period is May 2012 to May 2015.

0 10 20 30 40 50 60 70

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Index

VTVSDYXLVPFFRSPVYMXLYIBBXLPVHTUSMVPRFVOEMINTFXHFBTPKWHYSCWB

PGX

SCHDVDCFXGIYH

PJP

IXJDON

PGF

DTNFVDIHEXPHPWVIYCDHSRPVIHF IHIBIBBBHRYHJKDFPXITAPEYSPHQXTNPBECSMGSYVONV

PPH

CURE
RTH
RWLKIE

RHS

PBJPPADEFJKITTFSRXL

XHS

PSCH

XAR

QQXTPXLGPSLIWLIRYUCC

KBWP

Figure 8.20 These are weight values after eliminating the four smoothest, low return and low volatility ETF
tickers. This revised portfolio is more balanced.

step criterion. So ETFs with very low volatility can sneak by with correspondingly low
mean return, which is not exactly desired in a bullish strategy. Using the elimSyms()
function to exclude BOND, BSJF, and VCSH from being selected, we have the revised
weights depicted in Figure 8.20, where ten of the now 73 candidates with high Sharpe
Ratios are favored with a nonzero weight. This result is reasonably balanced. Figure 8.21

194 Markowitz Mean-Variance Optimization

0 200 400 600

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

days

po
rt

v

Figure 8.21 Revised ETF portfolio compared to the S&P 500 Index. The ETF portfolio is the upper line. The
period is May 2012 to May 2015.

compares the performance of the ten ETF portfolio to the S&P 500 Index for the same
time period. The numeric new portfolio weights per ticker appear below.

> t(cbind(lab[w > 0],w[w > 0]))
[,1] [,2] [,3] [,4] [,5]

[1,] "PGX" "FXG" "PJP" "PGF" "PPH"
[2,] "0.258" "0.004" "0.163" "0.155" "0.033"

[,6] [,7] [,8] [,9] [,10]
[1,] "RTH" "RHS" "XHS" "XAR" "KBWP"
[2,] "0.009" "0.063" "0.114" "0.046" "0.154"

From Figure 8.21 we can see that the revised portfolio beats the S&P 500 Index. Due
to lack of historical prices for many ETFs, we only measure the performance in the
sample.

> portv[len]
[1] 1.704891
> sp[len]
[1] 1.503441
> portv[len]-sp[len]
[1] 0.2014501

Measuring the difference in return over the three-year period reveals that the revised
ETF portfolio return is 23.4 percent more than the benchmark.

We could regard the removal of poor-performing securities BOND, BSJF, and VCSH
as over-fitting or tampering with rules. Any time we have undesirable results, however,
we need to examine the rules to see if they still make sense. ETFs are a “different ani-
mal” from our individual names from before. Our Sharpe ratio filter, as implemented in

8.9 Exercises 195

pruneBySharpe(), apparently is not enough to work well with ETF candidates. We never
screened the candidates for mean log return. So in the exercises, we propose trying this
out with a new utility function, pruneByMean().

So, in summary, when the price data is properly preprocessed, this iterative develop-
ment process described here, including the QP algorithm, is an effective data mining
approach. Consider that many data mining algorithms, including PageRank, created by
Sergey Brin and Larry Page (Brin and Page, 1998), and supervised machine learning
algorithms, including Classification and Regression Trees (CART) (Breiman, Friedman,
Olshen, and Stone, 1984), are optimization algorithms. The goal of CART and related
techniques is to minimize the difference between the values of the predicted response
variables and the values of the actual response variables. Quadratic Programming is an
optimization algorithm as well, so, due to similarity, can be considered a form of data
mining. It can be applied to hundreds of candidate stocks with the dataset and, using
the rules of Markowitz selection, the output is a select few best performers. With less
advanced automation technology, it would be nearly impossible to review 452 stock
charts and 568,616 adjusted closing prices and predict how to optimally weight the
entries of the portfolio. But this high-dimensional optimization algorithm, as imple-
mented with R packages and custom R code, makes the analysis feasible. In a related
work to this chapter, an interesting set of results comes from a project with a variation to
the initial Sharpe Ratio qualification step and individual limits on the optimizer weights
(Benedict, Brewer, and Haddad, 2015).

8.9 Exercises

8.1. Examine the code of section 8.1. Write a one line R expression that evaluates to the
value of wd for the best shape ratio of the (wd, we) portfolio.

For each case, below, the objective is to obtain a resulting weight file, prefixed by res,
by piecing together the code sequence of Figure 8.5 and running it to completion. The
optimizer, opt(), is the key step in the process.

8.2. Optimizing for Surviving Stocks of the S&P 500 Index
Create a sub-directory called huge under the FinAnaytics directory on your com-
puter if one does not already exist. This directory is used when the resulting weight
file needs to be emitted. For the case that we use the R huge package, all the
ticker symbols and prices are already loaded when the package is loaded using:
library(huge). stockdata is the data frame for computing D and len and con-
taining the necessary vectors: prices and lab. Locate in the book the code which
loads these elements assuming isHugeData == TRUE. There is no need to create
sub-directories or cache files. However, the prices are supplied unadjusted for stock
splits. Use the code sequence to call splitAdjust() via the call to findR() (which com-
putes log returns), making sure that isSplitAdjusted is set to FALSE beforehand, to
adjust the prices.

8.3. Optimizing for Thousands of Candidate Stocks from 2008 to 2014

196 Markowitz Mean-Variance Optimization

Create a sub-directory called MVO6 under the FinAnalytics directory on your com-
puter if one does not already exist. Under the huge directory, create NYSE and
NASDAQ sub-directories. Locate the NYSEclean.txt and NASDAQclean.txt files on
the book web site. Place those files into the NYSE and NASDAQ sub-directories,
respectively. Use the code in Chapter 8 to download from the internet and create
cache files or, if this was already done, read from cache files to acquire prices for
the securities in the files NYSEclean.txt and NASDAQclean.txt. There should be
approximately 2,200 symbols in each of these files. Use start <- “2008-02-14”; end
<- “2014-02-14”.

8.4. Optimizing for Exchange-Traded Funds
Create a sub-directory called ETF under the FinAnalytics directory if one does not
already exist. In the case of ETFs there is no need for sub-directories under the
ETF directory. Obtain the ETFclean.txt ticker symbol file from the book web site.
There should be 1,681 symbols in the file. Place the ETFclean.txt file into the ETF
directory. Use start <- “2012-05-02”; end <- “2015-05-01”.
(a) Run the initialization code, which comprises everything after the #ETFs: com-

ment, appearing in section 8.8 or from the book web site. Run the optimizer
and display your weights of each ticker in the resulting weighted portfolio.

(b) As discussed in Section 8.8, before pruning by Sharpe ratio, write a function
called pruneByMean(prices,lab,meanv,threshMean) which prunes the security
candidate list based upon a mean log return threshold. Include pruneByMean()
in the screening process prior to pruneBySharpe() choosing your own threshold
to qualify a reasonable number of candidates. Perform another optimizer run in
the ETF directory. Report the weights of each ticker in the resulting portfolio.

8.5. Optimizing for Best Income Statement Sharpe Ratio Stocks (Difficult)
Refer to Chapter 7’s four categories (Income Growth, Net; Total Revenue Growth;
Gross Profit Growth; Diluted Normalized Earning per Share Growth) and perform
an optimizer run after setting up a two-level directory called TopISSR (with NYSE
and NASDAQ sub-directories below it). This is an entirely new type of run for
the optimizer, so original new code will be necessary. It should be based upon
the same process, but use the Income Statement Sharpe Ratio (ISSR) rather than
pruneBySharpe(). You can call your new selection function pruneByISSR(). What
are the necessary arguments to pruneByISSR()? Report on what you expect your
return to be for the portfolio, in-sample and out-of-sample. Chapter 8 has a useful
function, weightPortOOS(), to help answer this question; use this function to obtain
prices for out-of-sample runs. Use start <- “2011-02-09”; end <- “2015-02-09”.

9 Cluster Analysis

Associations can be formed when like entities are grouped together into clusters. In
high schools, during teenage learning years, clusters of the personalities are formed
with students being classified into the “brains,” the “jocks,” and the “artists,” for exam-
ple. This personality model is simple in order to keep learning about the characteristics
limited and tractable. As one grows past high school, one realizes just how simple the
classification was.

Clustering is also useful for computer programs and is used extensively in the
machine learning domain. Experiments have been reported that have attempted using
Support Vector Machines (SVM) to analyze price and volume patterns in order to
determine market direction as well as using undirected graphs to represent the depen-
dence and clustering of hundreds of equity securities (as random variables) based upon
co-movement (Ullrich, Seese, and Chalup, 2007; Fletcher, 2012; Fletcher, Hussain, and
Shawe-Taylor, 2010).

Unlike the SVM studies, which intend to learn trading signals from the data, the
undirected graph studies involve a less ambitious goal. Undirected graphs of mutually
stochastically dependent market random variables are learned from time series training
data from the market for each security, captured in the same trading time window. The
graph contains an edge from a vertex, representing a security, to another edge, when
sufficient co-movement exists.

When looking at the machine-learned structures as undirected graphs, the edges
between vertices appear surprisingly close to our market intuition in that stocks in the
same sector often move similarly.

9.1 K-Means Clustering

K-means aims to partition m observations (x1, . . . , xn), where each observation is
a p-dimensional real vector, into k ≤ p cluster sets {C1, . . . , Ck} with means
{m̄1, . . . , m̄k}, such that

argmin
C

k∑
i=1

∑
x∈Ci

||x − m̄i||2, (9.1)

where m̄i is the mean of the points in Ci (MacQueen, 1967; Ledolter, 2013).
In the case of our portfolio of Section 8.5, we have p security price time series of

length N observations, S of size N × p, where N = d × y and y = 6 is the number
of observed years and d is the number of trading days per year, typically 252. We will

198 Cluster Analysis

partition our y year time series into annual sample means M̄l,j of log returns into a 6 × p
matrix M̄:

M̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M̄1,1 M̄1,2 . . . M̄1,p

M̄2,1 M̄2,2 . . . M̄2,p

M̄3,1 M̄3,2 . . . M̄3,p

M̄4,1 M̄4,2 . . . M̄4,p

M̄5,1 M̄5,2 . . . M̄5,p

M̄6,1 M̄6,2 . . . M̄6,p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9.2)

M̄ summarizes the matrix R where, once again, we assume that R contains log returns
from price series Ri,j = ln(Si,j/Si−1,j). The y × p matrix M̄ = (M̄1, . . . , M̄p) and

M̄l,j = 1

d − 1

l×d∑
i=2+(l−1)×d

ln(Si,j/Si−1,j) = 1

d − 1

l×d∑
i=2+(l−1)×d

Ri,j. (9.3)

26 stocks were selected by using historical prices from 2003 to 2008. Let’s see how
they perform out-of-sample moving time forward into the 2008 to 2014 markets. This
upcoming function, findRecentHugePrices() will read in our portfolio ticker symbols
and their respective weights from a file which was the output of an in-sample simulation
using opt() from Chapter 8, and then look up more recent out-of-sample prices in the
FinAnalytics/MVO6 directory in the user file system.

daysPerYr = 252
D <- NA

findRecentHugePrices <- function(dir,portFile) {
#Take portfolio from portFile and find recent prices in cache.
#Side effects Lab, W, D, len
setwd(paste(homeuser,"/FinAnalytics/",dir,"/",sep=""))
df <- read.csv(portFile)
lab <<- df[,2] #lab[2] is no longer expected to be FBMI
w <<- df[,3]
indw <- (w > 0)
lab <- lab[indw]
w <- w[indw]
D <- length(lab)
len <<- daysPerYr*6
prices = matrix(rep(NA,len*D),nrow=len,ncol=D)
#We have cache 2008 to 2014 prices in MVO6 dir
dir = 'MVO6'
d = 1
for(l in lab) {

fileName = paste('cached',l,'.csv',sep='')
for(subdir in c('NYSE','NASDAQ')) {

setwd(paste(homeuser,"/FinAnalytics/",dir,'/',
subdir,sep=''))

if(file.exists(fileName))
break

}

9.1 K-Means Clustering 199

print(fileName)
prices[,d] = read.csv(fileName,header=TRUE,

sep='')[,1]
d = d + 1

}
#Validation of prices exist
for(d in 1:D)

if(is.na(prices[1,d]))
stop(lab[d])

plotMultSeries(prices,lab,w,D,ylim=c(.7,13))
return(prices)

}
#This fails:
prices <- findRecentHugePrices('huge','resD26QP1Days1258.csv')
#This fails:
prices <- findRecentHugePrices('huge','resD25Days1258woTIE.csv')
#success:
prices <- findRecentHugePrices('huge','rebalresD24Days1258.csv')
R <- findR(prices)

This function reaches into the two sub-directories for the cached prices for 2008 to 2014
and attempts to find the prices for the portfolio securities. The last three executable lines
are three attempts. Upon running them, we find that the first encounters problems:

...
[1] "cachedTSO.csv"
[1] "cachedGME.csv"
[1] "cachedTIE.csv"
Error in file(file, "rt") :...
cannot open file 'cachedTIE.csv':...

>

We discover after some searching on the internet that Titanium Metals Corp (NYSE:
TIE) was purchased by Precision Castparts Corp (NYSE: PCP) in 2013. So we mod-
ify the file to remove TIE and rerun findRecentHugePrices() with the new file named
resD25Days1258woTIE.csv to see if it will succeed. It does not succeed.

> prices <- findRecentHugePrices('resD25Days1258woTIE.csv')
...
[1] "cachedRAI.csv"
[1] "cachedWYNN.csv"
[1] "cachedCVH.csv"
Error in file(file, "rt") :...
cannot open file 'cachedCVH.csv':...

>

Even though CVH is in our portfolio, no cache file exists for it. Prices for our date
range are not fully available for TIE and CVH. See Section 4.7 for more detail on these
merger events. Since it is a small percentage of our portfolio, we decide to use the

200 Cluster Analysis

Figure 9.1 Plot of the six years of prices, 2008 to 2014, for the updated portfolio, out-of-sample, where
p = 24 now. TIE and CVH have been eliminated.

utility function adjustForMergers(), provided in Chapter 4, to rebalance our portfolio,
removing TIE and CVH, among p = 24 stocks now. Our third attempt, using rebal-
resD24Days1258.csv, is successful. Here are dimensions of the key market data matrix:

> dim(prices)
[1] 1512 24

Since findRecentHugePrices() calls plotMultSeries() let’s take the opportunity to look
at the output it produces, shown in Figure 9.1. Our first observation is that PCLN has
an amazing chart over this time period. AAPL, CERN, and WYNN have good price
appreciation as well.

For the first round of k-means clustering, we look exclusively at the annual mean of
the log return. To fit the k-means approach we take the transpose of M̄, which is M̄T , a
24 × 6 matrix. This provides the m = 6 vectors (x1, x2, x3, x4, x5, x6) for the k-means
algorithm. Cases k = 2, 3, 4, 5 are considered. The following two code segments assume
that there are m = 6 years of p = 24 stocks prices, the prices[] matrix of size 1512×24.
Firstly, we have the function findMeanForYrs which coalesces the log returns according
to Formula 7.3.

library(stats)
#K-means clustering
findMeanForYrs <- function(prices) {

D <- dim(prices)[2]
R <- findR(prices)
meanLogRet <- matrix(nrow=6,ncol=D)
for(j in 1:D) { #security j

R[,j] = 100*diff(log(prices[,j]))
for(l in 1:6) { #year l

meanLogRet[l,j] = 1/(daysPerYr-1)*
sum(R[(2+(l-1)*daysPerYr-1):(l*daysPerYr-1),j])

}

9.1 K-Means Clustering 201

}
meanLogRet

}
meanLogRet <- findMeanForYrs(prices)

Now the straight line code sequence below will augment the meanLogRet matrix with
proper columns and row names and run the R stats package kmeans() function four
times.

meanLogRet <- findMeanForYrs(prices)
colnames(meanLogRet) <- lab
rownames(meanLogRet) <- c(2008,2009,2010,

2011,2012,2013)
round(meanLogRet[,1:4],4) #sample first 4
meanLogRetT = t(meanLogRet)

round(meanLogRetT[1:4,],2)

In the output below, we can see the first five rows of M̄T matrix and the results of
running the kmeans() R function.

> round(meanLogRetT[1:4,],2)
2008 2009 2010 2011 2012 2013

CME -0.39 0.18 0.02 -0.01 0.03 0.13
AAPL -0.10 0.28 0.22 0.13 -0.03 0.08
MON -0.14 -0.01 0.00 0.02 0.12 0.03
MCD 0.02 0.06 0.08 0.12 -0.01 0.02

In the first column above we can certainly see the low log returns for the first three
stocks. Our code sequence below goes from k = 2 to k = 5 with the output sorted by
the cluster number:

> set.seed(1) #This kmeans call is based upon mean log ret by year
> grpMeanLogRet2 <- kmeans(meanLogRetT, centers=2, nstart=10)
> sort(grpMeanLogRet2$cluster)
CME AAPL PCP BLK ISRG WMB WYNN CERN PCLN MON MCD TSO GME

1 1 1 1 1 1 1 1 1 2 2 2 2
LH BCR AMT HUM EIX SWN ESRX RRC DVA RAI AET
2 2 2 2 2 2 2 2 2 2 2

> grpMeanLogRet3 <- kmeans(meanLogRetT, centers=3, nstart=10)
> sort(grpMeanLogRet3$cluster)
CME ISRG WMB WYNN MON MCD TSO GME LH BCR HUM EIX SWN

1 1 1 1 2 2 2 2 2 2 2 2 2
RRC DVA AET AAPL PCP AMT BLK ESRX RAI CERN PCLN

2 2 2 3 3 3 3 3 3 3 3
> grpMeanLogRet4 <- kmeans(meanLogRetT, centers=4, nstart=10)
> sort(grpMeanLogRet4$cluster)
MON MCD GME LH BCR AMT HUM EIX SWN ESRX RRC DVA RAI

1 1 1 1 1 1 1 1 1 1 1 1 1
AET CME PCP BLK ISRG WMB WYNN TSO AAPL CERN PCLN

1 2 2 2 2 2 2 3 4 4 4

202 Cluster Analysis

Below are the accumulated log returns for AAPL and PCLN. We can understand how
PCLN and AAPL would appear in the same cluster above, number 4, when we see the
cumulative log returns for the five years which are quite high by stock market standards,
59 percent and 99 percent!

> round(meanLogRetT[match('AAPL',lab),],2)
2008 2009 2010 2011 2012 2013

-0.10 0.28 0.22 0.13 -0.03 0.08
> sum(meanLogRetT[match('AAPL',lab),])
[1] 0.5860594
> round(meanLogRetT[match('PCLN',lab),],2)
2008 2009 2010 2011 2012 2013

-0.14 0.42 0.31 0.09 0.08 0.24
> sum(meanLogRetT[match('PCLN',lab),])
[1] 0.9943923

Below is the five-means resulting grouping.

> grpMeanLogRet5 <- kmeans(meanLogRetT, centers=5, nstart=10)
> sort(grpMeanLogRet5$cluster)
ISRG CME WMB WYNN TSO AAPL PCP AMT BLK ESRX RAI CERN PCLN

1 2 2 2 3 4 4 4 4 4 4 4 4
MON MCD GME LH BCR HUM EIX SWN RRC DVA AET

5 5 5 5 5 5 5 5 5 5 5

Now we consider the log returns of the entire time series in terms of the mean and
standard deviation. The standard deviation can be found from the diagonal entries of
the covariance matrix. Once the data frame is put together, plot() and text() display the
five clusters as in Figure 9.2 where securities closer to the upper left-hand corner have
a better Sharpe Ratio. All of these securities have a Sharpe Ratio for this sample of less
than 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7−
0.

05
0.

05
0.

15
0.

25

vol

av
g

re
t

CME

AAPL

MON

MCD

TSO

GME

PCP

LH

BCR

AMT
BLK
ISRGHUM

EIX
SWN

ESRX

WMB
RRC

DVA
RAI

WYNN

CERN

PCLN

AET

Figure 9.2 Five clusters based upon mean and standard deviation of six-year log returns.

9.1 K-Means Clustering 203

#Now use entire time series mean and sd
R <- findR(prices)
cov_mat = cov(R/100)
mean_vect = apply(R,2,mean)
diag_cov_mat = diag(cov_mat)
sd_vect = sqrt(diag_cov_mat)*sqrt(daysPerYr)

meanLogRetVolByStockDF <-
data.frame(ticker=colnames(meanLogRet),
mean=mean_vect, sdev=sd_vect)

meanLogRetVolByStockDF[1:5,]
set.seed(1) #This kmeans call is based on mean log ret and vol
grpMeanLogRetVol <-

kmeans(meanLogRetVolByStockDF[,c("mean","sdev")],
centers=5, nstart=10)

o = order(grpMeanLogRetVol$cluster)
data.frame(meanLogRetVolByStockDF$ticker[o],

grpMeanLogRetVol$cluster[o])

Three plot statements are required to spot the positions, place the text and mark the
circle around the means.

par(mfrow=c(1,1))
plotMeans <- function(x,y,tickers,cluster,

centers) {
par(mar=c(4,4,2.82,2.82))
plot(x,y,type='n',

xlim=c(0.1,.75),ylim=c(-.04,.24),
ylab="avg ret",xlab="vol")

text(x,y,labels=tickers,
col=(cluster+1),cex=.55)

points(centers[,2],centers[,1],cex=6.0,col=4)
lines(x=c(.1,.25),y=c(.1,.25))

}
plotMeans(meanLogRetVolByStockDF$sdev,

meanLogRetVolByStockDF$mean,
meanLogRetVolByStockDF$ticker,
grpMeanLogRetVol$cluster,
grpMeanLogRetVol$centers)

Figure 9.1 is organized as if it came from a mean-variance analysis like those of
Chapter 8. The desired location to reside in the plot is the upper-left corner where return
is high and risk is low. Of course that is the ideal stock characteristic. None of the
involved securities appears in that quadrant. The ticker, MCD, appears to be the closest
to the 45-degree line.

Clustering via k-means groups similar securities based upon their return and volatil-
ity. It is sometimes the case that once a portfolio is suggested, particular securities
should not be purchased due to already existing positions or for compliance reasons.

204 Cluster Analysis

Alternative securities which approximate the originate candidate’s price behavior can
be found.

9.2 Dissecting the K-Means Algorithm

Clustering like items with the k-means algorithm is a form of optimization: finding the
placement of the means such that the total distance between the clustered items and the
means is minimal. The algorithm originally was published as a FORTRAN program
in 1979 by Hartigan and Wong (1979). The mystery behind the k-means algorithm is
revealed in the detailed treatment by Ledolter (2013).

We first discuss the distance measure. 2 distance is the direct route “as the crow
flies” which involves computing the diagonal of a right triangle. In the problems of
these sections, the items are two-dimensional: means are for one dimension and standard
deviation for the other. From the Pythagorean Theorem, we know that

d(x1, x2) =
√

x2
1 + x2

2

and the code for this is below.

l2dist <- function(x,y) {
sqrt((x[1]-y[1])^2 + (x[2]-y[2])^ 2)

}
#unit test
l2dist(c(3,4),c(0,0)) == 5

There is a simple unit test case of the 3, 4, 5 right triangle after the l2dist() function
which should evaluate to TRUE.

There are three basic steps to the algorithm. The iteration time step is t.

• Initialization: Randomly choose k items as cluster means themselves, then proceed to
the update step for the first iteration.

• Assignment: Iterate through each item xi and assign it to a cluster Cj(t) with the
closest mean m̄j so that the distance is minimized.

Cj(t) = {
xi : |xi − m̄j(t)| ≤ |xi − m̄j∗(t)| for all j∗ ∈ {1, . . . , k}} . (9.4)

• Update: From the clusters that have been created in the assignment step, calculate k
new means as the centroids of the items in each cluster. The summation and divisor
is simply the arithmetic mean.

m̄j(t + 1) =
∑

xj∈Cj(t) xi

|Cj(t)| . (9.5)

Now we see the R code for these three main steps as initial setup of p, the number of
securities, and k, the number of clusters, the data frame which contains the means and
standard deviation of the log returns for the stocks.

9.2 Dissecting the K-Means Algorithm 205

p = dim(meanLogRetVolByStockDF)[1]
k = 5
logRetVolWMeanDistDF <- data.frame(

as.character(meanLogRetVolByStockDF[,1]),
meanLogRetVolByStockDF[,2],
meanLogRetVolByStockDF[,3],
rep(0,p))

colnames(logRetVolWMeanDistDF) <-
c("ticker","mean","sdev","jthMeanIdx")

logRetVolWMeanDistDF

The initialization occurs firstly, seen below. The initial cluster means are k randomly
chosen items from the set of p items x1, . . . , xp using sample().

#Initial: Randomly choose k units as cluster means first
set.seed(46510)
idxs <- sample(1:p, k)
clusterMeans <- matrix(

c(meanLogRetVolByStockDF[idxs,2],
meanLogRetVolByStockDF[idxs,3],
idxs),nrow=5,ncol=3)

clusterMeans
newStepClusterMeans <- matrix(clusterMeans,

nrow=5,ncol=3) #clone initially
par(mfrow=c(4,1))

Then we introduce our function, kmeansSteps(), which contains our iterative steps. For
our purposes with our current stock example, four iterations is enough, but, in general,
it is best to loop until convergence is detected. We exclude (via stop) the case when
initialization does not assign any items to one of the k clusters for simplicity in this
introductory-level code block.

kmeansSteps <- function() {
for(t in 1:4) {

if(sum(is.na(clusterMeans)) > 1) stop

Below is the assignment step, described above in Formula 9.4. Loop through all p
securities, consider the distance d() to each of the k means and record the distance in
clusterMeans. We do this on every step except for when t = 1.

#Assignment step:
if(t > 1)

for(i in 1:p) {#find closest mean for i-th ticker
min_l2dist <- 1e6 #start off w/infinity
for(j in 1:k) {

x1 <- logRetVolWMeanDistDF[i,2]
x2 <- logRetVolWMeanDistDF[i,3]
x <- c(x1,x2)
m <- clusterMeans[j,1:2]

206 Cluster Analysis

l2dist_x_m <- l2dist(x,m)
if(l2dist_x_m <= min_l2dist) {

min_l2dist <- l2dist_x_m
best_j <- j

}
}
logRetVolWMeanDistDF[i,4] <- best_j

}
else

logRetVolWMeanDistDF[,4] <- sample(1:k, p, replace=TRUE)
print(t(logRetVolWMeanDistDF[,c(1,4)]))

The update step appears below. The x1 and x2 coordinate cluster means are found for all
j ≤ k clusters and then placed into the appropriate matrix.

#Update step:
for(j in 1:k) {

print(paste("update step j =",j))
x1ClusterMean <- mean(

logRetVolWMeanDistDF[logRetVolWMeanDistDF$jthMeanIdx==j,2])
x2ClusterMean <- mean(

logRetVolWMeanDistDF[logRetVolWMeanDistDF$jthMeanIdx==j,3])
newStepClusterMeans[j,1:2] <-

c(x1ClusterMean,x2ClusterMean)
newStepClusterMeans[j,3] <- TRUE #not needed now

}

The next block of instructions keep the user informed about the status of the itera-
tion. The third and fourth statement display the former and new cluster means where the
former is a faint gray color (col=8). Finally we have in the clusterMeans and newClus-
terMeans two matrices which could be compared with the small threshold to find out if
convergence has occurred.

print(newStepClusterMeans)
plotMeans(logRetVolWMeanDistDF$sdev,

logRetVolWMeanDistDF$mean,
logRetVolWMeanDistDF$ticker,
logRetVolWMeanDistDF$jthMeanIdx,
newStepClusterMeans)

points(clusterMeans[,1]~
clusterMeans[,2],cex=9,col=8)

points(newStepClusterMeans[,1]~
newStepClusterMeans[,2],cex=9,col=9)

clusterMeans <- newStepClusterMeans
}

}
kmeansSteps()

Figure 9.3 depicts the time sequence of movements of the clusters as they are refined
by the algorithm. In our Figure 9.2, we depicted the cluster as a circle. In Figure 9.3 we
continue this, but the code appearing above will encircle those circles with larger circles

9.2 Dissecting the K-Means Algorithm 207

0.
00

0.
15

av
g

re
t

0.
00

0.
15

av
g

re
t

0.
00

0.
15

av
g

re
t

CME

AAPL

MON

MCD
TSOGME

PCP

LH
BCR

AMT
BLK
ISRGHUM

EIX SWN

ESRX WMB

RRC

DVA
RAI

WYNN

CERN

PCLN

AET

0.1 0.3 0.5 0.7

vol

0.1 0.3 0.5 0.7

vol

0.
00

0.
15

av
g

re
t

0.1 0.3 0.5 0.7

vol

0.1 0.3 0.5 0.7

vol

CME

AAPL

MON

MCD
TSOGME

PCP

LH
BCR

AMT
BLK
ISRGHUM

EIX SWN

ESRX WMB

RRC

DVA
RAI

WYNN

CERN

PCLN

AET

CME

AAPL

MON

MCD
TSOGME

PCP

LH
BCR

AMT
BLK
ISRGHUM

EIX SWN

ESRX WMB

RRC

DVA
RAI

WYNN

CERN

PCLN

AET

CME

AAPL

MON

MCD
TSOGME

PCP

LH
BCR

AMT
BLK
ISRGHUM

EIX SWN

ESRX WMB

RRC

DVA
RAI

WYNN

CERN

PCLN

AET

Figure 9.3 Movement of the cluster means for each step of our version of the k-means algorithm. The first
plot shows initial random assignment and confusion. This is followed by three corrective steps.
Light circles show former positions.

208 Cluster Analysis

to highlight spreading out from their initial configuration to the final configuration. The
number of required iterations before the k cluster means, m̄j(t), and k new cluster means,
m̄j(t + 1), are close enough to stop varies, depending on k and p.

Clustering securities in the volatility and average return dimensions groups securities
with similar market behavior together. Investment preferences can be personal choices.
If one likes the market behavior of the stock MON, then one may also be interested
in similar behaving stocks in the same k-means cluster. K-means clustering provides
recommendations of alternative securities like a recommender system would (Bystrom,
2013).

Having focused on the p dimensional case of clustering with respect to mean return
and volatility where the x axis is volatility and the y axis is mean return, we now turn
our attention to clustering with respect to covariance in p dimensions. We will be using
a discrete structure called an undirected graph.

9.3 Sparsity and Connectedness of Undirected Graphs

Up to now, only the mean return and volatility has been considered for clustering. Now
we begin to look at covariance. Gaussian Graphical Models (GGMs) are based upon the
multivariate normal distribution, presented in the Appendix. The key parameter studied
is �, the covariance matrix.

In order to examine a portfolio from a co-movement perspective, undirected graphs
are quite useful. They are a way of organizing the relationships of random variables
which correspond to the log returns of the individual stock price time series. If we
have four hypothetical stocks, with ticker symbols W, X, Y, and Z, which may or
may not move together, we can use a four-vertex graph to visualize the relationships.
While this is a small graph, the clusters within small or large graphs of this type can be
used for finding comovement among stocks which behave similarly in the same market
conditions.

Undirected graphs can be represented by adjacency matrices. In a graph’s adjacency
matrix, A, we have a nonzero entry, Ai,j if there is an edge between nodes i and j in
the graph. Figure 9.4 shows a simple undirected graph where the rows and columns
represent the nodes, W, X, Y, and Z. One possible adjacency matrix, where the nonzero
entries are 1, is:

A =

⎛
⎜⎜⎝

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

⎞
⎟⎟⎠ . (9.6)

Note that we do not consider a node i adjacent to itself as a convention so zeroes appear
on the diagonal. The density of a graph, δ, can be found from the adjacency matrix by
summing the total number of edges and dividing by the number of possible edges. The
number of possible edges in a graph with p vertices is p(p − 1)/2.

According to Portfolio Theory, investors are interested in portfolios with less
comovement among the securities. Therefore, we desire graphs which are sparse, less

9.3 Sparsity and Connectedness of Undirected Graphs 209

X

Z

Y

W

Figure 9.4 Simple undirected graph for four-dimensional adjacency matrix A.

connected, and less dense, in terms of the number of edges per vertex. These will be
graphs with fewer clusters. This can be easily found from adjacency matrix A which has
p × p dimensions:

δ = #actual edges

#possible edges
=

∑p
i=1

∑j<i
j=1 Ai,j

p(p − 1)/2
and ψ = 1 − δ. (9.7)

The ratio in the equation is the density. The sparsity, ψ , is defined to be one minus the
density. For example, for our simple graph of Figure 9.4, ψ = 1 − 5/6 = 1/6. Our
ideal independent movement market graph which the MVO algorithm is trying to find
would have a density of 0 and a sparsity of 1. This is a graph with no edges and complete
independence of the returns corresponding to the market random variables at each node.
The worse possible graph would have a density of 1 and a sparsity of 0 from a variance
optimization viewpoint. Under this measure, the adjacency matrix for W, X, Y, and Z
with sparsity 1

6 is just slightly more sparse than the worst case of 0.
Here is R code which will compute the sparsity using a graph’s adjacency matrix.

computeSparsity <- function(A) {
dimA = dim(A)
if(dimA[1] == dimA[2]) {

sumedges = 0
p = dimA[1]
for(i in 1:p)

if(i > 1)
for(j in 1:(i-1))

sumedges = sumedges + A[i,j]
} else return(NA)
return(1-sumedges/((p*(p-1)/2)))

}
cells = c(0,0,1,1,

0,0,1,1,
1,1,0,1,
1,1,1,0)

A = matrix(cells,nrow=4,ncol=4)
computeSparsity(A)
...
> computeSparsity(A)

210 Cluster Analysis

[1] 0.1666667
> 1-computeSparsity(A) #density
[1] 0.8333333

A well-known metric, local cluster coefficient, is very common for measuring the
degree of connectedness of a graph. If a graph like in Figure 9.4 were representing a
social network, for example, and nodes X had friends Y and Z, then if Y and Z are also
friends, which is fairly likely to be the case, then a triangle is formed in the graph. Essen-
tially, the local cluster coefficient counts the number of completed triangles compared
to the number of potential triangles that could exist (Fairchild and Fries, 2012). The for-
mula for the local cluster coefficient, c(vi) for vertex vi with p × p adjacency matrix A is

c(vi) = #connected triangles

#possible triangles
=

∑p
j=1

∑p
k=1 Ai,jAj,kAk,i(outdegree(vi)

2

) if outdegree(vi) > 1 else 1

(9.8)
and the entire graph’s (G = (V, E) where E ⊆ V × V) local cluster coefficient can be
found by averaging the c of each vertex vi ∈ V:

C(G) = 1

|V|
∑
vi∈V

c(vi), (9.9)

which says to go through each vertex in the vertex set V and find each c.
As an example, consider again the graph in Figure 9.4. c(W) = 1 since

outdegree(W) = 2 and the number of triangles is
(2

2

) = 1 and the number of possi-
ble triangles is 1, involving X and Y . This is also true for Z that c(Z) = 1. Now for
vertices X and Y , c(X) = 2

3 = c(Y) since outdegree(X) = 3 and so
(outdegree(vi)

2

) = 3 and
number of connected triangles is 2 of a possible 3. Averaging all four vertices gives us
C(G) = (1 + 1 + 2

3 + 2
3)/4 = 5

6 .
Here is R code which will compute the local clustering coefficient using a graph’s

adjacency matrix:

computeClusterCoeff <- function(A, isVerbose=FALSE) {
N = dim(A)[1]
degree = vector(length=dim(A)[1])
avgdegree = vector(length=dim(A)[1])
sumCC = 0
for (i in 1:N) {

sum = 0
degree[i] = sum(A[i,])
avgdegree[i] = degree[i]*(degree[i]-1)/2
if(degree[i] < 2) {

avgdegree[i] = 1; sum = 1
} else {

avgdegree[i] = dim(combn(degree[i],2))[2]
for(j in 1:N) {

for(k in j:N) {
fact = A[i,j]*A[j,k]*A[k,i]
if(fact > 0) {

sum = sum + fact
#print(paste(i,j,k,fact))

9.4 Covariance and Precision Matrices 211

}
}

}
}
if(isVerbose) print(paste(i,"===> cc num =",sum))
if(avgdegree[i] != 0) {

if(isVerbose) print(paste(i,
"===> clst coeff =",sum/avgdegree[i]))

sumCC = sumCC + sum/avgdegree[i]
}

}
sumCC/N

}
#Unit test
cells = c(0,0,1,1,

0,0,1,1,
1,1,0,1,
1,1,1,0)

A = matrix(cells,nrow=4,ncol=4)
computeClusterCoeff(A,isVerbose=TRUE)

In this case, it so happens that the local clustering coefficient works out the same as
the sparsity as seen in the output of computeClusterCoeff().

> computeClusterCoeff(A,isVerbose=TRUE)
[1] "1 ===> cc num = 1"
[1] "1 ===> clst coeff = 1"
[1] "2 ===> cc num = 1"
[1] "2 ===> clst coeff = 1"
[1] "3 ===> cc num = 2"
[1] "3===> clst coeff = 0.666666666666667"
[1] "4 ===> cc num = 2" [1]
"4 ===> clst coeff = 0.666666666666667"
[1] 0.8333333

but this is generally not the case.

9.4 Covariance and Precision Matrices

While Chapter 5 demonstrated that the normal distribution is probably the exception
rather than the rule for stock log returns, by approximating with it we can use recent
developments in the theory of GGMs to model the portfolio interactions. The covariance
matrix of the multi-dimensional normally distributed log returns for a portfolio is usually
called � of size p × p. There is an important result that states that the precision matrix

� = �−1 (9.10)

can be used to guide whether co-movement exists between pairs of multivariate normal
random variables (Whittaker, 1990). Since our log returns are deemed to be of this
distribution, we can apply it here.

212 Cluster Analysis

PCLN

MON

PCP

MCD

Figure 9.5 Undirected graph for four selected stocks from in-sample huge stockdata based upon prices from
2003 to 2008.

0 50 100 150 200 250

1.
0

1.
5

2.
0

2.
5

3.
0

4 stocks

MCD

MON

PCP

PCLN

Figure 9.6 Price series for four stocks from in-sample huge stockdata for just 2007. PCLN and MCD are
deemed to not move together by the precision matrix of Equation 9.10 and the graph of Figure 9.5.
The horizontal axis is trading days for one year and the vertical axis is the prices scaled to 1.

Having a utility to build undirected graphs is essential. Below is the R code for taking
the precision matrix, � above, from a covariance matrix, � above, and changing it to
a graph adjacency matrix, then plotting the graph of Figure 9.5 and plotting the stock
gross return chart of Figure 9.6. The plotGraph() utility can be called once we import
prices and compute log returns for the stocks.

library(igraph)
library(tseries)
plotGraph <- function(lab,w,A) {

D = dim(A)[1]
indw = (w > .001)
g <- graph.empty() + vertices(toupper(lab[indw]))

9.4 Covariance and Precision Matrices 213

threshold = .6
for(i in 1:D) {

if(w[i] > 0.0) {
for(j in 1:max(1,(i-1))) {

if(i != j && w[j] > .001 && A[i,j] != 0) {
#print(toupper(lab[j]))
g <- g + path(toupper(lab[i]),toupper(lab[j]))

}
}

}
}
ug <- as.undirected(g)
V(ug)$color <- "gold"
V(ug)$label.cex = 1.1
plot(ug,vertex.size=22.05)

}
plotGraph(c('W','X','Y','Z'),c(1/4,1/4,1/4,1/4),A)

Again we begin with the huge stockdata dataset. Our program so far has a prices matrix
with 1,258 split-adjusted prices from 2003 to 2008. Let’s look at four stocks of the 452.
We can use the R function match() to locate our desired tickers in the lab vector in our
dataset, giving us the vector matchIdxs. If we have these stocks in a proposed portfolio,
MCD, MON, PCP, PCLN, we can find the covariance matrix of 100 times one year of
the log returns using this upcoming sequence.

#Find covariance and precision Matrices
library(huge)
data(stockdata)
D = length(stockdata$data[1,])
len = length(stockdata$data[,1])
prices = stockdata$data[,1:D]
lab = stockdata$info[1:D,1]
isSplitAdjusted = FALSE
R <- findR(prices,isSplitAdjusted=FALSE) #Split-adjusts prices
dim(prices)
#Form small p array of prices
ticker = c('MCD','MON','PCP','PCLN')
matchIdx = vector(length=4)
for(i in 1:4)

matchIdx[i] = match(ticker[i],lab)
p = matrix(rep(0,252*4),nrow=252,ncol=4)
oneYr = (1258-251):1258
p[,1] = prices[oneYr,matchIdx[1]]
p[,2] = prices[oneYr,matchIdx[2]]
p[,3] = prices[oneYr,matchIdx[3]]
p[,4] = prices[oneYr,matchIdx[4]]

Below are the four vectors of computed log returns, r.

214 Cluster Analysis

r = matrix(rep(0,251*4),nrow=251,ncol=4)
r[,1] = diff(log(p[,1]))
r[,2] = diff(log(p[,2]))
r[,3] = diff(log(p[,3]))
r[,4] = diff(log(p[,4]))
r100 = 100*r #100 x log rets
Sigma = cov(r100)
round(Sigma,2)
Omega = solve(Sigma)
round(Omega,2)
A = ifelse(round(Omega,2)!=0.00, 1, 0)
w = c(.25,.25,.25,.25)
plotGraph(ticker,w,A)
plotMultSeries(p,ticker,w,4,

cc=paste(sum(w>0),"stocks"),
ret="",ylim=c(.8,3))

which yields our covariance matrix:

� =

⎛
⎜⎜⎝

1.38 0.92 0.69 0.51
0.92 4.33 2.12 2.20
0.69 2.12 4.08 2.14
0.51 2.20 2.14 9.70

⎞
⎟⎟⎠ . (9.11)

Then, using the solve() and round() R functions, the precision matrix is found:

� =

⎛
⎜⎜⎝

0.86 −0.15 −0.07 0.00
−0.15 0.35 −0.13 −0.04
−0.07 −0.13 0.35 −0.04
0.00 −0.04 −0.04 0.12

⎞
⎟⎟⎠ . (9.12)

The � precision matrix has the very nice property that, for any element of it, when ωi,j =
0, then we know that the log return series for security i is conditionally independent from
the log return series for security j, given the remaining random variables for the other
securities k where k �= i and k �= j. This matrix works as an adjacency matrix when
ignoring the diagonal elements, setting them to zero, and considering whether the other
elements are equal to 0.00. Those elements that are not equal to 0.00 are considered
to be equivalent to 1 in the corresponding adjacency matrix. We can conclude from
this precision matrix, the first and fourth stocks, McDonald’s and Priceline, MCD and
PCLN, are not correlated because ω1,4 = ω4,1 = 0. Looking in Figure 9.5 we can see the
undirected graph corresponding to � to show the co-movement of each weighted stock
in the portfolio. The algorithm to construct the graph from an empty graph, (V, {}), is

• first find the precision matrix from the covariance matrix;
• use the R ifelse() function to determine A, the adjacency matrix of the graph: inspect

the precision matrix elements for whether they round to 0.00 and set A[i, j] to 1 where
the precision matrix value does not round to 0.00 at row i and column j;

9.5 Visualizing Covariance 215

• iterate through the lower triangle of adjacency matrix A and if row i, column j is 1
then add the edge (vi, vj) to edge set E.

The last step is what the above plotGraph() function does.

9.5 Visualizing Covariance

As one works with the GGMs, it becomes clear that whether an edge in the undirected
graph should be present is subjective and needs to be adjustable. For example, if our p
log return data series are such that the covariances are high among them, we could wind
up with a strongly connected undirected graph with high density and low sparsity, a tight
cluster that plots as a gnarled ball. A gnarled ball does not help an investor understand
the inter-stock covariances. Our example matrices of the previous section for � and �

serve as an example but are not typical of a large sample of stocks when p > 4. In fact,
we find that it is somewhat rare for the � matrix to contain zeros! For the p = 452
huge.stockdata stocks, a small sample can tell us that at least half of the possible edges
for a node such as EBAY will be claimed by the precision matrix, �, to be present. In
other words, for row 139 corresponding to EBAY, stock index 139, approximately half
of the columns in the adjacency matrix found from the precision matrix via the logic

A = ifelse(Omega!=0.00, 1, 0)

will be marked with a 1. Since a graph like that is not very useful, we need a mechanism
to dial down the density or, equivalently, dial up the sparsity of the graph that is obtained
in order for it to be a good visualization tool. Simply taking the inverse of the covari-
ance matrix as our algorithm for the pseudo adjacency matrix, �, will have limitations.
Depicting the relative dependence of node pairs is the purpose of the graph and this is
a Boolean true or false situation. Either an edge is present or it is not. First, we would
like to find the Sharpe Ratios of our 24 candidates and then, as a matter of convenience,
enhance their labels with it.

findSixYrSR <- function(dir='huge',csvFile = 'rebalresD24Days1258.csv') {
setwd(paste(homeuser,"/FinAnalytics/",dir,"/",sep=""))
df <- read.csv(csvFile)
lab <- df[,2]
w <- df[,3]
indw = (w > 0)
lab <- lab[indw]
isEnhanced <- FALSE
w <- w[indw]
D <- length(lab)
daysPerYr = 252; mufree = 0
recentPrices <- findRecentHugePrices('huge',

'rebalresD24Days1258.csv')
R <- findR(recentPrices)
cov_mat <- cov(R)

216 Cluster Analysis

meanv <- apply(R,2,mean)
diag_cov_mat <- diag(cov_mat)
sdevv <- sqrt(diag_cov_mat)
Sharpe <- (meanv-mufree)/sdevv*sqrt(daysPerYr)
Omega <- solve(cov_mat)
prices <- recentPrices
list(prices,R,cov_mat,meanv,sdevv,Sharpe,Omega,isEnhanced)

}
res <- findSixYrSR()
prices <- res[[1]]
R <- res[[2]]
cov_mat <- res[[3]]
meanv <- res[[4]]
sdevv <- res[[5]]
Sharpe <- res[[6]]
Omega <- res[[7]]
isEnhanced <- res[[8]]

In order to depict the individual securities in a more meaningful way, there is a routine,
enhanceLab(), to enhance the node labels to attach the Sharpe Ratio and the rounded
weights for the six-year period. Small weights will round to 0 percent. The above routine
finds the six-year Sharpe Ratio to compare securities: with the Sharpe vector computed
then side effected by findSixYrSR(), the labels can be enhanced.

enhanceLab <- function(lab,Sharpe,w) {
#Enhance lab with Sharpe and weight in percent
D <- length(lab)
shplab = vector(length=D)
for(d in 1:D) {

shplab[d] = paste(lab[d],
paste(round(Sharpe[d],2),
paste(round(100*w[d],0),'%',sep='')),sep='\n')

}
return(shplab)

}
shplab <- enhanceLab(lab,Sharpe,w)

The enhanced labels, called shplab as they are built, are listed below. We know from
Chapter 8 that CME and AAPL were the highest weighted stocks of the 452 candidates
at 16 percent and 12 percent, respectively. PCP and MON are next in line, listed below
at 8 percent. Weighing in at 5 percent are MCD, TSO, LH, GME and BCR.

> shplab
[1] "CME\n-0.04 16%" "AAPL\n0.71 12%" "MON\n0.01 8%"
[4] "MCD\n0.61 5%" "TSO\n0.1 5%" "GME\n-0.07 5%"
[7] "PCP\n0.37 8%" "LH\n0.11 5%" "BCR\n0.31 5%"

[10] "AMT\n0.41 5%" "BLK\n0.21 5%" "ISRG\n0.14 4%"
[13] "HUM\n0.17 3%" "EIX\n0.11 3%" "SWN\n0.09 2%"
[16] "ESRX\n0.42 2%" "WMB\n0.21 2%" "RRC\n0.13 1%"
[19] "DVA\n0.59 1%" "RAI\n0.59 1%" "WYNN\n0.3 1%"
[22] "CERN\n0.82 0%" "PCLN\n0.95 0%" "AET\n0.16 0%"

9.5 Visualizing Covariance 217

The code for runGlassoAndDisplay() appears below. We present it now and run it in
a very introductory case of only four vertices to show how we can visualize covari-
ance among the portfolio securities. A more in depth discussion of the Glasso algorithm
fundamentals is forthcoming in the upcoming three sections.

runGlassoAndDisplay <- function(prices,lab,w,D,Sharpe,
isEnhanced=FALSE,lmratio = 0.33,trackIdx=9) {

#Run the Glasso and record results in undir graph ug
len = length(prices[,1]) # Does not impact R:
Y = log(prices[2:len,1:D]/prices[1:(len-1),1:D])
x.npn = huge.npn(Y, npn.func="truncation") # Nonparanormal
out.npn = huge(x.npn,method = "glasso",

cov.output = TRUE, nlambda=D,
lambda.min.ratio = lmratio)

out.npn
#Find indicator array:
indw = (w > .001)
#Attach SR to lab
if(!isEnhanced && D > 4) {

shplab <- enhanceLab(lab,Sharpe,w)
isEnhanced <- TRUE #shplab enhanced: e.g. "ISRG\n0.14 4%"

}
g <- graph.empty() + vertices(toupper(shplab[indw]))
trackIdxEdges <- 0 #Track MCD
for(d in D:D) { #focus on last version D

for(i in 1:D) {
if(w[i] > .001) {

for(j in 1:i) {
if(w[j] > .001 && out.npn$path[[d]][i,j] == 1) {

#print(paste(i,j))
#print(toupper(lab[i]))

Note that we augment the graph g by running this key line below which adds an edge
from vertex i to j if there is a 1 in the final (dth version) of the adjacency matrix out.npn
produced by the call to huge() for stocks with nonzero weights.

g <- g + path(toupper(shplab[i]),toupper(shplab[j]))
#Undir graph means need to count either case:
if(j == trackIdx || i == trackIdx)

trackIdxEdges <- trackIdxEdges + 1
}

}
}

}
ug <- as.undirected(g)
V(ug)$color <- "gold"
#V(ug)$offset <- 1.2
V(ug)$label.cex = 0.8
plot(ug,vertex.size=sqrt(500*w),ylab=

paste("lmratio=",lmratio))
}

218 Cluster Analysis

print(paste("tracked outdegree:",trackIdxEdges))
list(out.npn$path[[D]],shplab,isEnhanced)

}

Now that runGlassoAndDisplay() is defined, we can use it to display four simple graphs,
depicting the difference in density or sparsity depending upon the setting of the lmratio
parameter.

A = ifelse(Omega!=0.00, 1, 0)
lab4 <- c('MCD','MON','PCP','PCLN')
labIdxs <- sapply(lab4,function(x) match(x,lab))
prices4 <- prices[,labIdxs]
w = rep(1/4,4)
shplab <- lab[labIdxs]
par(mfrow=c(2,2))
res <- runGlassoAndDisplay(prices4,lab4,w,4,Sharpe,

lmratio=1.20,trackIdx=1)
A <- res[[1]]
shplab <- res[[2]]
isEnhanced <- res[[3]]
res <-runGlassoAndDisplay(prices4,lab4,w,4,Sharpe,

lmratio=.95,trackIdx=1)
A <- res[[1]]
shplab <- res[[2]]
isEnhanced <- res[[3]]
res <- runGlassoAndDisplay(prices4,lab4,w,4,Sharpe,

lmratio=.70,trackIdx=1)
A <- res[[1]]
shplab <- res[[2]]
isEnhanced <- res[[3]]
res <- runGlassoAndDisplay(prices4,lab4,w,4,Sharpe,

lmratio=.45,trackIdx=1)
A <- res[[1]]
shplab <- res[[2]]
isEnhanced <- res[[3]]

In Figure 9.7 we can see the result of running the code sequence above. We try four
different levels for the parameter lmratio to the Glasso algorithm. The top-right graph
has a sparsity of 1 and is totally unconnected. As we move to the right, we add an edge
between MON and PCP and between PCLN and PCP. In the lower left, with lmratio =
0.7, we get a sparsity of 1

6 and finally, the fully connected case appears when lmratio =
0.95 with a sparsity of 0. By setting lmratio, we can control the level of sparsity of the
graph to make it appropriate for our use. It is not unlike the volume on a radio: we set it
to the most useful setting.

Figure 9.8 shows the 452-stock graph in its entirety. We can see clustering occurring
among subgroups. It is interesting to see that there are several outliers that move out-
side the large cluster to the fringes. These are relatively independently moving stocks.
The code below will compute the required covariances for the runGlassoAndDisplay()
function.

9.5 Visualizing Covariance 219

lm
ra

tio
=

 1
.2

MCD
MON

PCP
PCLN

lm
ra

tio
=

 0
.9

5

MCD

MON

PCP

PCLN

lm
ra

tio
=

 0
.7

MCD

MON
PCP

PCLN

lm
ra

tio
=

 0
.4

5

MCD
MON

PCP

PCLN

Figure 9.7 Penalization level determines whether edges are used to depict a covariance level. Sparsity varies
from 1 to 0 as lmratio=1.20 down to 0.45.

Figure 9.8 Unlabeled undirected graph node for 452 surviving stocks of the S&P 500 Index 2003 to 2008
using huge.plot().

w = rep(1/D,D)
Omega = round(solve(cov_mat),2)
Omega[1:8,1:8]
Aomega = ifelse(Omega!=0.00, 1, 0)

220 Cluster Analysis

0 100 200 300 400

0.
4

0.
8

1.
2

1.
6

Index

su
m

co
vv

/D

MMM

ACE

ABT

ANF
ADBE

AMD

AES

AET
AFL

A

APD
ARG

AKS
AKAM

AA

ATI

AGN
ALL

ALTR

MO

AMZN

AEE

AEP

AXP
AIG

AMT

ABCAMGN

APH
APC

ADI

AONAPAAIV

APOL

AAPLAMAT

ADMT

ADSK

ADP

ANAZOAVB
AVY

AVP

BHI
BLLBAC

BK

BCR
BAX

BBT

BDX

BBBY

BMS

BBY
BIG

BIIB

BLK
HRB

BMC

BA

BXP
BSX
BMY

BRCM

CACVC

COG
CAM

CPB

COF

CAH

KMX

CCL

CAT

CELG

CNP

CTL

CEPH

CERN

SCHW

CHK

CVXCB
CI

CINF

CTAS

CSCO

C

CTXS

CLF

CLX

CME

CMS
COH

KOCCE

CTSH

CL

CMCSACMA
CSC

CPWR

COP

CNX

EDSTZ

CEG

GLW

COST
CVH

CSX

CMI

CVS

DHI

DHR

DRI

DVA
DF

DE

DELL

DNR

XRAY

DVN

DV
DO

D

RRD

DOV
DOW

DTE

DD

DUKDNB

ETFC

EMN
EBAY

ECL

EIX

EW

EP

ERTS

EMC

EMR

ETR

EOG

EQT

EFXEQR

EL

EXC

EXPD

ESRX
XOM

FFIV

FDO

FAST

FII
FDX
FIS
FITBFHN

FE

FISV
FLIR

FLS

FLR

FMC

FTI

F

FRX

FO

BEN

FCX

FTR

GME

GCI

GPS

GD
GE

GIS

GPC

GILD

GS

GR

GT

GWW
HAL

HOG

HARHRS
HIG

HAS
HCP

HCN

HNZ

HP

HES

HPQ
HDHON

HRL

HST

HCBK

HUM
HBAN

ITW

TEG

INTC

IBMIFF

IGT
IP
IPGINTU

ISRG

IVZ

IRM

ITT

JBLJEC

JNS
JDSU

JNJ

JCI

JOYG

JPM

JNPR

K

KEY

KMB

KIM

KLAC

KSS

KFT

KR
LLL

LH

LM

LEG

LEN

LUK

LXK
LIFE

LLY

LTD
LNCLLTC

LMT

L

LOW

LSI

MTB

M

MRO

MAR

MMC

MI

MAS

MAT

MKC

MCD
MHPMCK

MWV

MDT

WFR

MRK

MET

MCHP

MU

MSFT

MOLX

TAP

MON

MWW

MCO

MS

MSI

MUR

MYL

NBR
NDAQ

NOV

NSM

NTAP

NFLX

NWL
NFX

NEM

NWSA

NEE

GAS

NKENI

NE
NBL

JWN

NSC
NTRS

NOC

NU

NVLS
NUE

NVDA

ORLY
OXY
OMC

OKE

ORCL
OI

PCAR
IR

PLL

PH

PDCO
PAYX

BTU

JCP

PBCTPOM

PEP

PKI

PFE
PCG

PNW

PXD

PBI

PCL

PNC

RLPPG

PPL

PX

PCP

PCLN

PFG

PG

PGNPGR

PLD

PRU

PSA

PHM
PWR

QCOM

DGX

RSH

RRC

RTN

RHT

RF

RSG

RAI

RHI

ROK

COL
ROP

ROSTRDC
R

SWY

SNDK

SLE
SCG

SLB

SEE

SRE

SHWSIALSPG
SLM

SJM

SNA

SO

LUV

SWN

S

STJ

SWK
SPLS

SBUX

HOTSTT

SRCL

SYK
SUN
STI

SVU

SYMC

SYY

TROW

TGT

TE

TLAB

THC

TER

TSO

TXN
TXT

HSY

TRVTMO

TIF

TWX

TIE

TJX

TMK
TSSTSN

TYC

USB
UNP

UNH
UPS

X

UTX

UNM

URBN

VFC

VLO

VAR

VTR

VRSN

VZ
VNO

VMC

WMT
WAG

DIS

WPO

WMWAT
WPI
WFC

WDC

WYWHR

WFM

WMB

WEC

WYNN

XEL

XRX

XLNX

XL

YHOO

YUM
ZMH

ZION

MMM

ACE

ABT

ANF
ADBE

AMD

AES

AET
AFL

A

APD
ARG

AKS
AKAM

AA

ATI

AGN
ALL

ALTR

MO

AMZN

AEE

AEP

AXP
AIG

AMT

ABCAMGN

APH
APC

ADI

AONAPAAIV

APOL

AAPLAMAT

ADMT

ADSK

ADP

ANAZOAVB
AVY

AVP

BHI
BLLBAC

BK

BCR
BAX

BBT

BDX

BBBY

BMS

BBY
BIG

BIIB

BLK
HRB

BMC

BA

BXP
BSX
BMY

BRCM

CACVC

COG
CAM

CPB

COF

CAH

KMX

CCL

CAT

CELG

CNP

CTL

CEPH

CERN

SCHW

CHK

CVXCB
CI

CINF

CTAS

CSCO

C

CTXS

CLF

CLX

CME

CMS
COH

KOCCE

CTSH

CL

CMCSACMA
CSC

CPWR

COP

CNX

EDSTZ

CEG

GLW

COST
CVH

CSX

CMI

CVS

DHI

DHR

DRI

DVA
DF

DE

DELL

DNR

XRAY

DVN

DV
DO

D

RRD

DOV
DOW

DTE

DD

DUKDNB

ETFC

EMN
EBAY

ECL

EIX

EW

EP

ERTS

EMC

EMR

ETR

EOG

EQT

EFXEQR

EL

EXC

EXPD

ESRX
XOM

FFIV

FDO

FAST

FII
FDX
FIS
FITBFHN

FE

FISV
FLIR

FLS

FLR

FMC

FTI

F

FRX

FO

BEN

FCX

FTR

GME

GCI

GPS

GD
GE

GIS

GPC

GILD

GS

GR

GT

GWW
HAL

HOG

HARHRS
HIG

HAS
HCP

HCN

HNZ

HP

HES

HPQ
HDHON

HRL

HST

HCBK

HUM
HBAN

ITW

TEG

INTC

IBMIFF

IGT
IP
IPGINTU

ISRG

IVZ

IRM

ITT

JBLJEC

JNS
JDSU

JNJ

JCI

JOYG

JPM

JNPR

K

KEY

KMB

KIM

KLAC

KSS

KFT

KR
LLL

LH

LM

LEG

LEN

LUK

LXK
LIFE

LLY

LTD
LNCLLTC

LMT

L

LOW

LSI

MTB

M

MRO

MAR

MMC

MI

MAS

MAT

MKC

MCD
MHPMCK

MWV

MDT

WFR

MRK

MET

MCHP

MU

MSFT

MOLX

TAP

MON

MWW

MCO

MS

MSI

MUR

MYL

NBR
NDAQ

NOV

NSM

NTAP

NFLX

NWL
NFX

NEM

NWSA

NEE

GAS

NKENI

NE
NBL

JWN

NSC
NTRS

NOC

NU

NVLS
NUE

NVDA

ORLY
OXY
OMC

OKE

ORCL
OI

PCAR
IR

PLL

PH

PDCO
PAYX

BTU

JCP

PBCTPOM

PEP

PKI

PFE
PCG

PNW

PXD

PBI

PCL

PNC

RLPPG

PPL

PX

PCP

PCLN

PFG

PG

PGNPGR

PLD

PRU

PSA

PHM
PWR

QCOM

DGX

RSH

RRC

RTN

RHT

RF

RSG

RAI

RHI

ROK

COL
ROP

ROSTRDC
R

SWY

SNDK

SLE
SCG

SLB

SEE

SRE

SHWSIALSPG
SLM

SJM

SNA

SO

LUV

SWN

S

STJ

SWK
SPLS

SBUX

HOTSTT

SRCL

SYK
SUN
STI

SVU

SYMC

SYY

TROW

TGT

TE

TLAB

THC

TER

TSO

TXN
TXT

HSY

TRVTMO

TIF

TWX

TIE

TJX

TMK
TSSTSN

TYC

USB
UNP

UNH
UPS

X

UTX

UNM

URBN

VFC

VLO

VAR

VTR

VRSN

VZ
VNO

VMC

WMT
WAG

DIS

WPO

WMWAT
WPI
WFC

WDC

WYWHR

WFM

WMB

WEC

WYNN

XEL

XRX

XLNX

XL

YHOO

YUM
ZMH

ZION

Figure 9.9 Comparison of the average covariances for the stocks of Figure 9.8. A lower average covariance
for a stock implies more independence from other stocks in their log return behavior.

res <- runGlassoAndDisplay(prices,lab,w,D,Sharpe,
lmratio=.45,trackIdx=4)

A <- res[[1]]
shplab <- res[[2]]
isEnhanced <- res[[3]]
Aomega[1:8,1:8]
huge.plot(A)

Comparing the average covariance for stocks in the large set tells how clustered a
stock is to others. Just like finding Sharpe Ratios on an individual stock basis was of
interest in Chapter 7, determining the amount of covariance to other stocks is of interest
here. Low covariance corresponds to low correlation and makes a stock a good candidate
in a portfolio. We can see in Figure 9.9 that JNJ, PEP, HSY, and KFT, which are all
consumer product stocks, have some of the lowest average covariances in the population.
The code appearing below will perform the average covariance calculations, sumcovv/D
and plot them by ticker symbol.

#Avg Cov
> saveList <- list(D,lab,prices) #save away
library(huge)
data(stockdata)
D = length(stockdata$data[1,])
len = length(stockdata$data[,1])
prices = stockdata$data[,1:D]
lab = stockdata$info[1:D,1]
isSplitAdjusted = FALSE
R <- findR(prices,isSplitAdjusted=FALSE) #Split-adjusts prices
dim(prices)
cov_mat <- cov(R)
sumcovv=vector(length=D)
for(i in 1:D)

sumcovv[i]=sum(cov_mat[i,])-cov_mat[i,i]

9.6 The Wishart Distribution 221

Figure 9.10 Zooming in with the Gephi tool on EBAY and EMC, two technology sector stocks. EBAY, upper
right, has three associated stocks and EMC, lower center, has 23 associated stocks.

plot(sumcovv/D,type="p",cex=.1)
text(1:D,sumcovv/D,lab,col=4,cex=.55)

Exporting the edges from the graph of Figure 9.8 into a two-column CSV file for
import into the open source graph drawing tool, Gephi, we can see the graph laid out
using Gephi’s Yifan Hu Proportional layout algorithm in Figure 9.10. The upcoming
function runGlassoAndDisplay() emits the edge file records in the write() statement in
the third nested for-loop. In Figure 9.10 we can see both EBAY with three connected
nodes, AMZN, QCOM, and YHOO. EMC, on the other hand, has 23 connected nodes
in the Gephi-displayed graph.

lab4 <- c('EBAY','EMC','PCLN','UPS')
labIdxs <- sapply(lab4,function(x) match(x,lab))
plot(sort(cov_mat[139,-139]),ylim=c(-.1,4),

xlab="Sorted Index",ylab="Cov to other stocks")
points(sort(cov_mat[145,-145]),col=2)
points(sort(cov_mat[338,-338]),col=4)
points(sort(cov_mat[417,-417]),col=3)
text(rep(400,4),c(1.1,1.75,2.5,.5),lab4,cex=.75)
> D <- saveList[[1]]; lab <- saveList[[2]]; prices <-
> saveList[[3]]#restore

In Figure 9.11 we can see that, in general, EBAY has a lower covariance to the other
stocks than EMC, especially at the tail end of the chart. The code for this chart appears
above.

9.6 The Wishart Distribution

The sample covariance matrix � is derived from the sample from the MVN distribution.
However, as pointed out in the literature of GGMs, the sample covariance matrix itself is

222 Cluster Analysis

0 100 200 300 400

0
1

2
3

4

Sorted Index

C
ov

 to
 O

th
er

 S
to

ck
s

EBAY

EMC

PCLN

UPS

Figure 9.11 Comparison of four typical stock covariances, sorted across all other stocks in the candidate set.
EBAY and EMC are seen in Figure 9.10 and PCLN, UPS are just typical stocks to compare as
well. UPS has the least co-movement, followed by EBAY.

a parameter and has a Wishart distribution (Hastie, Tibshirani, and Friedman, 2009). The
Wishart distribution represents the sums of squares and cross-products of n draws from
an MVN distribution. The p.d.f. for the Wishart distribution is a very complex formula
which is hard to visualize due to the dimensionality (see the Appendix for discussion
of the various p.d.f.s, especially the MVN distribution for this discussion). If X is an
n × p matrix where xi = (xi,1, ..., xi,p) is drawn from the MVN(0,�) distribution in p
dimensions and S is the p × p sample covariance matrix defined as

S = 1

n

n∑
i=1

(xi − x̄)(xi − x̄)T , (9.13)

we say that S ∼ Wp(�, n), where S is positive definite. The density formula appears as
Equation 9.14,

f (S) = |X| n−p−1
2

2
np
2 �

n
2�p(n

2)
exp

(
−tr(�−1X)

2

)
, (9.14)

where n > p−1 is the degrees of freedom and the mean is n� and the function �p() is the
multivariate gamma function in p dimensions. � denotes a positive definite scale matrix
which can be thought of as a variance–covariance matrix from an MVN distribution.

There are multiple R packages containing a simulation of this distribution. We will
focus on the R sbgcop package which has a Wishart random variate generator called
rwish() taking the MVN covariance and the number of requested variates. Examin-
ing this distribution from R code is worthwhile to help understand the covariance and
precision matrices used in GGMs.

Let us once again consider the � and � matrices for our four stocks. The code
sequence below will begin with � and invert it to come up with another version of

9.6 The Wishart Distribution 223

�, called Sig, then use that to send to the rwish() function. We will ask for 100 “paths”
or variates.

mapToCol <- function(d)
if(d%%8==7) 1 else if(d==8)

2 else if(d==15) 3 else if(d==23) 4 else d

library(sbgcop)
Omega = matrix(c(0.86, -0.15, -0.07, 0.00,

-0.15, 0.35, -0.13, -0.04,
-0.07, -0.13, 0.35, -0.04,
0.00, -0.04, -0.04, 0.12),nrow=4,ncol=4)

A = ifelse(Omega!=0.00, 1, 0)
plotGraph(c('MCD','MON','PCP','PCLN'),rep(1/4,4),A)
Sig = solve(Omega)
p <- dim(Sig)[1]
df <- p+1

set.seed(138) # for replication
paths <- 100 # number of obs in our sampling dist
W.empir <- matrix(nrow = paths, ncol = length(c(Sig)))
dim(W.empir)
for(i in 1:paths) {

W.empir[i,] <- c(rwish(Sig,nu=1))
if(i == 1) {

plot(as.vector(W.empir[i,]),type="l",
ylim=c(-15,+90),ylab="rwish npaths=100")

} else {
lines(as.vector(W.empir[i,]),col=mapToCol(i))

}
}

The code above computes the Wishart samples and stores them in the W.empir matrix. It
then find plots the variates as 16-element paths for Figure 9.12. The code below produces
the box plot of Figure 9.13 which depicts the distribution of each random variate in the
Wishart matrix.

> boxplot(W.empir)
> meanW <- apply(W.empir,2,function(x) mean(as.vector(x)))
> matrix(round(meanW,2),4,4)

[,1] [,2] [,3] [,4]
[1,] 1.15 0.86 0.93 0.41
[2,] 0.86 4.08 1.95 2.62
[3,] 0.93 1.95 4.26 2.84
[4,] 0.41 2.62 2.84 11.19
> round(Sig,2)

[,1] [,2] [,3] [,4]
[1,] 1.37 0.90 0.67 0.52
[2,] 0.90 4.21 1.98 2.06
[3,] 0.67 1.98 3.95 1.98
[4,] 0.52 2.06 1.98 9.68

224 Cluster Analysis

5 10 15
0

20
40

60
80

Index

rw
is

h
np

at
hs

=
10

0

Figure 9.12 Variates of the rwish() function yielding 100 4 × 4 covariance matrices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
20

40
60

Figure 9.13 Box plots showing 16 covariance positions from the random variates of the Wishart distribution.

We can see that the starting point matrix, Sig, is similar in value to the meanW matrix,
computed from the Wishart variates. We note that the final element in the fourth row
and fourth column of the covariance matrix shows extra high covariance in the box plot
(indexed at 16 on the horizontal axis), and this may very well be expected for the PCLN
stock.

for(j in (1:16)) {
if(j == 1) {

plot(density(W.empir[j,]),
xlim=c(min(W.empir),max(W.empir)),
ylim=c(0,.8),main="")

} else {
lines(density(W.empir[j,]),col=mapToCol(j))

}
}

Another view of the Wishart for this particular case of p = 4 and � = �−1 is depicted
in Figure 9.14. The code to generate this graph appears above. Sixteen density plots are

9.8 Running the Glasso Algorithm 225

6040200

0.
0

0.
2

0.
4

0.
6

0.
8

N = 16 Bandwidth = 0.7587

D
en

si
ty

Figure 9.14 Superimposed density plots showing the Wishart distribution covariances. We can determine
from the box plot of Figure 9.13 that the extra wide tail is from the element at position
p × p = 16.

superimposed in this view. Most of the distribution is centered between 0 and 1 but the
outliers are driving the plot going out to the tails too.

9.7 Glasso: Penalization for Undirected Graphs

We mentioned the need for a mechanism to dial down the density or dial up the sparsity
of the graphs. Having sparsity in the undirected graph is analogous to having shrink-
age among parameters. The Glasso algorithm is an adaptation of the famous Lasso
algorithm, discussed in Chapter 8, applied to undirected graphs. As with the Lasso, reg-
ularization parameters are used as a filter level. In this case we filter for the appropriate
level of sparsity of the graph (Tibshirani, 1996). The log-likelihood function is

l(�) = log(|�|) − tr(S�). (9.15)

The constrained log-likelihood function can be found as

�∗ = argmin
�

lC(�) = argmin
�

log(|�|) − tr(S�) −
∑

(j,k)/∈E

γj,kωj,k. (9.16)

In this second form of Equation 9.16, as we maximize the overall expression, the penal-
ization sum works against the log-likelihood, reducing the overall value. So more edges
mean more penalty from the summation term. This keeps the number of edges at a min-
imum. We stated earlier in Section 9.4 that the precision matrix, �, alone suggests way
too many edges to be useful. This log-likelihood with the penalty is what we were look-
ing for. Details of the Glasso algorithm can be found in the text (Hastie, Tibshirani, and
Friedman, 2009) and the reference paper (Friedman, Hastie, and Tibshirani, 2008).

9.8 Running the Glasso Algorithm

The work on the huge package by Zhao, Liu, Roeder, Lafferty, and Wasserman pro-
vides an improvement before running the Glasso by running the non-paranormal step

226 Cluster Analysis

(Zhao, Liu, Roeder, Lafferty, and Wasserman, 2012). The huge package uses the Glasso
algorithm. We will use the Glasso algorithm to graphically visualize the co-movement
of our stocks in the portfolio. Running the Glasso algorithm from huge with the non-
paranormal step gives us back a much more useful graph, appearing in Figure 9.8, much
sparser than the one that would come from the precision matrix.

The non-paranormal transform, huge.npn(), is used prior to calling the Glasso algo-
rithm. The main routine to run the Glasso algorithm is called runGlassoAndDisplay()
and the output can be used to produce graphs such as the top portion of Figures 9.15,
9.16, and 9.17. The code for the main routine, runGlassoAndDisplay(), was intro-
duced earlier in Section 9.5. The loop after the huge.npn() and huge() calls builds the
graph by using the path() function. The graph is then plotted using plot() on ug, the
undirected graph. The most refined version of the graph, out.npn$path, is subscripted
by [[D]].

9.9 Tracking a Value Stock through the Years

A stock that tends to trade at a lower price than others relative to the fundamentals such
as dividends, earnings, and revenue is called a value stock. Common characteristics of
value stocks include a lower stock price-to-earnings ratio, higher dividend yield, and
lower price-to-book ratio.

When simulating the MVO algorithm for the 452 huge stockdata securities using a
Sharpe Ratio threshold, the 26 stocks are cleaned down to 24 stocks due to merger events
occurring in our desired time window. The resulting 24 stock portfolio is determined as
in Figure 8.8.

Simulating this portfolio out-of-sample forward in time for six years, from February
14, 2008 to February 14, 2014, we can think of a GGM and the annual portfolio return
for each year, a total of six graphs. Each year begins and ends on February 14. For
example, the year we are calling 2008 begins on February 14, 2008 and ends on February
14, 2009. We will examine the first three of the six graphs in this section, as they are the
most interesting ones, given the market events in 2008 to 2011.

Let’s trace the movement of a well-known value stock, a member of our portfolio.
McDonald’s Corporation, ticker MCD, became part the portfolio based upon its high
performance over the huge stockdata period of 2003 to 2008, and it is given a strong
5 percent weight. Running a simulation forward from 2008 to 2014, MCD had a 0.061
Sharpe Ratio in the label of Figures through 9.17. We start tracking MCD by looking at
Figure 9.15 and see that it appears in the middle of a dense cluster of correlation links
in 2008. In the calculation statements below, we can see that MCD’s annual return is
5.4 percent. As 2009 comes into play, MCD breaks out on its own. In 2009 it delivers
15.9 percent return as its restaurant chain proves to be a solid bet with frugal consumers
during the days of the recovery from the Great Recession. Below are the returns for
MCD for each of the six years:

> prices[252,4]/prices[1,4]-1
[1] 0.05411973
> prices[2*252,4]/prices[253,4]-1

9.9 Tracking a Value Stock through the Years 227

CME
−0.04 16%

AAPL
0.71 12%

MON
0.01 8%

MCD
0.61 5%

TSO
0.1 5%

GME
−0.07 5%

PCP
0.37 8%

LH
0.11 5%

BCR
0.31 5%

AMT
0.41 5%

BLK
0.21 5%

ISRG
0.14 4%

HUM
0.17 3%

EIX
0.11 3%

SWN
0.09 2%

ESRX
0.42 2%

WMB
0.21 2%

RRC
0.13 1%

DVA
0.59 1%

RAI
0.59 1%

WYNN
0.3 1%

CERN
0.82 0%

PCLN
0.95 0%

AET
0.16 0%

0 50 100 150 200 250

0.
5

1.
0

1.
5

2.
0

0.7391

CME

AAPL
MON

MCD

TSO
GMEPCP

LH
BCR

AMT

BLK

ISRG

HUMEIX

SWN

ESRX

WMB

RRC

DVA

RAI

WYNN

CERN
PCLNAET

Figure 9.15 2008 return of 24 securities in co-movement graph and chart form. The first number attached to
each vertex is the Sharpe Ratio for the current sample of prices: 2008 to 2014. The second is the
portfolio weight of that ticker.

[1] 0.159067
> prices[3*252,4]/prices[252*2+1,4]-1
[1] 0.228165
> prices[4*252,4]/prices[252*3+1,4]-1
[1] 0.3467565

228 Cluster Analysis

CME
−0.04 16%

AAPL
0.71 12%

MON
0.01 8%

MCD
0.61 5%

TSO
0.1 5%

GME
−0.07 5%

PCP
0.37 8%

LH
0.11 5%

BCR
0.31 5%

AMT
0.41 5%

BLK
0.21 5%

ISRG
0.14 4%

HUM
0.17 3%

EIX
0.11 3%

SWN
0.09 2%

ESRX
0.42 2%

WMB
0.21 2%RRC

0.13 1%

DVA
0.59 1%

RAI
0.59 1%

WYNN
0.3 1%

CERN
0.82 0%

PCLN
0.95 0%

AET
0.16 0%

0 50 100 150 200 250

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.8587

CME

AAPL

MON

MCD

TSO
GME

PCP

LH

BCR

AMT

BLK

ISRG

HUMEIX

SWN
ESRXWMB

RRC

DVA

RAI

WYNN

CERN

PCLN

AET

Figure 9.16 2009 return of 24 securities in co-movement graph and chart form.

> prices[5*252,4]/prices[252*4+1,4]-1
[1] -0.03004245
> prices[6*252,4]/prices[252*5+1,4]-1
[1] 0.05333184

9.9 Tracking a Value Stock through the Years 229

CME
−0.04 16%

AAPL
0.71 12%

MON
0.01 8%

MCD
0.61 5%

TSO
0.1 5% GME

−0.07 5%

PCP
0.37 8%

LH
0.11 5%

BCR
0.31 5%

AMT
0.41 5%

BLK
0.21 5%ISRG

0.14 4%

HUM
0.17 3%EIX

0.11 3%

SWN
0.09 2%

ESRX
0.42 2%

WMB
0.21 2%

RRC
0.13 1%

DVA
0.59 1%

RAI
0.59 1%

WYNN
0.3 1%

CERN
0.82 0%

PCLN
0.95 0%

AET
0.16 0%

0 50 100 150 200 250

0.
5

1.
0

1.
5

2.
0

0.7572

CME

AAPL

MON

MCD

TSO

GME

PCP

LHBCR

AMT

BLKISRG

HUM

EIX

SWN

ESRX
WMB

RRC

DVARAI

WYNN

CERN

PCLN

AET

Figure 9.17 2010 return of 24 securities in co-movement graph and chart form.

• Figure 9.15 has an undirected graph and the 2008 actual prices plotted below, which
have been scaled to an initial value of $1. In the figure, 2008 has a dense graph and
bearish chart. MCD is connected to ten other stocks and has one of best returns of
the group as we can see in the chart below the graph, in the MCD price path slightly
above $1.

230 Cluster Analysis

• Figure 9.16 shows 2009 with a bullish recovery in the chart and the graph above it
shows independence of the stocks in the portfolio. MCD is deemed by the Glasso
algorithm to be independent of the other 23 stocks in the portfolio, as its outdegree
is 0.

• Figure 9.17, the 2010 chart, shows a compaction of the graph from 2009. The graph
is fully connected so that no individual stock was breaking out and performing better
than the remainder. Quantitative Easing went into Phase II late in the year and the
market volatility was low. Return on stocks were moderately positive and quite pos-
itive for MCD at 22.8 percent. MCD itself exhibits a moderate level of dependence,
not as great as in 2008, with an outdegree of 3. This time, interestingly enough, it
“grabs on” to high flyer PCLN even though MCD itself enjoys a much higher weight-
ing in the portfolio. Noting that one of its only three direct neighbors is Priceline,
PCLN, and that is a very bullish association because over that time period PCLN has
one of the highest rates of return of any stock in the NYSE or NASDAQ. While PCLN
returns 115.6 percent in 2010, MCD, still a value stock, returns 22.8 percent.

From the returns calculated, 5.4 percent, 15.9 percent, 22.8 percent, 34.7 percent, –
3.0 percent, and 5.3 MCD can be viewed as a stock with good momentum. In 2010, it
gets slightly absorbed into the fringe of the cluster and is comoving with high flyers. In
2011, the market starts to cool down, however, investors holding MCD are quite pleased
with a 34.7 percent price appreciation.

The graphs of Figures 9.15 through 9.17 are produced by invoking the huge package.
Not only it is of interest to view the graph plots, but we also want to consider our graph
clustering measures: the sparsity and the clustering coefficient. Here is the R code which
runs the Glasso procedure and computes the graph measures from Section 9.3.

runSixYrsGlasso <- function(daysPerPeriod,Sharpe,y=NA,sleepIntval=0,
isClusterCoeff=TRUE) {

#Run Glasso alg from 2008 to 2014 by yr, qtr, mo
totalPeriods= 6*daysPerYr/daysPerPeriod
par(mfrow=c(1,1))
sparsity = array(dim = c(totalPeriods))
clustCoeff = array(dim = c(totalPeriods))
portv = array(dim = c(totalPeriods))
if(is.na(y)) yrange = c(1:totalPeriods) else yrange = c(y:y)
for(y in yrange) { #2008:2009 to 2013:2014

d1 = (y-1)*daysPerPeriod+1
d2 = y*daysPerPeriod
print(d1);print(d2)
res <- runGlassoAndDisplay(prices[d1:d2,],lab,w,D,Sharpe,

lmratio=.6,trackIdx=4)
A <- res[[1]]
sparsity[y] <- round(computeSparsity(A),4)
if(isClusterCoeff)

clustCoeff[y] <- round(computeClusterCoeff(A),4)
#compute portfolio return:
portValue <- round(w %*% (prices[d2,]/prices[d1,]), 4)
portv[y] <- portValue[1,1]

9.10 Regression on Yearly Sparsity 231

Using the system’s sleep() utility, we can capture the plots for Figures 9.15 through 9.17.

Sys.sleep(sleepIntval)
if(daysPerPeriod == 252) { #yearly case

if(y == 2) ylim = c(.5,3.1) else ylim = c(.2,2.2)
plotMultSeries(prices[d1:d2,],lab,w,D,cc=sparsity[y],

ret=portV[1,1],ylim=ylim,isAlone=TRUE)
} else {

portvDetail = array(rep(0,daysPerPeriod),
dim = c(daysPerPeriod))

for(d in 1:D)
portvDetail = portvDetail +

w[d] * (prices[d1:d2,d]/prices[d1,d])
plot(portvDetail,type='l',xlab="year",

ylab="portfolio value")
}
Sys.sleep(sleepIntval)

}
return(list(sparsity,clustCoeff,portv))

} res <- runSixYrsGlasso(21,Sharpe,y=1)[[1]] #1 mo run

runSixYrsGlasso() plots the output as an undirected graph and stored results in three
vectors of length 6 when our mode is yearly. In addition to each undirected graph is a
scaled annual return plot for all the stocks in the portfolio. For the data gathering phase,
the function splits the prices[] matrix by days with the R range [d1:d2,] into period
covariance matrices. It is a function to observe, compute and transmit results for the
period portfolio value, sparsity, and clustering coefficient. The return statement binds
together the multiple results.

9.10 Regression on Yearly Sparsity

Let’s consider looking at the six-year period with another perspective. Running the
runSixYrsGlasso(), function yields our sparsity, clustering coefficient, and portfolio
values.

glassoRes <- runSixYrsGlasso(252,Sharpe) #1 mo run
> yrlySparsity = glassoRes[[1]]
> yrlySparsity
[1] 0.7391 0.8587 0.7572 0.4819 0.8768 0.8043
> yrlyClustCoeff = glassoRes[[2]]
> yrlyClustCoeff
[1] 0.7513 0.7874 0.6299 0.7759 0.6500 0.7611
> yrlyPortV = glassoRes[[3]]
> yrlyPortV
[1] 0.6529 1.4432 1.2605 1.1493 1.1434 1.2274

A goal would be to predict the portfolio value direction, up or down, from knowing the
other two independent variables about the comoment graph. In fact, we really want to

232 Cluster Analysis

predict the portfolio value direction, lagged one time period. This way, an investor can
decide whether to invest short term in the portfolio during the expected bullish or bearish
period coming up next.

The best linear regression equation is found by trying to use sparsity, clustCoeff, and
portv, the portfolio value, to predict the lagged portfolio value, shiftedPortV. We can see
that this is a poor regression plan from the fifth column p-values below:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.83786 2.90470 2.354 0.143
sparsity -1.83939 0.88964 -2.068 0.175
clustCoeff -6.05451 3.44116 -1.759 0.221
portv 0.01173 0.39211 0.030 0.979

In fact, even taking away the portv and keeping the two graph measures still produces a
poor regression result:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.844 2.366 2.893 0.0629 .
sparsity -1.835 0.718 -2.556 0.0835 .
clustCoeff -6.049 2.806 -2.156 0.1201

What we can do with this very small set of data is seen below with a single dot(.) for the
fifth column p-value:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.6911 0.6480 2.610 0.0594 .
sparsity -0.7741 0.8479 -0.913 0.4129

But this might not be surprising as the portfolio values move around quite a bit and
we only have six points to work with. Note that the reader may end up with somewhat
different results than these because of the number of data points involved in the 1,512
date time series and the number of securities involved.

Here is the final regression formula to predict the portfolio value. It only involves the
sparsity independent random variable.

zyrly = β
yrly
0 + β

yrly
1 × yrlySparsity. (9.17)

First, we set up a mapping of periods being years (mode 1) or quarters (mode 2) or
months (mode 3) to fractional years in our period we are testing using a function map-
ToYr(). After finding the raw data in runSixYrsGlasso(), the regression procedure can be
written, which goes as follows:

mapToYr <- function(per,mode=1) {
if(mode==1) per+2007 else if(mode==2) per/4+2008
else (per+2)/12+2008 }

9.10 Regression on Yearly Sparsity 233

fitLinReg <- function(sparsity,clustCoeff,portv,
daysPerPeriod,mode=1,LRTerms=3) {

totalPeriods = 6*daysPerYr/daysPerPeriod
periodsByYr = mapToYr(c(1:totalPeriods),mode=mode)
shiftedPortV = c(1,portv[1:(totalPeriods-1)])
if(LRTerms == 3) {

lm <- lm(shiftedPortV ~ sparsity + clustCoeff + portv)
} else if(LRTerms == 2) {

lm <- lm(shiftedPortV ~ sparsity + clustCoeff)
} else {

lm <- lm(shiftedPortV ~ sparsity)
}
print(summary(lm))
coef <- coef(lm)
coef
beta0 = coef[1]
print(beta0)
beta1 = coef[2]
print(beta1)
if(LRTerms >= 2) beta2 = coef[3]
if(LRTerms == 3) beta3 = coef[4]

z can be found based upon the number of linear regression terms. z[1] is set to a filler
value because the portfolio value series is shifted to the right.

if(LRTerms == 3)
z = beta0 + beta1*sparsity +
beta2*clustCoeff + beta3*portv

else if(LRTerms == 2)
z = beta0 + beta1*sparsity +
beta2*clustCoeff

else
z = beta0 + beta1*sparsity

z[1] = 1.0
par(mar=c(4,4,2.82,2.82))
par(mfrow=c(1,1))
plot(periodsByYr,sparsity,type='l',

col=2,ylim=c(.2,1.5),xlab="year")
points(periodsByYr,sparsity,col=2)
if(LRTerms > 1) {

lines(periodsByYr,clustCoeff,type='l',col=5)
points(periodsByYr,clustCoeff,col=5)

}
lines(periodsByYr,shiftedPortV,type='l',col=4)
points(periodsByYr,shiftedPortV,col=4)
lines(periodsByYr,z,col=27)
lines(periodsByYr,rep(1,totalPeriods))

Below, we can compute our Boolean market direction variables, indz based upon the
predictor and indNonNegV, the actual market random variable of whether that quarter
has nonnegative portfolio value.

234 Cluster Analysis

2008 2009 2010 2011 2012 2013

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Year

po
rt

 v
al

,s
hi

fte
dS

pa
rs

ity
,C

C

Figure 9.18 Plotting portfolio return against clustering. The top two series are the lagged portfolio value and
predicted lagged portfolio value (without points). The bottom series is the co-movement graph
sparsity. A vertical line segment is used to highlight the cases where the bull/bear prediction did
not match the actual price level.

The final sum() in the print() function tells us how many successful Boolean pre-
dictions are made compared to the actual nonnegative portfolio value and is correct 80
percent of the time in predicting the next period’s nonnegative or negative price. We use
1 for the first filler (z = 1) value due to the lag of one period.

indz = (z>=1)
indNonNegV = (shiftedPortV>=1)
print((sum(indNonNegV == indz)-1)/(length(indz)-1))

A series of vertical line segments is determined to highlight the cases where the bull/bear
prediction did not match the actual price level with the R lines() below. Then the five
newly computed vectors are returned after placing them into a list.

for(y in 2:totalPeriods)
if(indz[y] != indNonNegV[y]) {

lines(c(z[y],shiftedPortV[y])~
c(mapToYr(y,mode=mode),mapToYr(y,mode=mode)),col="red")}

return(data.frame(z,sparsity,clustCoeff,portv,shiftedPortV))
}

For an annual basis, we can look at the chart of Figure 9.18 and see very few data
points, but the predictor line, z, the line without marked points, is tracking somewhat to
the sparsity. The case where it fails to predict is marked with a vertical line.

runGlassoAndLinReg <- function(daysPerPeriod,Sharpe,
mode=1,LRTerms=1) {

9.11 Regression on Quarterly Sparsity 235

totalPeriods = 6*daysPerYr/daysPerPeriod
glassoRes = runSixYrsGlasso(daysPerPeriod,Sharpe)
sparsity = glassoRes[[1]]
clustCoeff = glassoRes[[2]]
portv = glassoRes[[3]]
lrres <- fitLinReg(sparsity,clustCoeff,portv,

daysPerPeriod,mode=mode,LRTerms=LRTerms)
lrres

}

A period of one year may have too many bull and bear trends to subsume into one
time slice. There is some movement in the sparsity which tracks somewhat to the lagged
portfolio value. The dataset is very small when reduced down to one year of sparsity and
value. In any case, we see some positive results, 80 percent prediction rate.

> yrlyDF <- runGlassoAndLinReg(252,Sharpe,mode=1,LRTerms=1)
[1] 0.8

This is encouraging but only a modest success. We now turn to predict portfolio
direction from the comovement graph quarterly and monthly.

9.11 Regression on Quarterly Sparsity

Let’s consider retrying the type of chart of Figure 9.18 on a more granular, quarterly
basis. After all, quarters can vary quite a bit in terms of the stock market’s return. The
six-year period contains 24 quarters. Again, we are looking for a trend between sparsity
and clustering coefficient and the lagged portfolio value. Specifically, higher sparsity
should yield higher portfolio returns, according to the hypotheses of the literature (Ang
and Bekaert, 2003). Again we run R’s lm() function and ask for the summary(). This
time daysPerPeriod = 63 instead of 252. That means totalPeriods = 24.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9109 0.2001 4.552 0.000174 ***
sparsity 0.3042 0.1247 2.440 0.023655 *
clustCoeff -0.1579 0.2178 -0.725 0.476579

The clustering coefficient, as seen in the above summary report, does not factor into the
regression in a useful way. Rerunning the regression with only sparsity produces this
summary:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.77003 0.09355 8.231 3.67e-08 ***
sparsity 0.35562 0.12214 2.912 0.00809 **

236 Cluster Analysis

2009 2010 2011 2012 2013 2014

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Year

po
rt

 v
al

,s
hi

fte
dS

pa
rs

ity
,C

C

Figure 9.19 24 quarters of portfolio values. The top two series are the lagged portfolio value, marked without
points, and the predictor, z. The lower series is the sparsity.

and with two and three asterisks for our βs, we become optimistic. The p-values reported
are now well below 0.05.

Here is the regression equation which defines our predictor vector, zqtrly, for which
we need data for the independent random variables, qtrlySparsity and qtrlyClustCoeff ;
however, once again, qtrlyClustCoeff does not factor into the regression in a useful way.
The βqtrlys will be different values than for a yearly basis.

zqtrly = β
qtrly
0 + β

qtrly
1 × qtrlySparsity. (9.18)

When we take out clustCoeff from the regression, we simply have the intercept and
sparsity and Figure 9.19 shows the results from the quarterly regression from running
the runGlassoAndLinReg() function with an 82.6 percent success rate.

> runGlassoAndLinReg(63,Sharpe,mode=2,LRTerms=1)
[1] 0.826087

Figure 9.20 shows a single slice of the quarterly run for the 23rd quarter. The graph is
quite sparse. For the current period, it is also true that the market becomes quite bullish
for these 63 days.

9.12 Regression on Monthly Sparsity

Many times in financial analytics we expect to find trends only to find out that logic
and intuition is quite restricted in its application due to the highly random nature of
the markets. However, in this case, we do see a relationship for the monthly period, as
shown in Figure 9.21. Now, for the monthly period, we have daysPerPeriod = 21 and
totalPeriods = 72.

9.12 Regression on Monthly Sparsity 237

p
=

 2
4

lm
ra

tio
=

 0
.6

CME
−0.04 16%

AAPL
0.71 12%

MON
0.01 8%

MCD
0.61 5%

TSO
0.1 5%

GME
−0.07 5%

PCP
0.37 8%

LH
0.11 5%

BCR
0.31 5%

AMT
0.41 5%

BLK
0.21 5%

ISRG
0.14 4%

HUM
0.17 3%

EIX
0.11 3%

SWN
0.09 2%ESRX

0.42 2%

WMB
0.21 2%

RRC
0.13 1%

DVA
0.59 1%

RAI
0.59 1%

WYNN
0.3 1%

CERN
0.82 0%

PCLN
0.95 0%

AET
0.16 0%

0 10 20 30 40 50 60

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

Year

P
or

tfo
lio

 V
al

ue

Figure 9.20 63 trading days of clustering graph and portfolio value chart for the 23rd quarter. A very bullish
recovery is observed for the quarter.

For the monthly case, we have more points in the sample. We can see the regression
summary below:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.92992 0.03215 28.920 <2e-16 ***
sparsity 0.10862 0.04187 2.594 0.0115 *

Once again, our best linear regression formula has the single independent random
variable.

zmnthly = β
mnthly
0 + β

mnthly
1 × mnthlySparsity (9.19)

238 Cluster Analysis

2010 2015 2020 2025

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

year

po
rt

 v
al

,s
hi

fte
dS

pa
rs

ity
,C

C

Figure 9.21 72 months of portfolio values. The top two series are the lagged portfolio value and the predictor,
z, marked without points. The lower series is sparsity. The clustering coefficient is omitted.

> runGlassoAndLinReg(21,Sharpe,mode=2,LRTerms=1)
[1] 0.6478873

Our success rate is 64.7 percent. This begs the question, if we as investors focus on the
sparsity as our primary predictor, can future potential returns be predicted in a bullish or
bearish sense by using the sparsity and connectedness metrics on the Glasso-generated
graphs? These modest successes suggest that perhaps they can on certain quarterly and
monthly timescales; however, in the exercises we explore the out-of-sample case.

9.13 Architecture and Extension

The software architecture for clustering analytics involves the Glasso algorithm for find-
ing the graph structures and linear regression to use the graphs as market signals for next
period times of bullish or bearish regimes. Figure 9.22 is a structure chart showing the
hierarchy of functions. Sharpe Ratios are needed to enhance the graph labels. Prices are
needed to be able to find the log return, covariance, and inverse covariance matrices.
Running the Glasso algorithm not only produces the plotted graphs and market charts,
but keeps track of the graph metrics. Once the graph metrics are available, the linear
regression can be attempted on the yearly, quarterly, and monthly periods.

We know that our predictions for yearly, quarterly, and monthly graphs are only
offered in-sample at this point. There is an exercise for the ambitious reader to extend
the regression by using the in-sample coefficients against out-of-sample data. 2014 and
2015 offer a full two years of available out-of-sample data for yearly, quarterly, and
monthly cases. See the final exercise below for this.

9.14 Exercises 239

findRecentHugePrices

plotGraph findSixYrSR

runGlassoAndLinReg findR

runSixYearsGlasso

computeSparsity

computeClusterCoeff

runGlassoAndDisplay

enhanceLab

plotMultSeries

fitLinReg

mapToYr

Figure 9.22 Structure chart showing the hierarchy of called functions.

9.14 Exercises

9.1. Draw the graph and find the sparsity and cluster coefficient for the adjacency matrix
below:

A1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 0 0
1 0 1 0 1
1 1 0 1 1
0 0 1 0 0
0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

(a) Draw the undirected graph using node names U, V, W, X, and Y.

(b) Use Equations 9.7 and 9.9. Show all intermediate steps.

(c) Use the R utility functions computeSparsity() and computeClusterCoeff().

9.2. Examining the variates of the Wishart distribution

The code for displaying Figure 9.12 appears in Section 9.6.

(a) Run the code with the seed set at 138. Display four histograms for W.empir[,1],
W.empir[,6], W.empir[,11], W.empir[,16] using 50 breaks.

(b) Explain why none of values appears to be negative.

9.3. Extending Clustering Prediction to Out-Of-Sample (OOS) Dataset (Difficult)

For the ambitious reader: extend the regression by using the in-sample coefficients
against out-of-sample data. 2014 and 2015 offer a full two years of available out-
of-sample data for yearly, quarterly, or monthly cases. Examine runSixYrsGlasso()
and other prior routines in the chapter and book for loading prices and separate
as necessary so that we can run a six-year in-sample and two-year out-of-sample
simulation instead of the six-year in-sample simulation.

(a) Build and perform a yearly simulation.

(b) Build and perform a quarterly simulation.

(c) Build and perform a monthly simulation.

10 Gauging the Market Sentiment

The most common market regimes are the bull and bear regime. In Chapter 9 we
discussed how to use the undirected Gaussian Graphical Model to gauge the market sen-
timent on a portfolio basis. Specifically the amount of sparsity – the number of absent
edges in the graph – was an indication of the bullishness of the current market, to a
degree.

Often it is hard to tell which regime the market is in. If this was easy to do, following
a bullish or bearish trend would certainly be accomplished more frequently than it is
currently. The time window of observation helps to determine the regime. Many market
practitioners note that volatility is typically lower in a bull market than in a bear market.
The panic that can set in during a crisis, which often are present in many bear markets,
causes prices to fall faster than they typically rise. Sometimes this difference can be
very pronounced, as those of us who experienced the 2000–1 and 2008–9 market drops
know well.

Tools for determining market sentiment have a long history. This chapter begins with
an application of a theory for market regime switching (Ang and Bekaert, 2004). The
approach was introduced by Ang and Bekaert in the 2004 paper, “How regimes affect
asset allocation.” We proceed along the following lines. First, we load in raw prices and
calculate the returns of our risky assets, in our case here the S&P 500 (SPY), the Swiss
index (EWL), and the Japanese index (EWJ). These three assets roughly correspond
to the geographic areas Ang and Bekaert found to be most important in international
diversification. The economic rationale behind Ang and Bekaert’s findings is that con-
sumers are more able to delay purchases of durable goods (which tend to be produced in
advanced manufacturing economies) and less able to delay purchases of service goods.
For example, if I don’t have a job, then I can delay the purchase of a new car, but I
cannot delay paying my phone bill or my rent. Along this line of thinking, the ability
to delay on the part of consumers leads manufacturing economies to show dispropor-
tionately poor returns during economic downturns. This in turn opens up an arbitrage
opportunity. If we suspect that a given manufacturing economy will fare more poorly
than a given service economy, then we can short (i.e. sell on credit with the broker)
the manufacturing economy and long the service economy during the downturn. In
this implementation we let Japan proxy as the manufacturing economy, Switzerland
proxy as a small service economy, and use the S&P 500 as proxy for a large service
economy.

10.1 Markov Regime Switching Model 241

10.1 Markov Regime Switching Model

We consider the sample time series {yt}T
t=1 where yt are the log returns of the asset under

consideration.

yt = μSt + σStεt (10.1)

εt ∼ N(0, 1). (10.2)

We assume there are two states: (1) bull and (2) bear. We further assume that the state
variable St ∈ {1, 2} is unobserved and must be inferred from the behavior of the log
return process. The state process evolves according to a Markov chain with transition
probabilities:

P (St = i|St−1 = j) = pij.

A Markov chain is a random process that undergoes transitions from one state to another
on a set of states as depicted in Figure 10.1.

Model parameter values θ = (μ1, σ1,μ2, σ2, p11, p22) are estimated by maximum
likelihood estimation, where μ1 is the bull market mean, σ1 is the bull market standard
deviation, μ2 is the bear market return, σ2 is the bear market standard deviation, p1,1 is
the probability that we stay in a bull market given that we are in a bull market, and p2,2

is the probability that we stay in a bear market given we are in a bear market.
We define the likelihood function to be maximized for the observed data as

L(θ) =
T∏

t=1

f (yt|θ),

where

f (yt|θ) =
∑

i

∑
j

f (yt|St = i, St−1 = j; θ)P(St = i, St−1 = j; θ).

See the Appendix for a discussion of likelihood. Recall θ = (μ1, σ1,μ2, σ2, p11, p22).
We can write out f (yt|θ), accounting for each of the four transition possibilities:

f (yt|θ) =
∑

i

∑
j

f (yt|St = i, St−1 = j; θ)P(St = i, St−1 = j; θ)

= 1

σ1
√

2π
e
− 1

2

(
yt−μ1
σ1

)2

P(St = 1, St−1 = 1; θ)

1=Bull

2=Bear

p11

p22

p21

p12

Figure 10.1 Regime switching state transition diagram.

242 Gauging the Market Sentiment

+ 1

σ1
√

2π
e
− 1

2

(
yt−μ1
σ1

)2

P(St = 1, St−1 = 2; θ)

+ 1

σ2
√

2π
e
− 1

2

(
yt−μ2
σ2

)2

P(St = 2, St−1 = 2; θ)

+ 1

σ2
√

2π
e
− 1

2

(
yt−μ2
σ2

)2

P(St = 2, St−1 = 1; θ).

To simplify the above expression we use the φ(·) notation probability density
function:

1

σi
√

2π
e
− (yt−μi)

2

2σ2
i = 1

σi
φ

(
yt − μi

σi

)

where φ is the standard normal probability density function. Recall the definition of the
standard normal distribution

φ(x) = 1√
2π

e− 1
2 x2

.

Note that we need the 1
σ

multiplied by φ(·) since the standard normal has standard
deviation of σ = 1:

f (yt) = 1

σi
√

2π
e
− (yt−μi)

2

2σ2
i

=
(

1

σi

)
1√
2π

e
− 1

2

(
yt−μi
σi

)2

= 1

σi
φ

(
yt − μi

σi

)
.

Applying this notation and noting that constants will not affect the maximum
likelihood estimation, we then have

f (yt|θ) = 1

σ1
φ

(
yt − μ1

σ1

)
P(St = 1, St−1 = 1; θ)

+ 1

σ1
φ

(
yt − μ1

σ1

)
P(St = 1, St−1 = 2; θ)

+ 1

σ2
φ

(
yt − μ2

σ2

)
P(St = 2, St−1 = 2; θ)

+ 1

σ2
φ

(
yt − μ2

σ2

)
P(St = 2, St−1 = 1; θ).

Applying Bayes’ Rule to the joint state probabilities yields allows us to decompose
the joint state probabilities P(St = 1, St−1 = 1; θ) into the condition component P(St =
1|St−1 = 1) and the marginal component P(St−1 = 1), for example.

10.1 Markov Regime Switching Model 243

f (yt|θ) = 1

σ1
φ

(
yt − μ1

σ1

)
P(St = 1|St−1 = 1)P(St−1 = 1)

+ 1

σ1
φ

(
yt − μ1

σ1

)
P(St = 1|St−1 = 2)P(St−1 = 2)

+ 1

σ2
φ

(
yt − μ2

σ2

)
P(St = 2|St−1 = 2)P(St−1 = 2)

+ 1

σ2
φ

(
yt − μ2

σ2

)
P(St = 2|St−1 = 1)P(St−1 = 1).

Once we have the conditional probabilities isolated, we can replace them with the
components of our model. Recall that p11 = P(St = 1|St−1 = 1), p12 = P(St =
1|St−1 = 2), p22 = P(St = 2|St−1 = 2), and p21 = P(St = 2|St−1 = 1). Substitution
yields

f (yt|θ) = 1

σ1
φ

(
yt − μ1

σ1

)
p11P(St−1 = 1)

+ 1

σ1
φ

(
yt − μ1

σ1

)
p12P(St−1 = 2)

+ 1

σ2
φ

(
yt − μ2

σ2

)
p22P(St−1 = 2)

+ 1

σ2
φ

(
yt − μ2

σ2

)
p21P(St−1 = 1).

For a Markov chain we have p22 + p12 = 1 and p11 + p21 = 1. Substitution yields
the likelihood function in terms of θ = (μ1, σ1,μ2, σ2, p11, p22), and the recursion, a
formula for t defined in terms of the prior time period, t − 1, follows:

f (yt|θ) = 1

σ1
φ

(
yt − μ1

σ1

)
p11P(St−1 = 1)

+ 1

σ1
φ

(
yt − μ1

σ1

)
(1 − p22)P(St−1 = 2)

+ 1

σ2
φ

(
yt − μ2

σ2

)
p22P(St−1 = 2)

+ 1

σ2
φ

(
yt − μ2

σ2

)
(1 − p11)P(St−1 = 1).

Maximum likelihood estimation then yields the parameter estimates. Below we report
the parameters of the Markov regime switching model as estimated by maximum likeli-
hood via the R package fMarkovSwitching by Marcello Perlin (2006) and as described
in Hamilton’s Time Series Analysis (Hamilton, 1994) and Pennacchi’s asset pricing
work (Pennacchi, 2007). It is now difficult for the reader to reproduce these results
because the fMarkovSwitching package has been made obsolete; however, we can dis-
cuss the results here. We expect the bull state to have a larger mean return and smaller

244 Gauging the Market Sentiment

Table 10.1 Regime Standard Deviation.

1 2

1 0.0235 0.0538

Table 10.2 State Means.

1 2

1 0.0508 −0.0626

Table 10.3 State Standard Errors.

1 2

1 0.0111 0.0031

Table 10.4 Transition Matrix.

1 2

1 0.9668 0.0119
2 0.0332 0.9881

standard deviation, while the bear state is expected to have a smaller mean return and
larger standard deviation, as seen in Table 10.1. This is what we observe below with
state 1 standard deviation σ1 being roughly half of state 2 standard deviation σ2, as seen
in Table 10.1. We also observe the contrast in means, with state 1 having a mean return
μ1 of roughly 5 percent and state 2 having a mean return μ2 of roughly −6 percent.

We also observe the high persistence of each state, with each state having a probability
of persisting to the next month of over 95 percent as seen in Table 10.4. This underscores
the fact that both bull and bear markets tend to be persistent. In Ang and Bekaert we
observe a bull–bear ratio of roughly 2 to 1, with the average bull market lasting 15
months and the average bear market lasting eight months.

10.2 Reading the Market Data

The first step in exploring the model of Ang and Bekaert is to read in the data files with
security prices. Downloaded files for the S&P 500, the Japanese Index, and the Swiss
Index for monthly closing prices are provided. We wish to contrast the bull vs. bear
behavior of a balanced economy (S&P 500), a manufacturing economy (Japan), and
service economy (Switzerland). We read the data into data frames and load the result
of the regime switching maximum likelihood estimation. We then code 1.0 for a bull
market state and zero otherwise.

10.2 Reading the Market Data 245

setwd(paste(homeuser,"/FinAnalytics/ChapX",sep=""))

spy=read.csv("spy.csv",header=TRUE)
ewj=read.csv("ewj.csv",header=TRUE)
ewl=read.csv("ewl.csv",header=TRUE)
spy[1:3,]
smoothProbspy=read.csv("smoothProbspy.csv",header=TRUE)
smoothProbspy[1:3,]

#Plot series:
par(mfrow=c(5,1))
par(mar=c(1,2,1,1))
plot(spy[,5],type="l",col=4)
plot(ewj[,5],type="l",col=4)
plot(ewl[,5],type="l",col=4)
plot(smoothProbspy[,1],type="l",col=4)
#lines(smoothProbspy[,2],type="l",col=5)

stateProb=rep(0,length(ewl$Date))
for (i in 1:length(ewl$Date)){

if (smoothProbspy$V1[i]>0.5){
stateProb[i]=1.0

}
} plot(stateProb,type="l",col=4)

We can now plot the three risky asset closing prices as well as state probabilities,
verifying that bull states roughly correspond to segments of market positive trend.
Figure 10.2 shows these time series plots.

Any type of covariance matrix and optimal portfolio calculation require returns, not
raw prices. We will convert the raw prices to asset returns via the equation:

rt = Pt − Pt−1

Pt−1
= Pt

Pt−1
− 1,

where Rt is current period return, Pt is current period price, and Pt−1 is previous period
price. These are net returns as defined in Chapter 3.

#sum(stateProb)
Rspy=rep(0,length(ewl$Date))
Rewl=rep(0,length(ewl$Date))
Rewj=rep(0,length(ewl$Date))
for (i in 2:length(ewl$Date)) {

Rspy[i]=spy$Adj.Close[i]/spy$Adj.Close[i-1]-1
Rewl[i]=ewl$Adj.Close[i]/ewl$Adj.Close[i-1]-1
Rewj[i]=ewj$Adj.Close[i]/ewj$Adj.Close[i-1]-1

}

With our return vectors defined, we can construct the bull and bear return vectors. We
do this by stepping through the state probability vector and assigning bull period returns
to a bull return vector and bear period returns to a bear return vector.

246 Gauging the Market Sentiment

10
0.

8

0 20015010050

0 20015010050

0 20015010050

0 20015010050

0 20015010050

0.
0

0.
4

0.
8

0.
0

0.
4

30
20

8
16

12
60

14
0

10
0

Figure 10.2 Top 3 charts: Monthly prices of our three risky assets (SPY, EWJ, EWL) followed by regime
state probabilities for SPY followed by thresholded regime state for SPY.

a=1
b=1
#sum(stateProb)
bullRspy=rep(0,sum(stateProb))
bullRewl=rep(0,sum(stateProb))
bullRewj=rep(0,sum(stateProb))
bearRspy=rep(0,length(ewl$Date)-sum(stateProb))
bearRewl=rep(0,length(ewl$Date)-sum(stateProb))
bearRewj=rep(0,length(ewl$Date)-sum(stateProb))
for (i in 1:length(ewl$Date)) {

if (smoothProbspy$V1[i]>0.5) {
bullRspy[a]=Rspy[i]
bullRewl[a]=Rewl[i]

10.3 Bayesian Reasoning 247

bullRewj[a]=Rewj[i]
a=a+1

} else {
bearRspy[b]=Rspy[i]
bearRewl[b]=Rewl[i]
bearRewj[b]=Rewj[i]
b=b+1

}
}
#Plot series:
par(mfrow=c(3,1))
par(mar=c(2,2,1,1))
plot(bearRspy,type="l",col=4,main="S&P 500 Index")
plot(bearRewl,type="l",col=4,main="Swiss Index")
plot(bearRewj,type="l",col=4,main="Japanese Index")

hist(bearRspy,breaks=40,col=4,xlim=c(-.2,.2),main="S&P 500 Index")
hist(bearRewl,breaks=40,col=4,xlim=c(-.2,.2),main="Swiss Index")
hist(bearRewj,breaks=40,col=4,xlim=c(-.2,.2),main="Japanese Index")

We can now plot the return vectors in Figure 10.3 for the three assets and note coinciding
periods of higher and lower volatility. We see the histograms which show the empirical
distribution the individual asset returns in Figure 10.4.

> mean(bearRspy)
[1] 0.003797312
> mean(bearRewl)
[1] 0.00169756
> mean(bearRewj)
[1] -0.007118687

We can also see above the mean returns below and that the S&P has higher return than
the Swiss and Japanese indices.

Using regime switching is one way to gauge market sentiment on the direction it is
heading. Bayesian Reasoning is another way.

10.3 Bayesian Reasoning

In the previous chapters we used undirected graphs to collect groups of market ran-
dom variables. In this chapter we use graphs once again; however, the edges will be
directed showing expected causality and the nodes will represent Boolean predicates
which can be true or false, with uncertainty represented by a probability. Bayesian Prob-
ability Networks have become important in the artificial intelligence (AI) and machine
learning (ML) communities. Historically, computer science relegated any type of rea-
soning that involved uncertainty to AI, which embraced it (Pearl, 1998). The machine
learning approaches, when compared to AI approaches, are more statistically thorough
and rigorous. Bayesian Probability Networks, also known as Bayesian Networks (BN),
span both AI and ML. They provide one of the more formal models for AI. Since these

248 Gauging the Market Sentiment

0 20 40 60 80 100 120

−
0.

15
−

0.
05

0.
05

S&P 500 Index

0 20 40 60 80 100 120

−
0.

1
0.

0
0.

1

Swiss Index

0 20 40 60 80 100 120

−
0.

1
0.

0
0.

1
0.

2

Japanese Index

Figure 10.3 Bear state returns of the three risky assets.

networks have roots in logic, let us briefly discuss logic and graphs as they have been
used in computer science.

The computer science literature is filled with approaches to automated reasoning.
Propositional Logic provides the necessary mechanisms for reasoning about conditions
for theorem proving, and there are programming languages such as Prolog (Colmerauer
and Roussel, 1983) that evaluate predicates as a way of program execution. Propositional
Logic assertions can be stated at points of control in software programs (Floyd, 1967;
Hoare, 1969). Temporal Logic is a variation of Propositional Logic which incorporates
reasoning about conditions at points in time for correctness proofs of software programs
(Pnueli, 1977) and hardware circuits (Clarke and Emerson, 1981; Bennett, 1986). Both
Propositional and Temporal Logic reason with certainty and are useful for verifying
lower level computer engineering discrete Boolean logic.

10.3 Bayesian Reasoning 249

S&P 500 Index

Swiss Index

Japanese Index

−0.2

0

0.20.0 0.1−0.1

−0.2 0.20.0 0.1−0.1

−0.2 0.20.0 0.1−0.1

10
8

6
4

2
0

10
8

6
4

2
0

12
8

6
4

2

Figure 10.4 Bear state histograms of the returns of the three risky assets.

Bayesian reasoning attaches probabilities to predicates. If we have predicates Grass-
Soaked, Raining, SprinklerOn in Propositional Logic, we have implications

(SprinklerOn => GrassSoaked) and (Raining => GrassSoaked) (10.3)

where v => w is defined as ¬v ∨ w. In Temporal Logic, a gap in time can be described
with the eventually operator (♦) as in

(SprinklerOn => ♦ GrassSoaked) and (Raining => ♦ GrassSoaked) (10.4)

With Bayesian Reasoning, the implications are embedded in the conditional probabili-
ties:

P(GrassSoaked|SprinklerOn) and P(GrassSoaked|Raining). (10.5)

250 Gauging the Market Sentiment

Here we not only concern ourselves with whether the predicates are true but also the
probability that they are true. We begin with the prior and posterior distributions as in
(Ruppert, 2011) for computing the probabilities before and after we observe the events
and then apply logic of the form of (Pnueli, 1977).

10.4 The Beta Distribution

The beta distribution is important in Bayesian Reasoning. Unlike the normal, which
has a domain of all real numbers from −∞ to ∞, its domain is the real numbers in the
interval [0, 1]. When measuring the likelihood of a probability parameter, that, we know,
must have a range [0, 1], this distribution can be quite useful.

The beta probability density function is

P(X = x) = f (x) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1 where α,β ∈ 1, 2, 3, . . . (10.6)

10.5 Prior and Posterior Distributions

Bayes Theorem allows us to reason about distributions before and after seeing the out-
comes of a random variable. As stated in Chapter 3, Bayes Theorem can be stated
as

P(Y2|Y1) = P(Y1|Y2)P(Y2)

P(Y1)
. (10.7)

If we have a parameter or parameter set θ we can think about the prior distribution π (θ)
before seeing observations Y and the posterior distribution π (θ |Y) after seeing those
observations where we use the π when discussing densities of parameters as opposed to
events. Applying Bayes Theorem to find π (θ |Y),

π (θ |Y) = f (Y|θ)π (θ)

f (Y)
= f (Y|θ)π (θ)∫

f (Y|θ)π (θ)dθ
= f (Y|θ)π (θ)

C
, (10.8)

where the integral is no longer a function of θ and can be named a constant, C, which
allows us to simplify the formula. C can be found such that the sum or integral of all
probabilities for π (θ |Y) is 1.

If we want to develop a short-term trend following strategy based on market momen-
tum, when we see a series of consecutive positive or negative returns, we update our
beliefs about the upcoming return. Initially, before observation, we have an unbiased
belief that a given market is bullish or bearish and so the Beta(2, 2), with its symmetric
continuous distribution, is a good fit for π (θ). For Beta(2, 2) the p.d.f. is

π (θ) = 6θ (1 − θ). (10.9)

Let Y be the number of times in five observations that we see a positive return. We are
looking to overlay a logic structure on the simple log return Boolean values such as the

10.5 Prior and Posterior Distributions 251

following sequence. For example, for 21 consecutive adjusted closing prices, we have
20 log returns and 20 Boolean values of whether those log returns are positive.

> setwd(paste(homeuser,"/FinAnalytics/ChapX",sep=""))
> ec = read.csv("ECprices201305.csv")[,1]
> (diff(log(ec))>0)[1:20]
[1] FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE

[12] TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE

The sequence of TRUE/FALSE or 1/0 values for the sequence Y1, . . . , Y5 is known
to be, collectively, Binomial(5, θ), has a p.d.f. shown below and is depicted in the upper
left side of Figure 10.5. (This distribution is covered in the Appendix.)

f (y|θ) =
(

5

y

)
θy(1 − θ)5−y. (10.10)

So now, according to Formula 10.8, we can put together the two p.d.f.s from Formulas
10.9 and 10.10 into the posterior density of Y1, ..., Y5 being TRUE

π (θ |5) = 6θ6(1 − θ)∫
6θ6(1 − θ))dθ

= 6θ6(1 − θ)

C5
. (10.11)

Similarly, if all of the Y1, . . . , Y5 are FALSE then the posterior density is

π (θ |0) = 6θ (1 − θ)6∫
6θ (1 − θ)6dθ

= 6θ (1 − θ)6

C0
. (10.12)

Y = 0 Y = 1 Y = 2

0.0

0.
0

Y = 3 Y = 4 Y = 5

2.
0

1.
0

0.
0

2.
0

1.
0

0.
0

2.
0

1.
0

0.
0

2.
0

1.
0

0.
0

3.
0

1.
5

0.
0

3.
0

1.
5

0.
0

3.
0

1.
5

0.
0

1.
0

0.
0

1.
0

1.00.80.60.40.2 0.0 1.00.80.60.40.2 0.0 1.00.80.60.40.2

0.0 1.00.80.60.40.2 0.0 1.00.80.60.40.2 0.0 1.00.80.60.40.2

0.0 1.00.80.60.40.2 0.0 1.00.80.60.40.2 0.0 1.00.80.60.40.2

Figure 10.5 Two computations of the prior density. One computation of π (θ |5). Six computations of π (θ |y)
where Y varies from 0 to 5, labeled above each plot.

252 Gauging the Market Sentiment

Finding C5 and C0 can be done analytically or numerically. The R program below will
simulate the various potential forms of the posterior distribution shown in Figure 10.5
with 10,000 trials and integrates numerically using the variables postYis5DensTheta and
postYis0DensTheta in the for-loop from 1 to N, dividing the sum by N later.

N=10000
par(mar=c(2,2,2,2))
computePostDist <- function(n=5) {

theta = vector(length=N)
betaDensTheta = vector(length=N)
priorDensTheta = vector(length=N)
postYisnDensTheta = vector(length=N)
postYis0DensTheta = vector(length=N)
postYisyDensTheta = matrix(rep(0,(n+1)*N),nrow=(n+1),ncol=N)
for(i in 1:N) {

theta[i] = i/N
betaDensTheta[i] = dbeta(theta[i],2,2)
#validate our expression for priorDensTheta
priorDensTheta[i] = 6*theta[i]*(1-theta[i])
postYisnDensTheta[i] = 6*theta[i]*(1-theta[i])*(theta[i])^n
postYis0DensTheta[i] = 6*theta[i]*(1-theta[i])*(1-theta[i])^n
for(y in 0:n)

postYisyDensTheta[(y+1),i] = dbeta(theta[i],2,2)*
dbinom(y,n,theta[i])

}
print(paste("Cn is",sum(postYisnDensTheta/N)))
print(paste("C0 is",sum(postYis0DensTheta/N)))
#
postYisnDensTheta = N*postYisnDensTheta/sum(postYisnDensTheta)
for(y in 0:n)

postYisyDensTheta[(y+1),] = N*postYisyDensTheta[(y+1),]/
sum(postYisyDensTheta[(y+1),])

par(mfrow=c(ceiling((4+n)/3),3))
plot(theta,betaDensTheta,type='l')
plot(theta,priorDensTheta,type='l')
plot(theta,postYisnDensTheta,type='l')

#par(mfrow=c(2,3))
for(y in 0:n)

plot(theta,postYisyDensTheta[(y+1),],
type='l',main=paste("Y =",y),ylab="prob")

} computePostDist()

In addition to computing and plotting the numerical version of the Beta p.d.f.s for
each value Y = y, shown in Figure 10.5, the solution of C5 = C0 = 6

56 is found.

> computePostDist()
[1] "Cn is 0.106983494617936"
[1] "C0 is 0.106983494617936"

10.6 Examining Log Returns for Correlation 253

Plugging these back into Formulas 10.6 and 10.8, we find that

�(α + β)

�(α)�(β)
= �(9)

�(7)�(2)
= 56

was easily calculated using R’s gamma() function. So now we know that π (θ |5) is
distributed Beta(7,2) and π (θ |0) is distributed Beta(2,7).

10.6 Examining Log Returns for Correlation

Returns are believed to have nonzero correlations (Damodaran and New York University
Stern School of Business). We can get an idea of how much this is true by examining a
statistic that is designed for time series of prices or log returns: the autocorrelation func-
tion (ACF). The help page (accessed via ??acf) for the R acf() function references the
book by Venables and Ripley from 2002 (Venables and Ripley, 2002). This book defines
the acf() in terms of the mean of the whole series, and two portions of the series with
the lag amount truncated off the front and rear to yield Xs+t, the lagged and truncated
series, and Xs, the unlagged but truncated series, respectively.

ct = 1

n

n−t∑
s=1

(Xs+t − X̄)(Xs − X̄) and rt = ct

c0
. (10.13)

Implementing this algorithm by hand in R helps us understand the terms involved in this
analytics metric. The R code which implements Equations 10.13 is presented below and,
at the bottom, a comparison is made with native acf() values. In the code, we multiply
the log returns by 100 to keep them away from 0. In the code R is X.

setwd(paste(homeuser,"/FinAnalytics/ChapX",sep=""))
ec = read.csv("ECprices201305.csv")[,1]
maxlag=30
n=59
acfval = vector(length=(maxlag+1))

R = 100*diff(log(ec[1:(n+1)]))
Rbar = mean(R)

for(lag in 0:maxlag) {
R1=R[1:(n-lag)]
R2=R[(1+lag):n]

if(lag == 0)
c0 = 1/n*sum((R-Rbar)*(R-Rbar))

acfval[lag+1] = 1/n*sum((R1-Rbar)*(R2-Rbar))/c0
}
par(mfrow=c(1,2))
plot(R1,type='l',ylim=c(-.04,.04),col=5,

main=paste("Lag =",maxlag))
lines(R2,type='l',col=3)
round(acfval,3)

254 Gauging the Market Sentiment

acf <- acf(R, lag.max=maxlag)
acf
lines(0:maxlag,acfval,col=5)

Other than the indices being 0:30 instead of 1:31, the two methods of computing
autocorrelation match, as seen below numerically and in Figure 10.6 graphically. The
highest correlation occurs with the smallest lag, as expected. The case when the lag is
30 is shown in the left-hand plot where the lines display the two log return series R1 and
R2, which are the front and rear portions of R[] in the figure. R1 and R2 are taken from
the May, 2013 EC price series.

> round(acfval,3)
[1] 1.000 -0.223 -0.026 -0.010 0.003 0.150 -0.079 0.095
[9] -0.082 -0.071 0.014 -0.080 0.063 -0.017 0.022 -0.111

[17] -0.041 0.047 -0.044 0.064 -0.012 -0.081 -0.122 0.144
[25] -0.028 -0.176 0.104 0.011 -0.076 -0.122 0.176
>
> acf <- acf(R, lag.max=maxlag)
> acf

Autocorrelations of series 'R', by lag

0 1 2 3 4 5 6 7
1.000 -0.223 -0.026 -0.010 0.003 0.150 -0.079 0.095

8 9 10 11 12 13 14 15
-0.082 -0.071 0.014 -0.080 0.063 -0.017 0.022 -0.111

16 17 18 19 20 21 22 23
-0.041 0.047 -0.044 0.064 -0.012 -0.081 -0.122 0.144

24 25 26 27 28 29 30
-0.028 -0.176 0.104 0.011 -0.076 -0.122 0.176

This validates our implementation of Formula 10.13.

−
0.

04

Lag = 30

0

−
0.

2

Series R

0.
04

0.
02

0.
00

−
0.

02

1.
0

0.
8

0.
6

0.
4

0.
2

302520151050 30252015105

Figure 10.6 Times series of log returns and its lag of 30 periods with the autocorrelation computed two ways
and compared graphically.

10.7 Momentum Graphs 255

10.7 Momentum Graphs

If we have log returns R1, R2 for three consecutive quoted prices and S1, S2, S3 for the
two log returns, these can be summarized simply by two Boolean random variables Y1

and Y2, when considering the rise and fall of the prices.

Y1 = 1R1>0 and Y2 = 1R2>0, (10.14)

where 1 with a subexpression is the Boolean indicator function which has value 1 if
true and value 0 if false. For example, when the prices were quoted in USD per EUR,
these random variables can be used as momentum indicators whether prices are going
up or down, like TRUE/FALSE values in Section 10.5, depending upon the prices or,
equivalently, log returns so that

Y1 = 1log(S2/S1)>0 and Y2 = 1log(S3/S2)>0. (10.15)

Since consecutive prices are known to typically have some nonzero correlation, as
demonstrated in Section 10.6, we can say that Y1 and Y2 have a dependency relationship
as depicted in Figure 10.7 as

P(Y1 = y1) and P(Y2 = y2|Y1 = y1). (10.16)

This code sequence will help us look at a large set of prices and record our sample
probabilities. In this case the robust set of prices are the 29,339 from the month of
August, 2013 in the file named ECprices201308.csv.

setwd(paste(homeuser,"/FinAnalytics/ChapXI",sep=""))
ec = read.csv("ECprices201308.csv")[,1]
ind = diff(log(ec))>
len = length(ind)
sum = matrix(rep(0,4),nrow=2,ncol=2)
N = 0
for(t in 1:(len-1)) {

Y1 = ind[t]
Y2 = ind[t+1]
if(!Y1 && !Y2) sum[1,1] = sum[1,1] + 1
if(!Y1 && Y2) sum[1,2] = sum[1,2] + 1
if(Y1 && !Y2) sum[2,1] = sum[2,1] + 1
if(Y1 && Y2) sum[2,2] = sum[2,2] + 1
N = N + 1

}
prob = sum/N
ind
prob
prob/.25
sum(prob)

The following output shows the 2 by 2 matrix of computed probabilities. They may
not look that far from 1

4 until we divide them each by 1
4 and see that, especially in the

case of P(Y1)&P(Y2) in the lower right, we are quite surprised how far from 1
4 they are.

256 Gauging the Market Sentiment

Y1 Y2

-

Figure 10.7 One independent and one dependent random variable representing whether consecutive log
returns are greater than 0.

> prob
[,1] [,2]

[1,] 0.2559566 0.2729659
[2,] 0.2730000 0.1980775
> prob/.25

[,1] [,2]
[1,] 1.023827 1.0918635
[2,] 1.092000 0.7923101
> sum(prob)
[1] 1

Even though we know that consecutive prices in historical markets have nonzero cor-
relation, we have a desire to ask whether that correlation is positive or negative for our
sample. Our one-month sample is large enough to get to within 1 percent of our expected
0.2500 probability. We can demonstrate this below where the final figure is in percent
of 0.2500.

#Should we expect consec. logrets to be
#up then down with prob .2500?
set.seed(1001)
N <- 30000; vec<-rnorm(N); sum<-0
for(i in 1:(N-1)){

if(vec[i]>0 && vec[i+1]<=0) sum<-sum+1
}
> sum/N
[1] 0.2506
> 100*sum/N/.2500
[1] 100.24

If Y1 and Y2 were positively correlated then P(Y1&Y2) would be greater than 1
4 for a

large enough sample. Instead P(Y1&Y2) = 0.1981 and P(¬Y1&¬Y2) = 0.2560. Sum-
ming across the bottom we also know that P(Y1) = 0.2730+0.1981 = 0.4711 and down
the right column we obtain P(Y2) = 0.2730 + 0.1981 = 0.4710, properly rounded. We
can use the latter of two forms of the probability multiplication formula

P(Y1&Y2) = P(Y1)P(Y2|Y1) if and only if P(Y2|Y1) = P(Y2&Y1)

P(Y1)
(10.17)

to compute P(Y2|Y1) from P(Y1&Y2) = 0.1981 and P(Y1) = 0.4711 to be 0.4205.
We know that Y1 and Y2 are dependent because P(Y1) is almost 1

2 (actually 0.4711)
and P(Y2) is almost 1

2 (actually 0.4710) so P(Y1)P(Y2) = 0.2219 whereas P(Y1&Y2) =
0.1981. If Y1 and Y2 were independent, then P(Y2|Y1) would match P(Y2), but they do
not: 0.4205 vs. 0.4710.

10.7 Momentum Graphs 257

0.
00

0
0.

00
6

0.
00

4
0.

00
2

–0
.0

06
–0

.0
02

–0
.0

04

di
ff(

lo
g(

ec
))

0 5000 10000 20000 30000

0.
00

0
0.

00
6

0.
00

4
0.

00
2

–0
.0

06
–0

.0
02

–0
.0

04

ec
2

0 5000 10000 20000 30000

Index Index

Figure 10.8 31,138 actual market price log returns and 31,138 simulated returns from the normal distribution
on the same y scale. One can see that the standard deviation of the actual market log returns on
the left is not constant.

We are working with Forex prices for EURUSD and these are typically modeled
in computational finance literature as another Geometric Brownian Motion stochastic
(GBM) process, much like in Chapter 14 and Figure 15.1. The interest rate differential
provides the drift term μ of Equation 14.20. One very interesting analytics question is:
How close to normal are the market log returns? We know that generating returns from
the normal distribution allows for very few tail events as discussed in Chapter 5. What
kind of tail events are in the market log returns? Another interesting question is: How
do prices generated from a GBM process compare to the actual prices from market in
terms of correlation?

Even our vector of 29,338 indicator variables from ind of the previous two R pro-
grams can tell us a little bit about how much correlation or independence exists. We
know that if our sample values were independent from the normal distribution, then it
would be true that P(Y1&Y2) = P(Y1)P(Y2). So, if P(Y1) = 0.5 and P(Y2) = 0.5, then
P(Y1)P(Y2) = 0.25. We know this from statistical independence, which is discussed in
Chapter 3. However, in the case of the prices ec for August, 2013, P(Y1&Y2) = 0.1981
and P(Y1)P(Y2) = 0.2219 and these are pretty far off. Thus the independence assump-
tion would have to be rejected. We can start to suspect some nonzero correlation in the
prices. Let us look at the entire month of 31,138 prices and compare it to a generated
sample from the normal distribution N(μ, σ 2) where μ and σ are set to the sample mean
and standard deviation of the market price log returns. The program code allows us to
compare the market log returns to simulated returns from the normal distribution. We
can do that graphically first in Figure 10.8 which highlights the difference in consistency
between actual log returns and log returns which are, in many cases, ideally simulated.

countInd <- function(R) {
ind = R > 0
len = length(ind)

258 Gauging the Market Sentiment

sumUp = 0; sumDn = 0
N = 0
for(t in 1:(len-4)) {

if(is.na(ind[t])) {
ind[t] = ind[t+1]
print(ind[t])

}
Y1 = ind[t]
Y2 = ind[t+1]
Y3 = ind[t+2]
Y4 = ind[t+3]
Y5 = ind[t+4]
if(Y1 && Y2 && Y3 && Y4 && Y5)

sumUp = sumUp + 1
if(!Y1 && !Y2 && !Y3 && !Y4 && !Y5)

sumDn = sumDn + 1
N = N + 1
#print(paste(Y1,"->",Y2))

}
probUp = sumUp/N
print(paste("Prob of seeing long ind",probUp))
print(paste(round(probUp/(1/32)*100,2),"of 100 %"))
probDn = sumDn/N
print(paste("Prob of seeing shrt ind",probDn))
print(paste(round(probDn/(1/32)*100,2),"of 100 %"))
N

} #unit test:
pvec <- c(1.3,1.2,1.4,1.25,1.2,1.4,1.2,1.25,1.35,1.4,1.35,

1.3,1.2,1.24,1.25,1.26,1.27,1.28,1.25,1.35,1.4,1.35,
1.3,1.2,1.4,1.25,1.2,1.4,1.2,1.25,1.35,1.4,1.35,
1.3,1.2,1.4,1.25,1.2,1.4,1.2,1.25,1.35,1.4,1.35)

countInd(diff(log(pvec)))

#Collecting 5 consecutive log ret directions
setwd(paste(homeuser,"/FinAnalytics/ChapX",sep=""))
par(mfrow=c(1,2))
ec = read.csv("ECprices201305.csv")[,1]
plot(diff(log(ec)),type='l',ylim=c(-.006,.006))
countInd(diff(log(ec)))

ec2 = rnorm(length(ec),0,sd(diff(log(ec))))
plot(ec2,type='l',ylim=c(-.006,.006))
countInd(ec2)

The countInd() function counts the number of times that the five Boolean indica-
tor values, Y1, . . . , Y5, like for our trade entry indicator functions, are all TRUE or all
FALSE. In a symmetric and independent set of values, the indicator would be TRUE

P(Y1, . . . , Y5) =
(

1
2

)5 = 1
32 = 0.03125 of the time. When running countInd() on the

log returns for EURUSD prices, we get a value less than that by quite a bit, as reported
in the program output which is in percentage of 1

32 . With five consecutive positive log

10.8 Exercises 259

Y1 Y2 Y3 Y4 Y5

isLongIndicator

+ + +

+ +

Figure 10.9 Six dependent random variables. isLongIndicator iff (Y = 5). The + signs are to indicate a
positive causal relationship.

returns being 44.4 percent less likely to occur in the up direction for the market sample
than for the normal sample, this seems to say that the log returns have a reverting nature.
They are less likely to sustain a run of either five up or five down returns than an ideal
model of normal variates as seen in the segment below:

> countInd(diff(log(ec)))
[1] "Prob of seeing long ind 0.0173765015738421"
[1] "55.6 of 100 %"
[1] "Prob of seeing shrt ind 0.0261450504271857"
[1] "83.66 of 100 %"
[1] 31134

Stating it once again, we do not observe independence but rather a bit of anti-
correlation in that P(Y = 5) = 0.5560

32 and P(Y = 0) = 0.8360
32 , a bit smaller than 1

32
which is what we would expect if they were independent events. Directed probabilistic
graphs can be used to show causality. In this case, the analysis of the data is showing a
bit of reverse causality in that in the market data it is less likely than in simulated data
to see long and short indicators.

When entering a trade, we need to wait until a trend-following indicator is observed.
If we think of a coin toss, the odds of seeing five consecutive heads is (1

2)5 = 1
32 . Due

to the anti-correlation we can expect an indicator to occur more rarely than otherwise.
Bayesian probability networks allow one to formally reason about the market

movements and justify a basic momentum indicator to be used in Chapter 11 for a
trend-following trading strategy.

10.8 Exercises

10.1. Posterior Distribution with Another Indicator

Assume that your manager would like you to relax the trading indicator
isLongIndicator() to only consider trades when the number of successive positive
log returns or negative log returns is Y4 = 4.

(a) Use the function computePostDist() to display the Beta distribution for this
new case.

260 Gauging the Market Sentiment

(b) Draw the directed probabilistic graph like Figure 10.9 for this set of random
variables.

10.2. Independence of Market Random Variables

Assume that Y1 and Y2 are indicators of consecutive positive log returns for
EURUSD price quotes as in Figure 10.7. When we collected approximately
30,000 log returns, we found the following sample occurrences which are our
probabilities: (

.24 .27

.23 .26

)

(a) Determine P(Y1) and P(Y2) from the table as well as P(Y1&Y2).

(b) If we round our computed probabilities to two digits, will we consider Y1 and
Y2 independent for this sample?

11 Simulating Trading Strategies

Stories abound about people who say they bought a house 30 years ago, and it is now
worth many times the purchase price. Staying invested in the housing market has histor-
ically been a safe bet. Just like a long-term investor in the housing market, a long-term
individual stock market investor expects an upward-trending stock market when viewed
decade by decade. The stock market investor remains in a long position, “long the
stock market,” until they decide to liquidate the position and realize any gains. In many
cases this happens upon their retirement. This form of investing is one type of conser-
vative strategy known as trend following: following the long-term upward trend until
the desired profitability is achieved or until holding on to the investment is no longer
feasible.

This chapter is all about trend following on a much more short-term basis: a matter of
minutes or hours. It builds upon the market sentiment ideas of Chapter 10 and extends
them.

11.1 Foreign Exchange Markets

If a United States corporation is expecting to make payments for purchased products
in the Euro currency, they need to hedge their exposure to the Euro until the day the
payment is required. Economically speaking, if the Euro increases in value before the
payment date, and we wait to convert over our US currency into Euros, the payment
effectively increases in value, against our will. The situation the company is in ends up
being part of a trading strategy. A trend-following strategy to hedge exposure to the Euro
involves buying the Euro and selling US Dollars at a point when the Euro is expected
to increase or strengthen in value. If we own a forward or futures contract – the right
to buy Euros at 1.1400 in the future – and the Euro currency then increases in value, as
the Euros get more valuable we take comfort from the fact that we locked in at 1.1400,
the lower rate. We tailor a contract to do this as long we think it is likely that an upward
trend for Euro will exist. So, even though we just needed to make a payment, we are
becoming a trader in the market.

Going beyond this simple payment example, for people speculating or hedging
their long-term exposure to currency rates, another strategy is common. Since cur-
rency rates tend to grow much more slowly in return or percentage terms compared
with stocks, a common strategy is mean reversion. If the Euro has been trading near

262 Simulating Trading Strategies

1.1400 US Dollars per Euro lately, it is not uncommon when it deviates from 1.1400
to come back to that amount. When it does, we say that it has “reverted” to the
mean. A mean-reversion strategy involves buying the Euro currency when it has gone
down as far as 1.1350 and expecting it to come back to 1.1400, at which time we
plan to sell it. If things work out well, there are 0.0050 or 50 ticks of profit to be
gained.

Keeping our attention on our shorter time frame, within a day, these two most basic
types of investment strategies for a time series of prices are applicable: trend-following
and mean reversion. On a short-term basis, with trend-following, a perceived trend is
expected to sustain for a period of time so that the investor can profit. The investor
believes a trend has begun by observing the market overall or a specific signal being
triggered. As soon as possible, a position is established in the market. If the position is
entered through a market order, the investor is subject to market price conditions at the
time they enter the position. In order to fulfill the entry expectations, the goal is to com-
plete the transaction as soon as possible. This is usually seconds or even milliseconds
for a technically advanced firm, or hours or minutes for an individual manually enter-
ing the transaction on their own behalf or calling a broker to place the trade for them:
essentially, “human speed.”

With mean reversion in this short time span, the investor takes a long or short position
with the expectation that prices will revert back toward a historical mean. If the investor
is in a short position, they hold the opinion that prices are higher than the mean and
are expected to fall back toward the mean. Two of the biggest challenges with mean
reversion is to decide exactly what the value of the mean is, for prices to revert to, as
well as the size of an excursion an investor is willing to tolerate before reversion occurs.
If a bull market ensues after the short position is placed, it can be quite nerve-wracking
to wait for prices to fall back to the mean. For example, in the bull markets for crude oil
in the mid to late 2000s, reversion to some prices have still not yet occurred several years
later in 2014. And in the currency world, many currencies such as the Canadian Dollar
approached the value of the US Dollar in the five years from 2008 to 2013, whereas it
had been only 65 percent of it as recently as 2003. Reversion to the 0.65 figure may
never happen. In order to minimize this risk of non-reversion, stop loss limit orders can
prevent a strategy from going awry when the trend is adverse to the investor’s position.
It limits the loss to be based upon the limit price. So long as the order can get filled
in the market at or near the limit prices, the loss on the trade is capped. Sophisticated
investors can overcome these obstacles and maintain a profitable mean reversion strategy
by deploying limits orders.

Let us return to trend-following and look at a basic long and short strategy to earn a
profit from trends in the foreign exchange market. Trend following can occur on a more
short-term basis for those participating in futures markets with margin accounts. Day
trading involves placing a position and liquidating it on the same day, staying “flat” or
positionless overnight. There is enough price movement within the day to take advantage
of strategies. The investor can speculate on either the long or short direction and must
decide on the direction before placing the trade.

11.2 Chart Analytics 263

Futures are derivative securities which always have a time of expiry and are set in
price roughly approximating the expected price at the expiry date. If one is participating
in the currency futures markets on the EUR/USD currency pair, they typically speculate
on a contract to either take EUR long and sell USD short simultaneously, or to take
USD long and sell EUR short simultaneously. When interest rates are low, the price of
the futures currency pair for expiry in one of four standard contract months each year,
March, June, September, and December, is often close to the price of the “cash” or non-
futures price which can be traded anytime. So trend-following a EUR/USD future is
much like trend-following the EUR/USD cash security.

11.2 Chart Analytics

Strategies can be validated by performing chart analytics. Using historical prices and R
as a simulation language for programming trend-following algorithms, one can back-test
a strategy and get a feeling for its robustness and profitability. There are many commer-
cial packages which simulate and display trades along with their status. But writing a
simulator from scratch is a good exercise.

Figure 11.1 is a chart where each point represents the futures price of the Euro in
US Dollars at a given minute. The futures market is open during trading hours for
this chart for a full one-month period: June, 2013. EUR begins the month approx-
imately 1.3000 and ends about there, but travels to as high as 1.3400 in between.
For our purposes we will not be concerned with the exact open and closing time of
the market. Typically the market is 24-hour except for an hour a day until Fridays,
when there is a 48-hour break until the market reopens for Asia on Sunday. These
time-of-day constraints can be built in after the basic strategy is up and running. For
now, we will start with the basics of short-term trend-following as a long and short
strategy.

0 5000 10000 2000015000 25000
Minute

1.
30

1.
31

1.
32

1.
33

1.
34

E
U

R
 in

 U
S

D

Figure 11.1 One month of minute-by-minute EUR/USD prices from June 2013.

264 Simulating Trading Strategies

0 200 400 600 800

Minute

1.
29

8
1.

30
0

1.
30

2
1.

30
4

E
U

R
 in

 U
S

D

Figure 11.2 One long and one short trade in trend-following. In this example we have stopAmt = 0.0045 and
profAmt = 0.0025. The prices are, again, from June 2013.

11.3 Initialization and Finalization

Administrative duties are required by most computer programs. Our market simulation
needs to keep track of entry and exit prices for trades. It needs to ensure that no more
than one trade is in effect at time, for our modest system here. One active trade at a time
is our rule. It needs to separate long and short indicators and trade entries.

The following functions need to be executed before and after each simulation run. It
makes heavy use of the super-assignment operator to perform the side-effects for the
required resets. The constant K is the number of observed log returns and KH is double
that amount, so that log returns prior to the trade entry decision can be observed and
recorded to see how the market moves after trade entry.

reset <- function(S) {
print("reset")
K <<- 5; KH <<- 10
LONG <<- 1; SHRT <<- 2; PROF <<- 1; LOSS <<- 2
MaxTrades <<- round(length(S)/100)
longProfTicks <<- 0
longLossTicks <<- 0
shrtProfTicks <<- 0
shrtLossTicks <<- 0
longProfLogDiffS <<- array(rep(0,MaxTrades,KH),c(MaxTrades,KH));

longProfIdx <<- 1
longLossLogDiffS <<- array(rep(0,MaxTrades,KH),c(MaxTrades,KH));

longLossIdx <<- 1
shrtProfLogDiffS <<- array(rep(0,MaxTrades,KH),c(MaxTrades,KH));

shrtProfIdx <<- 1
shrtLossLogDiffS <<- array(rep(0,MaxTrades,KH),c(MaxTrades,KH));

shrtLossIdx <<- 1
longProf <<- vector(length=MaxTrades)

11.4 Momentum Indicators 265

longLoss <<- vector(length=MaxTrades)
shrtProf <<- vector(length=MaxTrades)
shrtLoss <<- vector(length=MaxTrades)
logProfIdx <<- 1
longLossIdx <<- 1
shrtProfIdx <<- 1
shrtLossIdx <<- 1

}

winTicks and totalTicks below help implement the winning ratio calculation, which we
will cover more in Section 11.8.

reportCounts <- function() {
print(paste(longProfIdx-1,longLossIdx-1,

shrtProfIdx-1,shrtLossIdx-1))
print(paste("this sim longs =",counts[1],"shrts = ",counts[2]))
winTicks = longProfTicks+shrtProfTicks
totalTicks = longProfTicks+shrtProfTicks-

longLossTicks-shrtLossTicks
print(paste(round(winTicks),round(totalTicks),

"winning ratio:", round(winTicks / totalTicks,4)))
annHistVol

}

11.4 Momentum Indicators

A basic long and short trend-following strategy is to look for successive price changes
showing momentum in the upward or downward direction as in Figure 11.3. A very
simple indicator to determine if upward or downward momentum exists is a successive
positive (negative) return for entering long (short) positions. Looking at the most recent
log returns on the first 60 time points of the EURUSD chart, we have this output:

> ec = read.csv("ECprices201310.csv")[,1]
> diff(log(ec[40:100])) > 0
[1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE

[11] TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[21] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[31] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[41] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[51] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

There is one place where five or more consecutive upward returns appear: starting at
the middle of the fourth row of Boolean values. This is fairly rare in the series and it
is our long trade-entry indicator. Two time periods after the fifth Boolean (labeled 42)
we will have entered our long trade: one period to look back and recognize the bullish
signal and place an order and another period for the long order confirmation. Figure
11.3 shows seven consecutive trades on the first 5,000 minutes of prices with the first

266 Simulating Trading Strategies

0 1000 2000 3000 4000 5000
Minute

1.
29

5
1.

30
0

1.
30

5
1.

31
0

1.
31

5
E

U
R

 in
 U

S
D

Figure 11.3 Seven trades in trend-following: long, short, long, long, long, short, and short. The four long
trades are successful. Two of the short trades are unsuccessful and one is successful. In this
example we have stopAmt = 0.0045 and profAmt = 0.0025. The prices are, again, from June 2013.

five successful in green (long) and yellow (short) and the last two unsuccessful in red
(short). Brown is reserved for unsuccessful long trades.

11.5 Bayesian Reasoning within Positions

The argument for momentum with a given market, EURUSD in this case, can be made
via the Bayesian ideas of prior and posterior distributions. For the prior case, since we
know very little about what prices and log returns are coming in the future, we assume a
very symmetric distribution. Then, as we start observing log returns and whether they are
positive or not, our binomial random variable Y of Equation 9.5, we update our beliefs
and form successive posterior distributions given Y . An argument can be made that if we
see five successive positive log returns, Y = 5, then there is upward momentum in the
bullish direction. Think of it as getting five consecutive heads in a row when flipping a
coin, then changing any beliefs about the probability of heads being 50–50 to a Bayesian
belief that heads are now more likely than tails for a while. Another argument can be
made that this bullish price trend is very temporary and that prices will dissipate and
revert back to where there were. It all comes down to the question: how long can the
price trends sustain themselves? The position testing of this chapter is intended to find
out more about this question.

Figure 10.5 tells us that prior and posterior reasoning has us believe that when Y = 5,
the posterior distribution is Beta(7, 2), whose p.d.f. appears in the lower right-hand cor-
ner. Two lines of R code can tell us the mean of this distribution which is at 0.7776,
certainly biased toward another bullish success, expecting the upcoming log return to be
positive.

> draws = rbeta(1000000,7,2)
> mean(draws)
[1] 0.777645

11.5 Bayesian Reasoning within Positions 267

–0
.0

01
5

0.
00

00
0.

00
15

di
ffL

og
E

C

0 200 400 600 800

times

1.
29

6
1.

30
2

1.
30

8

E
U

R
 in

 U
S

D

0 200 400 600 800
Times

Figure 11.4 Log returns of EURUSD for 910 minutes of June, 2013 and position chart below.

−
0.

00
15

0.
00

00
0.

00
15

r

890 895 900 905 910 915 920

times

−
1.

30
3

1.
30

6
1.

30
9

E
U

R
 in

 U
S

D

0 30252015105

Minute

Figure 11.5 Fourth position from Figure 11.3 depicted above as log returns. The lower chart shows the trade
lasting seven minutes for the expected 25-tick profit.

We can examine how often a five-stage indicator, depicted as a network in Figure 10.9,
can occur in typical EURUSD log returns. If the five-stage indicator is observed, the
position is entered and is held until resolved into a profitable or unprofitable position via
a movement of 25 ticks or 45 ticks from entry in the direction of the position. Figure 11.4
imposes the log returns and prices next to each other for the first few minutes of June,
2013 with long and short indicators. Below that are EURUSD prices for the same period
and short-term positions with long in green and short in yellow. The long indicators
are in green and the short indicators are in yellow for the top chart with log returns.

268 Simulating Trading Strategies

The bottom chart shows the positions taken from the indicators in the top chart in the
corresponding color. Figure 11.5 focuses on one position in this price series.

11.6 Entries

We have examined the conditions required to enter a trade. We simply proposed a heuris-
tic rule which we felt might justify enough momentum in a market to begin to follow a
trend. We know these trends do not last long in an intra-day market. The pair of func-
tions isLongIndicator() and isShrtIndicator() are the indicators which use the posterior
probability rationale of the previous chapter, where Y , the number of bullish or bearish
successive prices in five consecutive minute time points, can be 0 through 5. We use this
rule to justify a belief that a bull or bear market regime will begin and will sustain for
long enough to earn a profit more often than not.

isLongIndicator <- function(logRetArr) {
Y = sum(logRetArr[1:5] > 0)
return(Y == 5)

}

isShrtIndicator <- function(logRetArr) {
Y = sum(logRetArr[1:5] < 0)
return(Y == 5)

}

The pair of functions are used throughout the market simulation as trade entry indica-
tors. They are simple indicators which return whether five successive log returns of the
price time series are all trending the same bullish (long) or bearish (short) direction.
When either of these indicator functions returns TRUE the state goes from “no trade” to
“preparing for trade entry” from one minute to the next.

The code to produce charts like the top chart of Figure 11.5 appears below. It uses
five functions which are upcoming in this chapter: isLongIndicator(), isShortIndicator(),
reset(), reportCounts(), and sim(). It is best to hold off from running the second portion
of this code block until these functions are defined.

displayLogRetInds <- function(r,times) {
plot(times,r,type='l',col=4,

ylim=c(-.0015,.0015))
points(times,r,cex=.2)
len = length(r)
lines(times,rep(0,len)) #plot x-axis

longInd <- as.vector(rep(0,10)); j <<- 0
shrtInd <- as.vector(rep(0,10)); k <<- 0
for(i in 5:length(r)) {

t = times[1]+i-1
if(isLongIndicator(r[(i-4):i])) {

j <<- j + 1

11.7 Exits 269

longInd[j] <- i
i = i + 5
print(t)

}
if(isShrtIndicator(r[(i-4):i])) {

k <<- k + 1
shrtInd[k] <- i
i = i + 5
print(t)

}
}
#Draw the potential entries:
if(j>0)

for(i in 1:j)
lines(c(longInd[i]+times[1]-1,

longInd[i]+times[1]-1),
c(-.0015,.0015),col="green")

if(k>0)
for(i in 1:k)

lines(c(shrtInd[i]+times[1]-1,
shrtInd[i]+times[1]-1),

c(-.0015,.0015),col="yellow")
longInd <<- longInd
shrtInd <<- shrtInd

}

The function displayLogRetInds() is merely to produce a figure. The code below that
produced the top diagram of Figure 11.5.

11.7 Exits

Figure 11.3 depicts this strategy at work for seven trades, four profitable longs in green,
one profitable short in yellow, and two unprofitable shorts in red over the first 5,000
minutes of the month of June, 2013 using profAmt = 0.0025 and stopAmt = 0.0045. A
diagonal line terminated with an asterisk (*) depicts a profitable exit and a minus sign
(–) depicts an unprofitable exit.

Backtesting is key for determining the exit strategy. Initially, it was believed that a
good calibration was profAmt = 25 and stopAmt = 45; however, further testing found
that profAmt 45 and stopAmt = 35 is a better choice for the sample dataset. So when
sufficient momentum is observed at one time point, one minute later we enter a long
trade and hold on until one of two events happens:

• The momentum continues and the price rises 0.0045 or 45 ticks above our entry price;
• The momentum dissipates and the price falls 0.0035 or 35 ticks below our entry price.

Symmetrically, the short trade has the profit target of 45 ticks below and stop of 35 ticks
above the entry price. When either of these two exit signals occurs at a minute time

270 Simulating Trading Strategies

point, we have exited the trade in the following minute time point. This strategy places
a profit target and a stop loss limit to limit both directions of our trade. The profit target
attempts to lock in a profit at a level proven to be reliable. The stop loss limit is to protect
against the risk of a significant financial loss.

11.8 Profitability

Just like the stock market, the currency market has a convention for quoting prices. For
the EUR/USD currency futures pair as traded on the Chicago Merchantile Exchange,
0.0001 represents a single tick, the smallest pricing unit, worth $12.50 per contract
bought or sold, for profit and loss settlements. For a ten contract investment, a movement
of 45 ticks in the profitable direction is worth:

Profit = (10 contracts)(12.50 USD per contract per tick)(45 ticks) = 5625.00 USD.

For a ten contract investment, a movement of 35 ticks in the unprofitable direction is
worth:

Loss = (10 contracts)(12.50 USD per contract per tick)(35 ticks) = 4375.00 USD.

11.9 Short-Term Volatility

Backtesting is a way to find the “beat” of the market that one is trading. By trial and
error we found that approximately 45 ticks of profit and 35 ticks for a stop loss limit
is about right consistently for our six-month by one-minute sample dataset. At 5625.00
USD per winning trade and 4325.00 USD per losing trade we would be allowed to have
fewer winning trades per losing trade in order to maintain a profitable position.

With trending and mean reversion occurring and because of the volatility of prices,
investors can speculate on the upcoming future prices, applying a strategy. As we simu-
late the market for one month, we also want to discover and keep in mind the volatility
that was in effect for that month. Investor’s intuition would tell us that an adequate level
of volatility is necessary to have success in a trend-following strategy. If the trends we
expect are occurring then those trends would be causing a higher standard deviation of
log returns, and this should be reflected in the volatility.

Measuring volatility on the EUR charts, represented by price vector S, on a one-
minute time basis, is as follows:

> S = ec
> logDiffS = diff(log(S))
> logDiffSmean = mean(logDiffS)
> N = length(logDiffS)
> minHistVol = sqrt(1/(N-1)*sum((logDiffS-logDiffSmean)^2))
> annHistVol = minHistVol*sqrt(60*24*252)
> annHistVol
[1] 0.1024109

11.10 The State Machine 271

See Section 3.4 for the general formula for historical volatility.
Simulating day trades on this one-minute Euro market on a price time series for one

month begins with some R administrative code for setting constants, resetting counters,
and reporting the results. The next section outlines this code.

11.10 The State Machine

At each time period where a single price for the security is present, we are in one of nine
states, as depicted in Figure 11.6, where the positive or negative state value is kept in
the direction variable in the R code. State (0) is the quiescent state with no active trade.
The trade states are: (0) is no trade, (+1) is long, and (−1) is short. The fractional states
are: (+.25) is transitioning from no trade to long, (−.25) is transitioning from no trade
to short, (+.50) is transitioning from long to exiting because a loss limit is hit, (+.75)
is transitioning from long to exiting because a profit target is hit, (−.50) is transitioning
from short to exiting because a loss limit is hit, and finally (−.75) is transitioning from
short to exiting because a profit target is hit.

Now we are ready for the main simulation loop which follows the finite state machine
design of Figure 11.6.

0

–.25

+.25

–1

+1

–.75

–.50

+.50

+.75

isL
on

gI
nd

ica
to
r(
)

en
te
r
lo
ng

po
si
tio

n exit

position expected gain

exit

position
expected

loss

isShrtIndicator()

enter
shrt position

exi
tpos

itio
n exp

ect
ed

gai
n

ex
itpo
sit

ion
ex
pe
cte

d
los

s

Figure 11.6 State machine for long and short positions.

272 Simulating Trading Strategies

sim <- function(S,mo,stopAmt=.0035,profAmt=.0045) {
plot(S,type='l',col='blue4',xlab='minutes',

ylab='EUR in USD')
if(TRUE) #"blue"

points(S,type='p',xlab="Minutes",ylab="EC",
col='blue4',pch=16, cex=1.4)

#simulate strategies on the incoming chart
#We use 1e4 multiplier since logrets are only used for
#pattern analysis
logDiffS = 10000*diff(log(S))
logDiffS = append(logDiffS, 0.0, after = 0); #log ret inds
logDiffSmean = mean(logDiffS)
N = length(logDiffS)
minHistVol <<- sqrt(1/(N-1)*

sum((logDiffS/1e4-logDiffSmean/1e4)^2))
annHistVol <<- minHistVol*sqrt(60*24*252)
tradetrange = 0
tradeSrange = 0
direction = 0
countT = 0; countF = 0
logDiffSentry = array(rep(0,KH),c(KH))

We use five log returns as the trade entry indicators, and we analyze those five and
the five prior to them. This results in skipping out to time period KH + 1 = K + K + 1 =
5 + 5 + 1 = 11 initially. The while-loop below is the main simulation loop, iterating over
the length of the logDiffS log return price vector. There are four major code blocks below
as we review it: long, long unwind, short, and short unwind, and these logic sections are
marked in comments.

i = 11
while(i<=length(logDiffS)) {

#long:
if((direction == 0) && isLongIndicator(logDiffS[(i-4):i])

) {
logDiffSentry = logDiffS[(i-(KH-1)):i]
direction = +0.25 #buy upon next points

}

The two element vector tradetrange (trade time range) and tradeSrange (trade stock
price range) record the time, i, and price level, S[i], of trade entry and exit. This
simplifies the profit or loss calculation later.

else if(direction == +0.25) {
tradetrange = c(i)
tradeSrange = c(S[i])
print(paste("long: ",tradetrange,tradeSrange))
countT <- countT + 1
i <- i + 5 #fast fwd time for next indicator instance
direction = +1

}

11.10 The State Machine 273

On hitting the profit target of 45 ticks (below), we transition to the “exit position
expected gain” state. Once in that state all trade exit tallies are completed.

#long unwind:
if((direction == +1) && ((S[i]-tradeSrange[1]) > profAmt)) {

direction = +0.75
}
else if(direction == +0.75) {

tradetrange = union(tradetrange, c(i))
tradeSrange = union(tradeSrange, c(S[i]))

print(paste("unwind long expected gain: ",tradetrange[2],
tradeSrange[2],round(tradeSrange[2]-tradeSrange[1],5)))

lines(tradetrange,tradeSrange,type="l",col="green",lwd=3)
points(tradetrange[2],tradeSrange[2],

cex=2,pch="*",col="green")

longProf[longProfIdx] <<-
tradeSrange[2]-tradeSrange[1] >= 0

longProfLogDiffS[longProfIdx,] <<- logDiffSentry
longProfIdx <<- longProfIdx + 1

longProfTicks <<- longProfTicks + 10000*
(tradeSrange[2] - tradeSrange[1])

tradetrange = 0; tradeSrange = 0; direction = 0
}

On hitting the stop loss limit of 45 ticks (below), we transition to the “exit position
expected loss” state. Once in that state all trade exit tallies are completed.

#long unwind:
if((direction == +1) && ((S[i]-tradeSrange[1]) <= -stopAmt)) {

direction = +0.50
}
else if(direction == +0.5) {

tradetrange = union(tradetrange, c(i))
tradeSrange = union(tradeSrange, c(S[i]))

print(paste("unwind long expected loss: ",tradetrange[2],
tradeSrange[2],round(tradeSrange[2]-tradeSrange[1],5)))

lines(tradetrange ,tradeSrange ,type="l",col="brown",lwd=3)
points(tradetrange[2],tradeSrange[2],

cex=3,pch="-",col="brown")

longLoss[longLossIdx] <<-tradeSrange[2]-tradeSrange[1] < 0
longLossLogDiffS[longLossIdx,] <<- logDiffSentry
longLossIdx <<- longLossIdx + 1

longLossTicks <<- longLossTicks + 10000*
(tradeSrange[2] - tradeSrange[1])

tradetrange = 0; tradeSrange = 0; direction = 0
}

274 Simulating Trading Strategies

Symmetrically, the logic applies to the short case.

#short:
if((direction == 0) && isShrtIndicator(logDiffS[(i-4):i])

) {
logDiffSentry = logDiffS[(i-(KH-1)):i]
direction = -0.25

}
else if(direction == -0.25) {

tradetrange = c(i)
tradeSrange = c(S[i])
print(paste("shrt: ",tradetrange,tradeSrange))
countF <- countF + 1
i <- i + 5 #fast fwd time for next indicator instance
direction = -1

}

Like for longs, on hitting the profit target (below), we transition to the “exit position
expected gain” state.

#short unwind:
if((direction == -1) && ((tradeSrange[1]-S[i]) > profAmt)) {

direction = -0.75
}
else if(direction == -0.75) {

tradetrange = union(tradetrange, c(i))
tradeSrange = union(tradeSrange, c(S[i]))
print(paste("unwind shrt expected gain: ",tradetrange[2],

tradeSrange[2],round(tradeSrange[1]-tradeSrange[2],5)))
lines(tradetrange ,tradeSrange ,type="l",

col="gold",lwd=3)
points(tradetrange[2],tradeSrange[2],

cex=2,pch="*",col="gold")

shrtProf[shrtProfIdx] <<- tradeSrange[1]-tradeSrange[2] >= 0
shrtProfLogDiffS[shrtProfIdx,] <<- logDiffSentry
shrtProfIdx <<- shrtProfIdx + 1

shrtProfTicks <<- shrtProfTicks + 10000*
(tradeSrange[1] - tradeSrange[2])

tradetrange = 0; tradeSrange = 0; direction = 0
}
if((direction == -1) && ((tradeSrange[1]-S[i]) <= -stopAmt)) {

direction = -0.50
}
else if(direction == -0.50) {

tradetrange = union(tradetrange, c(i))
tradeSrange = union(tradeSrange, c(S[i]))
print(paste("unwind shrt expected loss: ",tradetrange[2],

tradeSrange[2],round(tradeSrange[1]-tradeSrange[2],5)))

11.10 The State Machine 275

lines(tradetrange,tradeSrange,type="l",col="red",lwd=3)
points(tradetrange[2],tradeSrange[2],

cex=3,pch="-",col="red")

shrtLoss[shrtLossIdx] <<-tradeSrange[1]-tradeSrange[2] < 0
shrtLossLogDiffS[shrtLossIdx,] <<- logDiffSentry
shrtLossIdx <<- shrtLossIdx + 1

shrtLossTicks <<- shrtLossTicks+10000 *
(tradeSrange[1] - tradeSrange[2])

tradetrange = 0; tradeSrange = 0; direction = 0
}
i <- i + 1

}
return(c(countT,countF))

}

A portion of the sim() function output appears below. As it performs the trade entry and
exit simulation, sim() logs individual position outcomes as a gain or loss and the entry
and exit times and prices from the tradetrange and tradeSrange two-element vectors
as well as the price difference. reportCounts() is a summary of each simulation run
for a month of one minute data, showing the number of completed profitable longs,
unprofitable longs, profitable shorts, and unprofitable shorts, as well as total long and
total short positions. The winning ratio can be calculated from the following formula
and appears near the bottom of this output segment:

WinRatio = (profitable ticks)/(profitable ticks − unprofitable ticks), (11.1)

where the unprofitable ticks are negatively signed.
First we set our current directory so that we pick up a file of prices from the upcoming

Chapter. Then we can run a test of our built trading simulation functions.

setwd(paste(homeuser,"/FinAnalytics/ChapXI",sep=""))
par(mfrow=c(2,1))
start=890; end=920 #Limits chart to start:end
ec = read.csv("ECprices201306.csv")[,1]
ec = ec[start:end]
diffLogEC = diff(log(ec))
times=c(start:(end-1))
countInd(diffLogEC)
displayLogRetInds(diffLogEC,times)
ec = read.csv("ECprices201306.csv")[,1]
plot(start:end,ec[start:end],type="p",col=4)
reset(ec[1:800])
counts <- sim(ec[1:800],"01306",

stopAmt=.0045,profAmt=.0025)
reportCounts()
ec = read.csv("ECprices201306.csv")[,1]

276 Simulating Trading Strategies

plot(ec[1:5000],type="l",col=4)
reset(ec[1:5000])
counts <- sim(ec[1:5000],"201306",

stopAmt=.0045,profAmt=.0025)
reportCounts()

Here is a log of the seven simulated trades with the time as a minute number and
simulated entry price, followed by the unwind or exit event with minute number and
simulated exit price. The term “expected gain” means that a profit target was hit during
minute t so that in minute t + 1 an exit will occur and there is an expected – but not a
guaranteed – gain. The gain may not occur if the market moves significantly and out of
the profit region, but this is highly unlikely. The term “expected loss” works similarly
for the unprofitable case.

The last line is a trade entry whose exit does not occur within the first 5,000 minutes.
There is no unwind event reported before we end the simulation.

> counts <- sim(ec[1:5000],"201306",stopAmt=.0045,profAmt=.0025)
[1] "long: 52 1.30027"
[1] "unwind long expected gain: 397 1.30306 0.00279"
[1] "shrt: 434 1.30216"
[1] "unwind shrt expected gain: 696 1.29936 0.0028"
[1] "long: 701 1.29964"
[1] "unwind long expected gain: 860 1.30224 0.0026"
[1] "long: 910 1.30498"
[1] "unwind long expected gain: 916 1.3088 0.00382"
[1] "long: 935 1.3085"
[1] "unwind long expected gain: 3500 1.31081 0.00231"
[1] "shrt: 3558 1.307"
[1] "unwind shrt expected loss: 4522 1.31164 -0.00464"
[1] "shrt: 4542 1.31091"
[1] "unwind shrt expected loss: 4909 1.31655 -0.00564"
[1] "long: 4978 1.31647"

The following code sequence dispatches six consecutive one-month-long simulations.

setwd(paste(homeuser,"/FinAnalytics/ChapXI",sep=""))
ec = read.csv("ECprices201305.csv",header = FALSE)[,1]
reset(ec)
counts <- sim(ec,"201305")
reportCounts()

ec = read.csv("ECprices201306.csv",header = FALSE)[,1]
reset(ec)
counts <- sim(ec,"201306")
reportCounts()

ec = read.csv("ECprices201307.csv",header = FALSE)[,1]
reset(ec)
counts <- sim(ec,"201307")
reportCounts()

11.10 The State Machine 277

ec = read.csv("ECprices201308.csv",header = FALSE)[,1]
reset(ec)
counts <- sim(ec,"201308")
reportCounts()

ec = read.csv("ECprices201309.csv",header = FALSE)[,1]
reset(ec)
counts <- sim(ec,"201309")
reportCounts()

ec = read.csv("ECprices201310.csv",header = FALSE)[,1]
reset(ec)
counts <- sim(ec,"201310")
reportCounts()

The output for one of the months might look like this:

...
[1] "long: 29242 1.29533"
[1] "unwind long expected gain: 29305 1.30128 0.00595"
[1] "shrt: 29319 1.3033"
[1] "unwind shrt expected gain: 30441 1.29858 0.00472"
[1] "shrt: 30490 1.29724"
[1] "unwind shrt expected loss: 30614 1.30068 -0.00344"
[1] "shrt: 30687 1.29849"
> reportCounts()
[1] "12 11 14 11"
[1] "this sim longs = 23 shrts = 26"
[1] "1221 2076 winning ratio: 0.5882"
[1] 0.09746766

A key success statistic is the reported winning ratio, 58.82 percent. At the very bottom is
the reported annualized historical volatility of the price time series, 9.75 percent, which
we can record and potentially study as a stimulus variable for the success of the strategy.

Figure 11.7 depicts the position activity for the 23 long and 26 short trades for the
entire month of May 2013. The following color scheme is used to display the position
activity:

• green is used for long profitable trades.
• yellow is used for short profitable trades.
• brown is used for long unprofitable trades.
• red is used for short unprofitable trades.

Once again, an asterisk marks the exit point of a position in both time and price level
of profitable trades. A minus sign marks the exit point of a position of an unprofitable
trade. Here the blue price charting lines are overpainted with large solid circles to help
highlight the trade trajectories markers.

The output of the plotMeanInds() summary function displays the mean log returns so
that time marches forward from left to right.

278 Simulating Trading Strategies

5000

1.
28

Minutes

E
U

R
 in

 U
S

D

*−
*
*

*
−*−***

−*
− *−

*−
*

*−−−
*
−

−
*

*−
*
−−−−
−−
* −*

* *

−
*
* *−

1.
32

1.
31

1.
30

1.
29

30000250002000015000100000

Figure 11.7 Entire month of long and short positions for May, 2013. Left to right, there is a mixture of all
four outcomes: long, short, successful, unsuccessful, as time moves forward.

#post-simulation analysis of indicator distribution
plotMeanInds <- function() {

par(mfrow=c(2,2))
print(longProfLogDiffS[1:(longProfIdx-1),])
plot(apply(longProfLogDiffS[1:(longProfIdx-1),],2,mean),

xlab=paste("N =",longProfIdx-1),
ylab="long prof: 1e5*logrets",ylim=c(-5,5),col=4)

abline(h = 0,v = 5.5,col=8)
print(longLossLogDiffS[1:(longLossIdx-1),])
plot(apply(longLossLogDiffS[1:(longLossIdx-1),],2,mean),

xlab=paste("N =",longLossIdx-1),
ylab="long loss: 1e5*logrets",ylim=c(-5,5),col=4)

abline(h = 0,v = 5.5,col=8)
print(shrtProfLogDiffS[1:(shrtProfIdx-1),])
plot(apply(shrtProfLogDiffS[1:(shrtProfIdx-1),],2,mean),

xlab=paste("N =",shrtProfIdx-1),
ylab="shrt prof: 1e5*logrets",ylim=c(-5,5),col=4)

abline(h = 0,v = 5.5,col=8)
print(shrtLossLogDiffS[1:(shrtLossIdx-1),])
plot(apply(shrtLossLogDiffS[1:(shrtLossIdx-1),],2,mean),

xlab=paste("N =",shrtLossIdx-1),
ylab="shrt loss: 1e5*logrets",ylim=c(-5,5),col=4)

abline(h = 0,v = 5.5,col=8)
}
plotMeanInds()

11.11 Simulation Summary

Examining the log returns just prior to trade entry, as seen in Figure 11.8, we see a certain
smoothness to the log return levels just before a trade. As discussed in the previous
chapter in the Bayesian Reasoning section, there is a low chance of five consecutive
bullish or bearish log returns, rather like the chance of getting five heads in a row when

11.11 Simulation Summary 279

Table 11.1 Totals for six months for the strategy. The average winning
percentage in the first column is 58.8 percent.

win pct long shrt win ticks tot ticks

58.8 23 26 1221 2076
45.5 20 24 823 1807
63.3 23 21 1204 1902
63.7 16 15 813 1276
62.3 14 17 677 1087
59.4 14 17 776 1305

2

−
4

N = 7

lo
ng

 p
ro

f:
1e

5*
lo

gr
et

s

N = 6
lo

ng
 lo

ss
: 1

e5
*l

og
re

ts

N = 9

sh
rt

 p
ro

f:
1e

5*
lo

gr
et

s

N = 8

sh
rt

 lo
ss

: 1
e5

*l
og

re
ts

4
2

0

10864 2

−
4

4
2

0

10864

2

−
4

4
2

0

108642

−
4

4
2

0

10864

Figure 11.8 Mean of log returns as a function of the time steps before trade entry for trade sample size N.
Long trades are in the upper portion. Profitable trades are on the left side. One can see with KH =
10 time points of log return history that the final K = 5 returns, to the right in each plot, are
relatively smooth in terms of variability.

flipping a coin. We have been taking this rare event to mean that the market is changing
to a bullish or bearish regime long enough for a profit to be made.

When factoring in slippage, which occurs between the back-test and the live trading,
including the bid–ask spread, it can be quite difficult to use trend-following to gain an
“edge.”

Market data is filled with noise so that the signal-to-noise ratio is low. Data mining
and machine learning techniques are of limited value in practice because of the high
noise content (Kinlay, 2011). Investors use momentum rules that work when they spot
them, but they often find that they only work “temporarily.” Even with highly robust
back-testing on large datasets, new indicators must be attempted to keep a profitable
edge. At a modest 58.8 percent prediction rate for the strategy for a few hundred trades
in Table 11.1, the need for strategies to be fully tested with a robust set of market data

280 Simulating Trading Strategies

is clear. Strategies should be ready for modification or replacement by new strategies to
stay profitable.

11.12 Exercises

11.1. Adding Conditions to the Trade Entry Criteria

Historical volatility may be an indicator of whether we are in a bullish or bearish
trend following regime. Run the sim() simulator for the supplied six months of
EC data (201305 through 201310) and record (1) the winning percentage and (2)
the reported annualized volatility for each run which is displayed in the final lines
of the output of reportCounts().

(a) Plot (1) in the horizontal axis and (2) in the vertical axis.

(b) What is a simple condition on historical volatility that could be added to
isLongIndicator() and isShrtIndicator() to attempt to improve the winning
percentage?

(c) How does adding this additional criterion change the winning percentage?

11.2. Running the Simulator with Another Strategy

Assume that your manager would like you to modify the trading simulator to only
consider long trades. Modify and run the simulator for this case. Run it for the six-
monthly one-minute price files named ECprices20130xx, where xx is the month
number. Keep track of the counts for each run and compare them to Table 11.1.

12 Data Exploration Using Fundamentals

As investigated in Chapter 7, income statements and balance sheets provide the investor
with a view inside the company. As investors, we would like to know if gross revenue is
growing year to year. We may also like to know the market value to book value ratio for
a stock we own and compare it to the larger market. Knowing it will help us determine
if the company could be overvalued in the stock market.

While “NoSQL,” key–value, and graph databases are all the range of late, SQL
databases still offer rapid querying and schemas that support years and decades of
historical data. As we will see in this chapter, querying investment fundamentals can
be accomplished in the R environment using the RSQLite package. The investor and
data scientist can perform the required data mining with very little code, yielding
beneficial results. We first begin with some definitions and formulas for investment
fundamentals.

Since Chapter 7, and especially in Chapter 10, we focused on the price movement as
the primary driver of our investment strategies. In Chapter 7, we had introduced four
key income statement metrics and measured their Sharpe Ratio. In this chapter, like
Chapter 7, the primary focus will be fundamental metrics of the company’s balance
sheet rather than price movements and their statistics. We are guided by our intuition
and investment principles from classic industry references (Bodie, Kane, and Marcus,
2013; Greenblatt, 2006). In order to set the context regarding fundamentals, we define
some basic investment terms and examples and then introduce our data mining package
before examining our dataset.

12.1 The RSQLite Package

In order to apply some of these fundamental investment principles in a data mining set-
ting, we need a package to perform the computations. SQL is a specialized language for
declarative queries against relational databases (Chamberlin and Boyce, 1974). Query
results are specified by the main query mechanism, the SELECT statement. SQLite is
a widely deployed database engine which uses the SQL language. The source code for
SQLite is in the public domain, accessible via http://www.sqlite.org/.

RSQLite is an R package to interface with the SQLite database engine, enabling R to
work well with the large datasets we encounter in finance. To introduce the topic we will

282 Data Exploration Using Fundamentals

go over some basic examples, query balance sheet and income statements for commonly
used financial ratios, and proceed to program a basic value formula. Assuming the
RSQLite package is already installed, we load the DBI and RSQLite libraries, create
a connection, and load the mtcars data frames into a SQLite table “mtcars” via the
connection con, and list all fields in the mtcars table.

> library(DBI)
> library(RSQLite)
> con <- dbConnect(SQLite(),":memory:")
> dbWriteTable(con,"mtcars",mtcars)
[1] TRUE
> dbListFields(con,"mtcars")
[1] "row_names" "mpg" "cyl" "disp" "hp" "drat"
[7] "wt" "qsec" "vs" "am" "gear" "carb"

With the table created we can select all entries from the mtcars table where the number
of cylinders is four:

> result <- dbGetQuery(con,
+ "SELECT * FROM mtcars WHERE cyl = 4")
> result

row_names mpg cyl disp hp drat wt qsec vs am gear
1 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4
2 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4
3 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4
4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4
5 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4
6 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4
7 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3
8 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4
9 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5
10 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5
11 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4

Now let’s query for all four-cylinder cars with miles per gallon greater than 30, and then
disconnect from the SQLite database connection.

> result <- dbGetQuery(con,
+ "SELECT * FROM mtcars WHERE cyl = 4 AND mpg > 30")
> result

row_names mpg cyl disp hp drat wt qsec vs am gear
1 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4
2 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4
3 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4
4 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5
> dbDisconnect(con)
[1] TRUE

12.2 Finding Market-to-Book Ratios 283

Now that we have looked at this simple automobile miles per gallon example, we will
discuss investment metrics in the context of the RSQLite package.

12.2 Finding Market-to-Book Ratios

Turning to a finance application, we can introduce RSQLite by querying a database for
financial ratios. Let’s say we have an SQLite database on disk holding the balance sheet
and income statement filings required by the SEC. We make use of the Compustat and
the University of Chicago’s Center for Research in Security Prices (CRSP) database
tables.

After reading in the tables from the .dta files provided on the book’s web site, we
immediately write them using dbWriteTable() so that we can query them. Using Com-
pustat’s nomenclature, let’s query the funda table for IBM’s total assets, at, and total
liabilities, lt.

> library(foreign)
> setwd(paste(homeuser,"/FinAnalytics/ChapXII",sep=""))
> funda <- read.dta("funda.dta")
> msf <- read.dta("msf.dta")
> con <- dbConnect(SQLite(),":memory:")
> dbWriteTable(con,"funda",funda,overwrite=TRUE)
[1] TRUE

> dbWriteTable(con,"msf",msf,overwrite=TRUE)
[1] TRUE

> dbListTables(con)
[1] "funda" "msf"

> query <- "SELECT tic, at, lt
+ FROM funda
+ WHERE fyear = 2010
+ AND tic ='IBM'"
> result <- dbGetQuery(con,query)
> result

tic at lt
1 IBM 113452 90280

We can also calculate the market-to-book ratio M/B for IBM at the end of fiscal year
2010. We need price-per-share close annual calendar prcc_c, and common shares
outstanding csho then multiply them together.

> query<-"SELECT tic, prcc_c, csho, at-lt AS bv
+ FROM funda
+ WHERE fyear = 2010
+ AND tic ='IBM'"
> result <- dbGetQuery(con,query)
> result

284 Data Exploration Using Fundamentals

tic prcc_c csho bv
1 IBM 146.76 1227.993 23172
> result$prcc_c * result$csho
[1] 180220.3

Note that common shares outstanding csho is in millions, which gives a total market
cap of a little over $180 billion. Dividing by shareholder equity, i.e. book value, gives a
market to book value of

#market-to-book (M/B) ratio:
result$prcc_c * result$csho / result$bv
[1] 7.777501

Using SQLite we can also carry out the market-to-book ratio calculation in the
database via the AS keyword. As our queries get longer we use the return character
and indentation to give structure to the SQLite command.

> query<-"SELECT tic, at-lt AS bv, prcc_c*csho/(at-lt) AS mb
+ FROM funda
+ WHERE fyear = 2010
+ AND tic ='IBM'"
> result <- dbGetQuery(con,query)
> result

tic bv mb
1 IBM 23172 7.777501

We might be interested in the market-to-book ratio distribution over the whole market.
So let’s remove the restriction to only IBM and obtain the market-to-book ratio for every
company listed in 2010.

> query <- "SELECT tic, prcc_c*csho/(at-lt) AS mb
+ FROM funda
+ WHERE fyear = 2010
+ AND tic IS NOT NULL
+ AND prcc_c IS NOT NULL
+ AND csho IS NOT NULL
+ AND seq IS NOT NULL"
> result <- dbGetQuery(con,query)
> result <- subset(result,mb > 0.0 & mb < 50)

We can no longer show the query result because it is far too large for a page, but we can
calculate the summary statistics

> summary(result$mb)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00004 0.98920 1.66400 2.99000 3.05300 49.79000

and plot a histogram of the market-to-book ratios as depicted in Figure 12.1.

12.3 The Reshape2 Package 285

result$mb

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00
12

00

Figure 12.1 Histogram of the market-to-book ratios. The sample mean is approximately 3.0.

> hist(result$mb,breaks=100,main="")

12.3 The Reshape2 Package

When we query a database, the query is often returned in the form

> command <- "SELECT tsymbol,date,ret
+ FROM msf
+ WHERE date BETWEEN '2010-01-01' AND '2010-12-31'
+ AND tsymbol IN ('AAPL','GOOG')"
> result <- dbGetQuery(diskdb,command)
> result

tsymbol date ret
1 AAPL 2010-01-29 -0.088591158
2 AAPL 2010-02-26 0.065379545
3 AAPL 2010-03-31 0.148470357
...
22 GOOG 2010-10-29 0.167196095
23 GOOG 2010-11-30 -0.094492406
24 GOOG 2010-12-31 0.068848766

where tsymbol takes on multiple values in the same column. This is awkward if we
want to find the covariance matrix of a set of returns, which assumes that the returns are
columns in a matrix. We could use cbind() in the following fashion:

> c1 <- result[result$tsymbol=='AAPL',]$ret
> c2 <- result[result$tsymbol=='GOOG',]$ret
> cbind(c1,c2)

286 Data Exploration Using Fundamentals

c1 c2
[1,] -0.08859116 -0.145224065
[2,] 0.06537955 -0.005932669
[3,] 0.14847036 0.076537602
[4,] 0.11102126 -0.073044486
[5,] -0.01612468 -0.076213397
[6,] -0.02082687 -0.083767459
[7,] 0.02274083 0.089672983
[8,] -0.05500484 -0.071836688
[9,] 0.16721511 0.168370277

[10,] 0.06072251 0.167196095
[11,] 0.03378956 -0.094492406
[12,] 0.03667043 0.068848766

but if the query is large and has missing values, this approach is unwieldy. The R
package reshape2 by Hadley Wickham provides a solution. We use the melt() function
to reduce the data down to its most elemental, atomized components, and then re-cast
this “molten” data in terms of the variables we want in the rows and columns. We return
to our example with Apple and Google. We melt the query while naming tsymbol and
date as id variables while ret is a measured variable.

> library(reshape2)
> result <- melt(result,id=c("tsymbol","date"))
> result

tsymbol date variable value
1 AAPL 2010-01-29 ret -0.088591158
2 AAPL 2010-02-26 ret 0.065379545
3 AAPL 2010-03-31 ret 0.148470357
...
22 GOOG 2010-10-29 ret 0.167196095
23 GOOG 2010-11-30 ret -0.094492406
24 GOOG 2010-12-31 ret 0.068848766

We see that each individual measurement of ret has been named. The result is now
molten. At this point we can recast with date as the only row variable, and both tsymbol
and ret as column variables.

> dcast(result,date~tsymbol+variable)
date AAPL_ret GOOG_ret

1 2010-01-29 -0.08859116 -0.145224065
2 2010-02-26 0.06537955 -0.005932669
3 2010-03-31 0.14847036 0.076537602
4 2010-04-30 0.11102126 -0.073044486
5 2010-05-28 -0.01612468 -0.076213397
6 2010-06-30 -0.02082687 -0.083767459
7 2010-07-30 0.02274083 0.089672983
8 2010-08-31 -0.05500484 -0.071836688
9 2010-09-30 0.16721511 0.168370277
10 2010-10-29 0.06072251 0.167196095
11 2010-11-30 0.03378956 -0.094492406
12 2010-12-31 0.03667043 0.068848766

12.3 The Reshape2 Package 287

We can also compute aggregation functions along variable values. For example, let’s
find the mean monthly return for each tsymbol.

> dcast(result,tsymbol~variable,mean)
tsymbol ret

1 AAPL 0.038788505
2 GOOG 0.001676213

And finally, let’s check that these means agree with what we would have found using
our initial approach of stripping the return columns out of the query result.

> mean(c1)
[1] 0.03878851
> mean(c2)
[1] 0.001676213

Using the tseries R package and our utility function getHistPrices(), we can collect
daily prices using get.hist.quote() and plot them to compare the monthly analysis above
to another view, using our plotMultSeries() function of Section 4.8.

library(tseries)
prices <- getHistPrices(c('AAPL','GOOGL'),c(.5,.5),252,

start="2010-01-01",end="2010-12-31",
startBck1="2009-12-31",startFwd1="2010-01-02")

plotMultSeries(prices,c('AAPL','GOOG'),c(.5,.5),2,
cc="days",ret="",ylim=c(.6,1.5))

Figure 12.2 depicts the AAPL and GOOG daily quotes. For the year in question, AAPL
does quite a bit better in the market than GOOG.

0 50 100 150 200 250

0.
6

0.
8

1.
0

1.
2

1.
4

days

AAPL

GOOG

Figure 12.2 2010 adjusted daily closing prices for AAPL and GOOG scaled as gross returns.

288 Data Exploration Using Fundamentals

12.4 Case Study: Google

Let’s dig in a little deeper and look at the development of Google’s market value to book
value versus that of its industry. We first query the funda table to determine Google’s
market-to-book ratio

query <- "SELECT fyear, sich, (csho*prcc_f)/(at-lt) AS mb
FROM funda
WHERE fyear >= 2004
AND tic IN ('GOOG')"

res1 <- dbGetQuery(con,query)
unique(res1$sich)

and proceed to query the market-to-book ratio for all firms that share Google’s industry
code: 7370.

query <- "SELECT tic, fyear, (csho*prcc_f)/(at-lt) AS mb
FROM funda
WHERE fyear >= 2004
AND fyear <= 2013
AND sich = 7370

AND tic NOT IN ('GOOG')
AND mb IS NOT NULL
ORDER BY tic, fyear"

res2 <- dbGetQuery(con,query)

We can now melt the query and recast it, taking the median of all firm market-to-book
by fyear.

library(reshape2)
res2 <- melt(res2,id=c("tic","fyear"),na.rm=TRUE)
res2 <- dcast(res2, fyear~variable, median)

We can now plot Google’s M/B against the industry median M/B and that plot is in
Figure 12.3. One way to interpret this graph is that Google “came back down to earth”
with respect to its market value and book value. By 2012, the market value approaches
the book value more closely.

par(mar=c(4,4,2,2))
plot(res1$fyear,res1$mb,type='l',ylim=c(0,1.1*max(res1$mb)),col='blue',

xlab='year',ylab='Google M/B ratio versus industry median M/B ratio')
lines(res2$fyear,res2$mb,type='l',col='red')
legend(x=2008,y=15,legend=c("GOOG M/B","industry 7370 M/B"),

col=c('blue','red'),lwd=c(1.5,1.5))

12.5 Case Study: Walmart 289

2004 2006 2008 2010 2012

0
5

10
15

20

Google M/B versus Industry Median M/B

Year

GOOG M/B
industry 7370 M/B

Figure 12.3 Google Market-to-Book vs. Industry Market-to-Book from 2004 to 2013.

12.5 Case Study: Walmart

We can combine information in the two databases and examine, say, the interac-
tion between earnings per share growth and the price-to-earnings ratio for Walmart
between 2002 and 2010. We first query the price table for Walmart’s tsymbol, price,
split adjustment factor, and date between the first day of 2002 and the last day of
2009.

query <- "SELECT tsymbol,prc,cfacshr,date
FROM msf
WHERE date BETWEEN '2002-01-01' AND '2009-12-31'
AND tsymbol IN ('WMT')"

res1 <- dbGetQuery(con,query)

We now query the fundamentals table for Walmart’s P/E defined as market cap divided
by net income, and EPS defined as net income divided by common shares outstanding.

query <- "SELECT fyear, (csho*prcc_f)/ni AS pe, ni/csho AS eps
FROM funda
WHERE fyear >= 2002
AND fyear <= 2010
AND tic IN ('WMT')"

res2 <- dbGetQuery(con,query)

With both queries in hand we can plot the price activity of Walmart and contrast
the rising EPS (tripling over the decade) with the falling P/E ratio (falling by roughly
two-thirds). So while Walmart triples earnings per share over the decade, the market’s
expectation of future growth is falling rapidly. It falls enough that Walmart’s price stays

290 Data Exploration Using Fundamentals

Date

P
ric

e

Date

E
P

S
2002 2004 2006 2008 2010

45
50

55
60

2002 2004 2006 2008 2010

2.
0

3.
0

4.
0

2002 2004 2006 2008 2010

12
16

20
24

Date

P
/E

 R
at

io

Figure 12.4 Stock Price, Earnings Per Share (EPS), and Price-to-Earnings (P/E) ratio for Walmart (WMT)
from 2000 up until 2010.

in the same range over the entire decade. Figure 12.4 shows the price history along with
the earnings per share and price–earnings ratio over the same decade.

par(mfrow=c(3,1))
plot(x=as.Date(res1$date),y=res1$prc,col="blue",type='l',

xlab='date',ylab='price')
plot(x=res2$fyear,y=res2$eps,col='blue',type='l',

xlab='date',ylab='EPS')
plot(x=res2$fyear,y=res2$pe,col='blue',type='l',

xlab='date',ylab='P/E ratio')

12.6 Value Investing

Let’s turn toward the implementation of a value-investing formula. In a value strategy
we want to find quality companies that are underpriced. Let us use a nested sub-query
to first query the funda table stocks in fiscal year 2010, that are not in the financials,
that have a book value of over $1B, have an earnings yield of over 10 percent, have a
cashflow-price yield of over 20 percent, and are based in the United States. With these
tickers in hand we extract the return information for the next three years from the msf
table, while adding 1 to the returns so they can be multiplied.

The query below is composed of two separate but related queries. The inner query is
written as

12.6 Value Investing 291

SELECT tic
FROM funda
WHERE fyear = 2010

AND (sich < 6000 OR sich &> 6999)
AND seq > 1000
AND ni/(prcc_f*csho) > .1
AND ni/(prcc_f*csho) IS NOT NULL
AND oancf/(csho*prcc_f) > 0.2
AND oancf/(csho*prcc_f) IS NOT NULL
AND fic = 'USA'

and carries out the value screen by selecting the stock symbols tic from the funda table
which in fiscal year fyear = 2010 are not financial stocks (i.e. outside the 6000-7000
range), have a market cap of over 1 billion (seq > 1000), show an earnings yield
ni/(prcc_f*csho) of greater than 10 percent, show a cashflow to market cap ratio
oancf/(csho*prcc_f) of greater than 20 percent, and are domiciled in the United
States (fic = ‘USA’).

The outer query takes the stock symbols returned by the inner query and looks up in
the msf (monthly stock file) table the stock ticker date, and the return for each month
BETWEEN ‘2010-12-01’ AND ‘2013-12-31’, ordered by stock symbol tsymbol
and return date date.

+ SELECT tsymbol,date, (1+ret) AS ret
+ FROM msf
+ WHERE date BETWEEN '2010-12-01' AND '2013-12-31'
+ AND tsymbol IN (
+ SELECT tic
+ FROM funda
+ WHERE fyear = 2010
+ AND (sich < 6000 OR sich > 6999)
+ AND seq > 1000
+ AND ni/(prcc_f*csho) > .1
+ AND ni/(prcc_f*csho) IS NOT NULL
+ AND oancf/(csho*prcc_f) > 0.2
+ AND oancf/(csho*prcc_f) IS NOT NULL
+ AND fic = 'USA')
+ ORDER BY tsymbol, date"
> result<-dbGetQuery(con,query)

We now load the R reshape2 package, melt the data, and recast it in terms of ticker
symbol tsymbol, taking the product prod of all returns for each tsymbol, and see the
three-year accumulated return for each stock by ticker.

> result <- melt(result,id=c("tsymbol","date"),na.rm=TRUE)
> result <- dcast(result, tsymbol~variable, prod)
> result

tsymbol ret
1 ALK 2.6843125
2 CHK 1.3441437

292 Data Exploration Using Fundamentals

3 EIX 1.3839577
4 ETR 1.0317614
5 GCI 2.4998424
6 MU 2.9921584
7 OSK 1.7608019
8 SKYW 0.9525674
9 STR 1.5271584
10 T 1.4854925
11 TER 1.4856662
12 TSN 2.1809760
13 UFS 1.3281121
14 VSH 0.9298738
15 WDC 2.5776105

Lastly, we average the cumulative returns and observe an equally weighted portfolio
net return over three years of a little under 75 percent.

> mean(result$ret)
[1] 1.744296

Let’s look more closely at this value formula and use it to further illustrate the
reshape2 package. Our previous query yielded too many stocks to show all return info
on a page, so let’s make the criteria more stringent. Let’s increase the required earnings
yield to 15 percent and increase the required cashflow enterprise yield to 25 percent:

> query <- "SELECT tsymbol,date, (1+ret) AS ret
+ FROM msf
+ WHERE date BETWEEN '2010-12-01' AND '2013-12-31'
+ AND tsymbol IN (SELECT tic
+ FROM funda
+ WHERE fyear = 2010
+ AND (sich < 6000 OR sich > 6999)
+ AND seq > 1000
+ AND ni/(prcc_f*csho) > .15
+ AND oancf/(csho*prcc_f) > 0.25
+ AND fic = 'USA')
+ ORDER BY tsymbol, date"
> result <- dbGetQuery(con,query)

Now let’s melt and recast with tsymbol and ret as column variables.

> result <- melt(result,id=c("tsymbol","date"),na.rm=TRUE)
> dcast(result, date ~ tsymbol + variable)

date MU_ret UFS_ret WDC_ret
1 2010-12-31 1.1033155 1.0032929 1.0119403
2 2011-01-31 1.3142144 1.1581929 1.0035398
3 2011-02-28 1.0559772 0.9939725 0.8988830
4 2011-03-31 1.0305481 1.0529748 1.2194245
5 2011-04-29 0.9869224 1.0135105 1.0673102

12.6 Value Investing 293

6 2011-05-31 0.9010601 1.1016986 0.9208543
7 2011-06-30 0.7333333 0.9276932 0.9926330
8 2011-07-29 0.9852941 0.8440667 0.9472237
9 2011-08-31 0.8018996 1.0046279 0.8557748
...
36 2013-11-29 1.1934389 1.0094440 1.0776965
37 2013-12-31 1.0308057 1.1096947 1.1220682

Finally, we find the cumulative return by taking the product, prod, of all entries for
each tsymbol value:

> result <- dcast(result, tsymbol ~ variable, prod)

and observe a cumulative three-year equally-weighted portfolio return of

> mean(result$ret)

[1] 2.299294

or nearly 130 percent when we subtract 1 to convert it to a net return.

> query<-"SELECT tic FROM funda
+ WHERE fyear = 2010
+ AND (sich < 6000 OR sich > 6999)
+ AND seq > 1000
+ AND ni/(prcc_f*csho) > .15
+ AND ni/(prcc_f*csho) IS NOT NULL
+ AND oancf/(csho*prcc_f) > 0.25
+ AND oancf/(csho*prcc_f) IS NOT NULL
+ AND fic = 'USA'"
> result <- dbGetQuery(con,query)
> result

tic
1 MU
2 WDC
3 UFS

> str(result)

'data.frame': 3 obs. of 1 variable:
$ tic: chr "MU" "WDC" "UFS"

We can download the price of the three top stocks picked by the value formula in
2010:

> library(quantmod)
> getSymbols(result$tic, from = "2010-12-01", to = "2013-12-31")

[1] "MU" "WDC" "UFS"

294 Data Exploration Using Fundamentals

Dec 01
2010

Jun 01
2011

Dec 01
2011

Jun 01
2012

Dec 03
2012

Jun 03
2013

Nov 29
2013

MU

Dec 01
2010

Jun 01
2011

Dec 01
2011

Jun 01
2012

Dec 03
2012

Jun 03
2013

Nov 29
2013

WDC

Dec 01
2010

Jun 01
2011

Dec 01
2011

Jun 01
2012

Dec 03
2012

Jun 03
2013

Nov 29
2013

5
10

15
20

30
50

70
30

35
40

45

UFS

Figure 12.5 Prices of Micron Technology (MU), Western Digital Technologies (WDC), and Domtar Corp
(UFS) from December 1st, 2010 to December 31st, 2013.

> MU <- MU[, "MU.Adjusted", drop=F]
> WDC <- WDC[, "WDC.Adjusted", drop=F]
> UFS <- UFS[, "UFS.Adjusted", drop=F]

Once the prices are in MU, WDC, and UFS series, we can plot them. Figure 12.5 depicts
the price behavior of these three selected stocks. The market has not been as kind to UFS
as the other two – MU and WDC – over the years 2010 to 2013.

> par(mfrow=c(3,1))
> plot(MU)
> plot(WDC)
> plot(UFS)

Now that our analysis and charting is complete, we can disconnect from the database.

> dbDisconnect(diskdb)
[1] TRUE

12.7 Lab: Trying to Beat the Market

We want to examine a value formula similar to that presented in The Little Book that
Beats the Market by Joel Greenblatt (Greenblatt, 2006). Note that the PE and EP ratios

12.8 Lab: Financial Strength 295

are inverses of each other and contain the same information. We will keep the EP ratio as
the measure of cheapness, but now use ROA as the measure of quality. Using the names
of our database fields, we calculate the EP ratio as net income, ni, divided by market
value of equity, prcc_f*csho, and we calculate the return on assets as net income, ni,
divided by the sum of market value of equity, prcc_f*csho, and total liabilities, lt. As
before, we screen for stocks with market cap greater than 1 billion with the condition
seq > 1000 and we screen for US-domiciled stocks with the condition fic = ‘USA’.
Define the query with the command

query<-"SELECT tic, ni/(prcc_f*csho) AS ep, ni/(csho*prcc_f + lt) AS roa
FROM funda
WHERE fyear = 2010

AND (sich < 6000 OR sich > 6999)
AND seq > 1000
AND ep > .1
AND ep IS NOT NULL
AND roa > 0.1
AND roa IS NOT NULL
AND fic = 'USA'"

and execute then display the query with the command

res<-dbGetQuery(con,query)
res

12.8 Lab: Financial Strength

In this exercise we wish to screen for the companies in fiscal year 2010 that show finan-
cial strength. One proxy for financial strength is debt-to-equity ratio, which we screened
for above. Another proxy for financial strength is the ability to pay down debt with earn-
ings. Write a query to screen for stocks in fiscal year 2010 where total liabilities can be
paid back with no more than two years’ earnings. Net Income is given as ni, total liabil-
ities (including total debt) is defined as lt in funda, and we define the ratio ni/lt as
the quantity pay. Furthermore, we want market cap to be at least 1 billion, and we want
only companies that are domiciled in the United States. We also screen for companies
whose net income ni is positive.

query <- "SELECT tic, lt/ni AS pay
FROM funda
WHERE fyear = 2010

AND seq > 1000
AND fic = 'USA'
AND pay < 2
AND pay > 0"

Execute the query with the command

296 Data Exploration Using Fundamentals

res <- dbGetQuery(con,query)

Show the stock tickers that meet this requirement with the following command:

res$tic

Plot the histogram of the pay variable with

hist(res$pay)

12.9 Exercises

12.2. Using RSQLite to Obtain Financial Statements

Write a SQL query inside an R program that finds the market capitalization of
IBM, HPQ, ORCL, and SAP for comparison. Use the funda table.

12.2. Another View of Value Investing

Section 12.6 contains a query for finding underpriced companies. The four years,
2010 to 2013, calculation yielded a net return of about 75 percent when equally
weighted in a portfolio. In this exercise we want to validate this net return result
from another source. Use as many utility functions from the book as necessary to
perform the following validation:

(a) Obtain daily quotes for the 15 tickers of Section 12.6 and place into a prices
matrix of size N by 15. Hint: there is a utility function for this.

(b) Plot the prices, scaled to starting at 1.0 on the same chart. Hint: there is a
utility function for this.

(c) Place the 15 stocks into a portfolio and find the portfolio value at the begin-
ning and end of the time period. Use these two figures to calculate the net
return.

(d) What is the name of the function in the book that will perform the quoting
and portfolio weighting function? Hint: The name suggests this being done
out-of-sample.

13 Prediction Using Fundamentals

The data mining and machine learning literature is now flush with scenarios about
predicting baseball players’ salaries from their prior year’s number of hits and walks
and about predicting the product sales from the prices, customer income, and level
of advertising. These are amazing and noteworthy stories. They inspire data scien-
tists to continue their cause. The classic examples feature a large two-dimensional
array of cases as rows with the independent variables, also known as the stimu-
lus variables, and the predictable variables, also known as the response variables, as
columns. If we are predicting an athlete’s salary, this figure is hand-tuned by the
people who negotiate contracts. Better athletic production yields better salaries as ath-
letes are constantly compared to one other. The salary is a figure updated usually
one time per year at most. And only a handful of people are involved in setting the
athlete’s salary or the price of a consumer item. So these represent ideal cases in
predictability.

Unfortunately, prediction in the case of financial analytics never turns out to be
as accurate as in these sports and marketing areas. There is just more random noise
in the financial markets with prices that are updated every second of every trading
day. Thousands of participants are involved. Every security is affected by many other
securities. For example, oil prices are affected not only by oil supply and demand
and by the volume of trades at each incremental oil price level but by interest rates
and various foreign exchange rates. Nevertheless, one can try these financial predic-
tions using the same techniques in order to experiment and observe what can be
predicted.

The process of attempting prediction yields at least two benefits. On the one
hand, it may be possible to predict attributes from combinations of other attributes:
in this case, response variables from stimulus variables. If this was the case,
we can stand alongside those other successes in other areas of data science. On
the other hand, prediction may not be possible or even all that useful, how-
ever; the collection exercise, getting all the data into rows and columns of the
array, provides observations that can be made in an unsupervised learning sense.
And discoveries can be made by applying thresholds or sorting and filtering the
attributes to find maximally performing securities, as we are able to observe in
Chapter 7.

298 Prediction Using Fundamentals

13.1 Best Income Statement Portfolio

As we use our financial analytics techniques, we do not know in advance which
technique will yield the best out-of-sample results. So we perform our analysis and
experiments in the laboratory and then, as time marches on, we can observe the out-of-
sample performance by collecting the new market prices. If we want to be bold, we also
invest in the portfolio so that we have “skin in the game” and are living the unrealized
profits and losses as the days pass by. If we decide not to be bold, we can simply observe
the out-of-sample performance, but if it is satisfactory, as investors we may wish that we
had invested in the portfolio. At that point, we cannot go back in time to reconsider our
prior decision.

Chapter 7 provides two forms of Sharpe Ratios to qualify the best candidate stocks:

1. the Sharpe Ratio of daily prices;
2. the Sharpe Ratio of annual income statements, particularly:

• Net Income Growth;
• Total Revenue Growth;
• Gross Profit Growth;
• Diluted Net Earning per Share Growth.

By “growth” we specifically mean the gross return. We subjectively chose these four as
key metrics which typically are important in annual reports and annual investor meet-
ings. Up until now in this chapter, we concerned ourselves with stock candidates which
were qualified using the first of these Sharpe Ratios. Since the portfolio optimization
techniques here are general enough, one could look at another run of the optimizer
where the candidate set is qualified using the second of these Sharpe Ratios. See the
exercises of Chapter 8 for this proposal, called Optimizing for Best Income Statement
Sharpe Ratio Stocks.

13.2 Reformatting Income Statement Growth Figures

To match our annual income statement figures over three years from Chapter 7, price
vectors can be acquired from those three years and summarized into mean returns and
volatility. Mean return is most of interest to the investor, although volatility is important
to mitigate against taking too much risk. In terms of a hierarchy, we can think of the tree
in Figure 13.1. In this section we will focus on the four lowest metrics which come from
corporate income statements of publicly traded companies.

In Chapter 7, we built an income statement growth data frame with a row for each
ticker symbol, called ISgthDF. We will begin with it and use it as a basis to form the
ISptrnDF data frame. Now that we are concerned with prediction, we need to separate
the dataset into the training rows and test rows as depicted in Figure 13.2. In-sample
income statement figures from 2012 and 2013 are used, along with price growth, for
training with each type of machine learning technique. For 2014, out-of-sample income

13.2 Reformatting Income Statement Growth Figures 299

meanreturn

volatility

net income gth tot revenue gth gross profit gth dil net eps gth

Figure 13.1 Tree showing the annual securities’ statistics and their relative importance to investors from high
to low. Having volatility below the mean return shows our bias toward having an adequate risk
appetite.

2012.0

−
1

Years

G
ro

ss
 R

et
ur

n

Statement

NYSE/NASDAQ

In Sample

totRevGth1
gsProfGth1
netIncGth1
dnEpsGth1

2015.02014.52014.02013.52013.02012.5

3
2

1
0

totRevGth0
gsProfGth0
netIncGth0
dnEpsGth0

totRevGth2
gsProfGth2
netIncGth2
dnEpsGth2

Out of SampleIn Sample

PriceMarket

GrowthIncome

Figure 13.2 Timing of the historical data. The straight lines depict the fact that we use four snapshots (2012,
2013, 2014, 2015) which yields three gross returns for the four income statement figures and
three log returns to compare to the S&P 500 Index.

statement figures are used to predict price growth for that year. The price growth is
measured over and above the S&P 500 Index daily and annually using log returns.

In order to prepare the R environment for the upcoming routines and their execution, it
is best to return to Section 7.4 and rerun that code to the end of Chapter 7. The following
routine, findPtrn() transforms the ISgthDF into a longer and narrower data frame, called
ISptrnDF for our training and test patterns. The code goes as follows. After setting the
schema for the new data frame, the 2, 1, and 0 years back set of new ISptrnDF rows are
created.

findPtrn <- function(ISgthDF) {
N <- dim(ISgthDF)[1]
ISptrnDF <- ISgthDF[c(1:(3*N)),c(1:9)] #sets schema
#2 years back
ISptrnDF[1:N,c(1,2)] <- ISgthDF[1:N,c(1,2)]
ISptrnDF[1:N,c(3:7)] <- round(ISgthDF[1:N,c(3:7)],2)
ISptrnDF[1:N,c(8:9)] <- rep(NA,2*N)
ISptrnDF[1:N,7] <- rep(2,N)
#1 year back
ISptrnDF[(N+1):(2*N),c(1,2)] <- ISgthDF[1:N,c(1,2)]
ISptrnDF[(N+1):(2*N),c(3:7)] <- round(ISgthDF[1:N,c(7:10)],2)

300 Prediction Using Fundamentals

ISptrnDF[(N+1):(2*N),c(8:9)] <- rep(NA,2*N)
ISptrnDF[(N+1):(2*N),7] <- rep(1,N)
#0 year back
ISptrnDF[(2*N+1):(3*N),c(1,2)] <- ISgthDF[1:N,c(1,2)]
ISptrnDF[(2*N+1):(3*N),c(3:7)] <- round(ISgthDF[1:N,c(11:14)],2)
ISptrnDF[(2*N+1):(3*N),c(8:9)] <- rep(NA,2*N)
ISptrnDF[(2*N+1):(3*N),7] <- rep(0,N)

colnames(ISptrnDF) <- c("symbol","basedate","netincgth",
"totrevgth","gsprofgth","dnepsgth","yrsback",
"meanabvsp","sdev")

rownames(ISptrnDF) <- NULL
ISptrnDF

}
ISptrnDF <- findPtrn(ISgthDF)
D <- dim(ISptrnDF)[1]/3
lab <- ISptrnDF[1:D,1]

The last line finds D, the number of dimensions or securities involved: the data frame
length is three times this figure, 2D for the in-sample data and D for the out-of-sample
data where D = p and p is another constant for the number of securities. A given
security now has three row entries in ISptrnDF as seen in the example below, spaced D
rows apart: two years back for 2012, one year back for 2013, and zero years back for
2014, indicated in the yr column.

> idx <- match('UNP',lab)
> ISptrnDF[c(idx,idx+D,idx+2*D),]

sym basedate netincgth totrevgth gsprofgth dnepsgth yr meanabv sdev
846 UNP 2014-12-31 1.20 1.07 1.09 1.23 2 NA NA
2617 UNP 2014-12-31 1.11 1.05 1.06 1.14 1 NA NA
4388 UNP 2014-12-31 1.18 1.09 1.11 1.21 0 NA NA

The three records above have the row id, symbol, base date for the income statement
figures, four income statement growth figures, years back, and unassigned mean of log
returns above the S&P 500 Index and the standard deviation of log returns. In the next
section we will cover assigning the last two equally important columns.

13.3 Obtaining Price Statistics

Let us consider the data frame that we work with for prediction. The data items in
rows representing instances of random variables are tied to a point in time. Certainly
when considering stock prices, the N × p two-dimensional array is ordered from low
to high in occurrence time for the 1-through-N days and the ordering is required to
be retained to keep the validity of the data. An N × p price dataset like this can be
reduced to the main features: return and volatility which makes the output p × 2 as
it is used for subsequent prediction algorithms. When this is complete, other non-
price-related statistics can be considered. Once again, a two-dimensional array can

13.3 Obtaining Price Statistics 301

be constructed, but this time the non-price-related figures are adjacent columns to the
price-related statistics. The new two-dimensional array is of size p × a where a is the
number of attributes which can each serve as predictor or stimulus variables. In our
case, we will return to the income statement figures to occupy these a places as column
headers.

As early as Chapter 4, we discussed a reliable method for obtaining stock prices
using the R get.hist.quote() function from the tseries package. We mention it here
once again, although in this case the prices have been pre-fetched by the getHist-
Prices() function of Chapter 8 and cached into files sitting in the MVO4 directory.
This speeds up the loading of nearly 1 million prices for several thousand tick-
ers.

Ultimately, an investor selecting stocks is interested in beating the market “bogie,”
the S&P 500 Index. Professional money managers have beating this bogie as a goal.
Beating the bogie is not an easy task to accomplish consistently. Nonetheless, if this
is our goal, we believe that it is best to scale our mean return to the performance of
the bogie over the same time interval. If a stock has a gross profit growth which is,
say, 10 percent higher in 2013 than in 2012, this is probably due to economic con-
ditions being good and certain efficiencies of the company. When the mean return of
the stock valued in the market increases so that it is 10 percent higher in 2013 than in
2012, however, there is a certain amount of systemic stock market optimism not due
to efficiencies of the company. We propose subtracting out the mean return of the S&P
Index from the mean return of the individual candidate stock. By this, we achieve two
goals:

• We clearly focus on stocks whose mean return is higher than the S&P Index. Their
adjusted mean return will be greater than 0.

• We scale the mean return of a given stock from year-to-year to the same baseline.
This allows better year-to-year comparisons on price-based statistics.

We start with our large log return matrix R which is size N × p. p is the number of
stocks. In the code, we tend to use D instead of p. We also have one vector of length
N for the S&P 500 Index log returns, called r. There are two very simple statistics we
can compute: the sample means for a single stock and for the index from the log return
series:

R̄j = 1

N

N∑
i=1

Ri,j and μM = 1

N

N∑
i=1

ri. (13.1)

In this case, N is the number of trading days, usually 252. After we have these means,
we can begin adjusting the entire vector of stock means to be the mean above, positive
or negative, the index mean:

Āj = R̄j − μM . (13.2)

Firstly, we need the ability to read cached prices from the NYSE and NASDAQ directo-
ries. The function findCachedPrices() will do this for us. It contains a loop over the two
directories.

302 Prediction Using Fundamentals

dir <- 'MVO4'
setwd(paste(homeuser,"/FinAnalytics/",dir,"/",sep=""))
len = 1006 #start with all four years

findCachedPrices <- function(dir,lab,prices,
start=NA,end=NA) {

if(!is.na(start) && !is.na(end))
prices <- prices[start:end,] #cut down size of prices

d = 1
for(l in lab) {

attempts <- 0
fileName = paste('cached',l,'.csv',sep=")
for(subdir in c('NYSE','NASDAQ')) {

setwd(paste(homeuser,"/FinAnalytics/",dir,'/',
subdir,sep="))

attempts <- attempts + 1
if(file.exists(fileName)) {

break
} else if(attempts == 2) {

attempts <- -1 #unsuccessful
}

}
if(attempts == -1) { #unsuccessful

print(paste(fileName,"not in NYSE nor NASDAQ"))
prices[,d] = rep(NA,len)[start:end]

} else { #successful
print(paste(fileName,"in",subdir))
prices[,d] = read.csv(fileName,header=TRUE,

sep=")[start:end,1]
}
d = d + 1

}
#return vector may have NAs
return(prices)

}
#unit test:
labtest <- c('AAN','MCD','PCLN') #2 NYSEs, 1 NASDAQ
dir <- 'MVO4'
len <- 1006
D <- length(labtest)
px <- matrix(rep(NA,len*D),nrow=len,ncol=D)
px <- findCachedPrices(dir,labtest,px,start=253,end=504)

The following code block will obtain three years of price history for the D stocks, but
then trim that set down to three one-year vectors. It also obtains quotes for the S&P 500
Index for the matching time frame.

findCached3YrsBackPrices <- function(dir,lab,len) {
#Go back 3 years in cached files for prices
D <- length(lab)

13.3 Obtaining Price Statistics 303

isSplitAdjusted <<- TRUE
prices2 <- matrix(rep(NA,len*D),nrow=len,ncol=D)
prices2 <- findCachedPrices(dir,lab,prices2,

start=253,end=504)

prices1 <- matrix(rep(NA,len*D),nrow=len,ncol=D)
prices1 <- findCachedPrices(dir,lab,prices1,

start=504,end=755)

prices0 <- matrix(rep(NA,len*D),nrow=len,ncol=D)
prices0 <- findCachedPrices(dir,lab,prices0,

start=755,end=1006)
return(rbind(prices2,prices1,prices0))

}
D <- length(lab)
allPrices <- findCached3YrsBackPrices(dir,lab,len)
dim(allPrices)
prices2 <- allPrices[1:252,]
dim(prices2)
prices1 <- allPrices[253:504,]
dim(prices1)
prices0 <- allPrices[505:756,]
dim(prices0)

The next section of code retrieves the price vector for the S&P 500 Index so that we can
find the log returns for μM .

library(tseries)
setwd(paste(homeuser,"/FinAnalytics/MVO4",sep=""))

findSPprices <- function(fn="cachedGSPC.csv") {
if(!file.exists(fn)) {

pricesSP <- getHistPrices(c('^GSPC'),c(1),len,
start="2011-02-09",end="2015-02-09",
startBck1="2011-02-08",
startFwd1="2011-02-10")[,1]

write.csv(pricesSP,file="cachedGSPC.csv",row.names=FALSE)
} else {

pricesSP <- read.csv("cachedGSPC.csv")[1]
#error handling
if(is.na(pricesSP[1,1])) {

system('rm cachedGSPC.csv')
findSPprices()

}
}
pricesSP[,1]

}
pricesSP <- findSPprices()
pricesSP2 <- pricesSP[253:504]
pricesSP1 <- pricesSP[504:755]
pricesSP0 <- pricesSP[755:1006]

304 Prediction Using Fundamentals

Once we have the prices, we find the usual log returns; however, this time that is per-
formed one year at a time. This time we also include the S&P 500 Index log returns in
vectors r2, r1, and r0.

R2 <- findR(prices2)
R1 <- findR(prices1)
R0 <- findR(prices0)
r2 <- findR(as.matrix(pricesSP2,252,1))
r1 <- findR(as.matrix(pricesSP1,252,1))
r0 <- findR(as.matrix(pricesSP0,252,1))

The function findOneYrPriceStats() operates one year at a time. It finds the S&P 500
Index mean log return and subtracts that from the various securities mean log return. It
also computes the standard deviation of the log returns or the volatilities.

findOneYrPriceStats <- function(R,r) {
#Go back 3 years mean log ret and sdev
meanSP <- apply(r,2,mean)
meanvAbvSP <- apply(R,2,mean)-meanSP
meanv <- apply(R,2,mean)
cov_mat <- cov(R/100) #rescale back to logret wo 100 factor
diag_cov_mat <- diag(cov_mat)
sdevv <- sqrt(diag_cov_mat)
SR <- meanvAbvSP/sdevv
return(list(meanvAbvSP,sdevv))

}

res <- findOneYrPriceStats(R2,r2)
meanvAbvSP2 <- res[[1]]
sdevv2 <- res[[2]]
res <- findOneYrPriceStats(R1,r1)
meanvAbvSP1 <- res[[1]]
sdevv1 <- res[[2]]
res <- findOneYrPriceStats(R0,r0)
meanvAbvSP0 <- res[[1]]
sdevv0 <- res[[2]]

We have now collected raw data and computed price statistics for our candidates for one
year back from February 9, 2015. February was chosen to allow one month of market
reaction to the usual December 31st earnings report with nine extra days for the year-
end holiday. meanAbvSP2 stands for the mean log return above the S&P 500 Index
mean log return two years back, meanAbvSP1 for one year back, and meanAbvSP0 for
immediately back.

When we adjust the log return means by subtracting off the scalar value of the S&P
500 Index return, we can think of having a new array, A, with the same dimensions as
our log return array, R. Each element is defined:

Ai,j = Ri,j − μM (13.3)

13.3 Obtaining Price Statistics 305

for row instances i and candidate stock columns j, as seen in the second line of code in
the body of findOneYrPriceStats(), above. If we apply 1

N

∑N
i=1 to each side of 13.3 and

use Formulas 13.1, we note that 1
N

∑N
i=1 μM = μM and obtain the following:

Āj = μj − μM , (13.4)

which says that the mean for our new series Ajs are simply the mean of the Rj with μM

subtracted from it for each j. μM is the S&P 500 Index mean log return for the same time
period. If our goal is to perform better than the S&P 500 Index bogie, we should look
at the distribution of individual stock mean return above the bogie, Āj = meanAbvSP.
Running an R summary(meanAbvSP), where:

meanvAbvSP = c(meanvAbvSP0,meanvAbvSP1,meanvAbvSP2)
summary(meanvAbvSP)

we obtain the following results:

> summary(meanvAbvSP)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-1.1380 -0.0635 -0.0033 -0.0111 0.0563 0.8118 435

which tells us that most of the D = 1621 candidate stocks perform slightly lower in
mean return than the bogie (Mean −0.0111, Median −0.0033) over the three-year daily
price sample.

Formula 13.4 is essentially p equations, which can be stated as one below:

[Ā1, . . . , Āp] = [μ1, . . . ,μp] − μM .

Performing more data analysis, we know that the standard deviation of our new random
variables, Āj being simply the original R̄j with a scalar mean subtracted, is the same as
the original standard deviation. The term μM adjusts only the location of the distribu-
tion and not the scale of it. This can also be seen in the following formulas using their
variances via 13.1 and 13.2, where we use N − 1 for N:

Var(Aj) = 1

N − 1

N∑
i=1

[Ai,j − Āj]
2 (13.5)

= 1

N − 1

N∑
i=1

[(Ri,j − μM) − (R̄j − μM)]2 (13.6)

= 1

N − 1

N∑
i=1

[Ri,j − R̄j]
2 (13.7)

= Var(Rj), (13.8)

where Formula 13.6 follows from Formulas 13.5 and the pair 13.3 and 13.4. The code
in the upcoming section produces the three density plots of Figure 13.3 for each of the
years 2012, 2013, and 2014.

306 Prediction Using Fundamentals

0.0

0

N = 1621 Bandwidth = 0.01826

D
en

si
ty

0.5−0.5

4
3

2
1

Figure 13.3 Plot of mean log return above the S&P 500 Index. Each curve contains D = 1621 tickers for a
single year chosen from 2012, 2013, and 2014.

13.4 Combining the Income Statement with Price Statistics

Many investors believe that stocks move in a positive direction when they are able to
grow key attributes of their income statement: net income, total revenue, gross profit, and
(diluted net) earnings per share. Combining these historical income statement growth
figures with historical mean return and volatility price statistics is of interest. So is the
ability to predict future mean returns or, more realistically, classes of mean returns,
based upon the prior year history.

The R data frame is the common mechanism to use the many data mining and machine
learning packages. Forming a well-designed and clean data frame is the key to using
Classification and Regression Trees. The following code block will form the data frame
first. Then the data frame is inspected for NA via the na.omit() and the rows containing
NAs will be removed.

augPtrn <- function(ISptrnDF) {
#augment DF with price stats
N <- dim(ISptrnDF)[1]/3
ISptrnDF[1:N,c(8,9)] <-

cbind(round(meanvAbvSP2,4),round(sdevv2,4))
ISptrnDF[(N+1):(2*N),c(8,9)] <-

cbind(round(meanvAbvSP1,4),round(sdevv1,4))
ISptrnDF[(2*N+1):(3*N),c(8,9)] <-

cbind(round(meanvAbvSP0,4),round(sdevv0,4))
ISptrnDF

}
ISptrnDFcln <- na.omit(augPtrn(ISptrnDF))
D <- dim(ISptrnDFcln)[1]/3
lab <- ISptrnDFcln[1:D,1]

13.4 Combining the Income Statement with Price Statistics 307

findCached3YrsBackPrices

prices2 prices1 prices0

findR

R2 R1 R0

pricesSP

findR

r2 r1 r0

findOneYrPriceStats

meanvAbvSP2

meanvAbvSP1

meanvAbvSP0

sdevv2

sdevv1

sdevv0

ISgthDF

findPtrn

ISptrnDF

augPtrn

na.omit

ISptrnDFcln

ifelse

HL

data.frame

IStreeDF

Figure 13.4 Tree showing the complex lineage of the IStreeDF data frame. Rounded rectangles are R
functions. In practice, the prediction steps are not as complex as messaging the data into the
proper form.

The augPtrn() function above updates the eighth and ninth columns of the data frame
with meanAbvSP and sdevv vectors. meanAbvSP and sdevv are used as response vari-
ables to the four stimulus variables, netincgth, totrevgth, gsprofgth, and dnepsgth. We
try a test case of stock NSC to view that the proper mean above the S&P 500 Index and
the standard deviation was placed in the rows at positions 8 and 9.

> thisD <- dim(ISptrnDFcln)[1]/3
> idx = match('NSC',lab)
> ISptrnDFcln[c(idx,idx+thisD,idx+2*thisD),c(3:9)]

netincgth totrevgth gsprofgth dnepsgth yr meanabv sdev

308 Prediction Using Fundamentals

587 0.91 0.99 0.99 1.00 2 -0.0445 0.0155
2358 1.09 1.02 1.03 1.09 1 0.0516 0.0136
4129 1.05 1.03 1.08 1.09 0 0.0174 0.0127

The data frame is now ready for prediction techniques to be applied. The entire process
is depicted in Figure 13.4.

library(moments)
yb2logrets <- ISptrnDFcln[1:D,8]
yb1logrets <- ISptrnDFcln[(D+1):(2*D),8]
yb0logrets <- ISptrnDFcln[(2*D+1):(3*D),8]
alllogrets <- c(yb2logrets,yb1logrets,yb0logrets)
skewness(alllogrets)
kurtosis(alllogrets)
plot(density(yb2logrets),main="")
lines(density(yb1logrets),col=4)
lines(density(yb0logrets),col=9)
abline(v=0.0)
summary(alllogrets)

Running the skewness() and kurtosis() functions reveals that the skew is to the left as
might be expected due to the fact that we are comparing to some of the best returns in
the market: the S&P 500 equities.

> skewness(alllogrets)
[1] -1.008415
> kurtosis(alllogrets)
[1] 10.70697

The reported kurtosis above, being 10.71, much larger than 3, reveals that the distribu-
tion is far from normal, having heavy tails.

13.5 Prediction Using Classification Trees and Recursive Partitioning

Predictive techniques require a certain type of formal dataset design discipline. Clas-
sically, the supervised machine learning dataset is a two-dimensional table with rows
being the instances and the columns being the attributes or random variables (Gareth,
Witten, Hastie, and Tibshirani, 2013; Ledolter, 2013). Recursive-partitioning is no
exception. In our case, the rows are the stock candidates and the columns are the pre-
dictive attributes which we believe are candidates for the algorithm is considered. In the
row dimension, there is one more attribute. The rows are separated into three D-sized
sections, one for each year. Due to the time series nature of financial data, the two oldest
sections are used for training data and the remaining section is used for test data to try
the prediction on.

With prediction, we make the assumption that there are stimulus variables which can
be used to predict response variables. The input variables are known as stimulus or
predictors for the response. These stimulus variables may have correlation among each
other, but are generally considered to vary independently. Often we focus on a single

13.5 Prediction Using Classification Trees and Recursive Partitioning 309

response variable for simplicity. There is a class of techniques known as CART, which
stands for Classification and Regression Trees. Depending upon the data type of the
response variable, continuous or categorical, either a regression or classification tree is
formed. Regression trees are used when the response variable is numeric or continuous.
This may be the predicted response time for a request on a computer or a predicted
rate of return, for example. Classification trees are used when the response variable is
enumerated or categorical. This may be a predicted grade in the set {A, B, C, D, F} or the
predicted direction of a security in the next time period: up or down. There are many
R packages for CART: tree, rpart, and party are some of the most popular. We will
focus on party (Hothorn, Hornik, Strobl, and Zeileis, 2015). With most classifiers in R
for CART, pruning the tree is an important step which often require rerunning, tuning
the pruning parameter, and cross validating using subsets of the dataset. When using
the ctree conditional inference tree within the party package, these parts are quite easy
because the claim is that these steps are not necessary. As a benefit, this package also
does a particularly good job of plotting the decision tree. In our case, the idea is to build
a tree using the training set data by partitioning the training set into subclasses using
Boolean decisions about one of the many predictor variables at each step. Just like any
tree from the field of computer science, there is a single root node to begin at. Our data
frame, IStreeDF, has our four income statement covariate stimulus variables which we
would like to try out as predictors. Forming the tree involves, at each step in the build
process, finding a covariate, among the four, which yields the best split.

We now describe the general algorithm between recursive partitioning for the case of
a typical regression tree. Specific algorithms for both classification and regression trees
vary as designed by the research team that implemented the algorithm. For details, it is
best to consult the literature associated with the particular package.

If our predictors, X have v possible values, X1, . . . , Xv in p dimensions, we find w
distinct non-overlapping regions R1, . . . , Rw such that for each Xi there is an Rj such that
Xi ∈ Rj. Each region Rj has a single value ŷRj or the response variable. ŷRj is the mean of
the response values for the X′

is in Rj. We construct the regions so that the residual sum
of squares,

RSS =
w∑

j=1

∑
i∈Rj

(yi − ŷRj)
2, (13.9)

is minimized with recursive partitioning. Going from region R1 at the beginning to
R1, . . . , Rw at the end is a “greedy” algorithm in the sense that it only considers the
current partitioning and the next best split without looking ahead into future states. This
means that the RSS of Formula 13.9 is only minimized for each split move. For example,
if there is a random variable vector X where

X = (X1, X2, X3, X4) = (dnepsgth, gsprofgth, totrevgth, netincgth),

then nodes 2 and 3 form regions where {X|X1 ≤ 1.03} and {X|X1 > 1.03}, respectively,
where X1 corresponds to dnepsgth. We find a cut point c when splitting on Xj that splits it
into R1(j, c) = {X|Xj ≤ c} and R2(j, c) = {X|Xj > c}, regions with the greatest possible
reduction in RSS.

310 Prediction Using Fundamentals

The RSS is a good metric for minimizing the decision tree algorithm. Using ŷRj , the
mean response for the region, as the predicted y value for the regression tree case, when
y is continuous, is fine. However, for a categorical y of K possible values in the classi-
fication tree case, we need a different metric. With categories, there is no ŷRj mean for
each region so the RSS is undefined. We can think about the proportion p̂mk of sample
points of the training set that appear in the mth region that are from the kth class. For an
ideally pure region corresponding to our single initial tree node, we would want all the y
values to match identically, however, when we begin the recursive splitting process, and
as a matter of practicality, impurity exists because of the diversity of y values in the sin-
gle initial node. For example, if K = 2 and we begin at the lone starting region, and if we
have 50 training set elements and 25 of the ys are in category 1 and 25 are of category 2,
then the purity of the node is very low. We can think about the proportion of ys with the
same value and we get p̂11 = 1

2 = p̂12. Half of the population of ys do not match each
other. So we start to recursively split the tree to try to obtain better node purity. As the
tree becomes constructed, better node purity is achieved by adding nodes to the tree.

We can think about the error when classifying sample points as Em for each region m.
If p̂mk are correctly classified together then 1−max(p̂mk) is a measure of the misclassified
points. However, En turns out to be not of the proper sensitivity for constructing decision
trees.

Two other common example metrics are the Gini index, Gm, and the cross-entropy or
deviance, Dm for regions or, equivalently, tree nodes m. If we think of a simple decision
tree with a set of regions corresponding to the tree nodes, in many cases, if K = 2 for
binary classification, we are left with only two terms in the summation below:

Em = 1 − maxk(p̂mk) (13.10)

Gm =
K∑

k=1

p̂mk(1 − p̂mk) = p̂m1(1 − p̂m1) + p̂m2(1 − p̂m2) (13.11)

Dm = −
K∑

k=1

p̂mk log(p̂mk) = −p̂m1 log(p̂m1) − p̂m2 log(p̂m2). (13.12)

We assume for this example that K = 2 and p̂m1 = .7, meaning 7 of 10 points group
together into a region and belong together.

Em = 1 − maxk(p̂mk) = 1 − .7 = .3000

Gm = p̂m1(1 − p̂m1) + p̂m2(1 − p̂m2) = .7(.3) + .3(.7) = .4200

Dm = −p̂m1 log(p̂m1) − p̂m2 log(p̂m2) = −(.7) log(.7) − (.3) log(.3) = 0.6109.

We are showing formulas for the Gini index and cross-entropy side by side, above. We
can see that they have similar values and can be spotted in Figure 13.5.

Our next goal is to visualize these three functions in R where we use p and 1 − p
for p̂m1 and p̂m2. We can see the node impurity as the output of the following R code in
Figure 13.5. We can see that two of the three are a smooth curved shape which lends well
to optimization. For a more complete discussion of node-splitting criteria for CART,
consult the literature (Hastie, Tibshirani, and Friedman, 2009; Gareth, Witten, Hastie,
and Tibshirani, 2013; Ledolter, 2013).

13.5 Prediction Using Classification Trees and Recursive Partitioning 311

0.0

0.
2

p

E
n,

 G
n,

 D
n

Error

Gini index

Cross entropy

1.00.80.60.40.2

1.
0

0.
8

0.
6

0.
4

0.
0

Figure 13.5 The three metrics for node impurity. The higher the impurity value, the more the region and node
in the tree have values outside the class.

#Calc classification tree impurity
p = seq(0,1,.01)
En <- function(p) {1-max(p,1-p)}
Gn <- function(p) {p*(1-p)+(1-p)*p}
Dn <- function(p) {-p*log(p)-(1-p)*log(1-p)}
EnVec <- sapply(p,En) #error
GnVec <- sapply(p,Gn) #Gini
DnVec <- sapply(p,Dn) #cross-entropy

plot(p,EnVec,ylim=c(0,1),col=4,type="l",
ylab="En,Gn,Dn")

text(c(.7),En(.7),"Error",col=4,cex=.95)
lines(p,GnVec,ylim=c(0,1),col=3)
text(c(.7),Gn(.7),"Gini index",col=3,cex=.95)
lines(p,DnVec,ylim=c(0,1),col=2)
text(c(.7),Dn(.7),"Cross-entropy",col=2,cex=.95)

If the dataset is robust in depth and density, for example, beginning in Chapter 7 the
daily price series, which can be obtained for thousands of prior dates, goes back for
hundreds of days, and that is a good situation. In the case of income statement figures,
the series only goes back a handful of years. We are fortunate that these figures can be
obtained by the quantmod package, but the limitation is that the depth is only four years
for annual income statement figures.

In an ideal supervised learning world, we should have enough data to divide into
training and test sets. In the case of income statements, only four deep, we are not sure
whether this is feasible, due to the volatility of the income statement figures from year
to year. Our STRM stock example from Chapter 7 illustrates the risk of using only one
year of daily prices. We first need the ISptrnDFcln data frame to be augmented with a
price growth level: Up and Down which are categories related to the mean above the
S&P 500 Index, meanabv.

312 Prediction Using Fundamentals

dnepsgth
p < 0.001

1

≤ 1.03 > 1.03

Node 2 (n = 1565)
U

p>
0

0

0.2

0.4

0.6

0.8

1
Node 3 (n = 1687)

0

0.2

0.4

0.6

0.8

1
D

ow
n<

=
0

U
p>

0
D

ow
n<

=
0

Figure 13.6 Recursively partitioned classification tree formed from 2D = 3242 training rows from 2012 and
2013 income statement figures. In a nutshell, running the recursive partitioning tells us that
stocks with Diluted Net Earnings per Share growth better than 3 percent (seen as dnepsgth gross
return of over 1.03) will do better than the S&P 500 Index.

The following code forms response variable called HL for whether the mean return
above the index is Up (> 0) or Down (<= 0). We make use of the R party package
for recursive tree partitioning by, firstly, attaching a response attribute which tells us
whether the result is High or Low. This is intended to be an indicator as to whether to
buy the security or not. If the mean return is predicted to be up, we buy the security and
plan to hold it for a while.

library(party)
attach(ISptrnDFcln)
train <- c(1:D,(D+1):(2*D))
length(train)==2*D

HL=ifelse(ISptrnDFcln$meanabv > 0,"Up>0","Down<=0")
IStreeDF = data.frame(ISptrnDFcln,HL)

Note the size of the training set defined by train in the code above is 2
3 of the total dataset

size. We next check once again that our new data frame IStreeDF, field HL, looks about
right with a unit test case for the security NSC which appears to have the two types of
years lately: High and Low.

> thisD <- dim(IStreeDF)[1]/3
> idx = match('NSC',lab)
> IStreeDF[c(idx,idx+thisD,idx+2*thisD),c(3:8,10)]

13.5 Prediction Using Classification Trees and Recursive Partitioning 313

netincgth totrevgth gsprofgth dnepsgth yr meanabv HL
575 0.91 0.99 0.99 1.00 2 -0.0445 Down<=0
2332 1.09 1.02 1.03 1.09 1 0.0516 Up>0
4089 1.05 1.03 1.08 1.09 0 0.0174 Up>0

Comparing the last column to the meanabv column, this test case looks fine. In fact, the
column netincgth seems to be predicting the response meanabv for each year, with two
years back being a poor year for income growth and a poor year for return above the
S&P 500 Index; one year back being stronger year for income growth and for return
above the S&P 500 Index; and the immediately prior year in between. Having inspected
our data a bit, now we can proceed to find the training set subscripts, train and call the
ctree() recursive tree partitioning function.

attach(IStreeDF)
istree=ctree(HL ~ netincgth + totrevgth + gsprofgth + dnepsgth,

data=IStreeDF, subset=train)

We now know our stimulus variable regions and our trained nodes that will be used
in istree for prediction for any out-of-sample dataset. We left one third of the data out as
out-of-sample in order to test prediction. Once the istree tree is built, we can pass it to
the predict() function for predictions on the test set, IStreeDF[−train,].

predRes <- predict(type="response",
istree, IStreeDF[-train,])

tbl <- round(table(predRes,IStreeDF[c(-train), "HL"])/D,3)
tbl
(tbl[1,1]+tbl[2,2])/sum(tbl)

par(mar=c(4,4,1,1))
par(mfrow=c(1,1))
plot(istree,cex=.25)

Notice that the only one mentioned of the four income statement figures in the tree
is dnepsgth, Diluted Net Earnings per Share growth. This tells us that it is the most
important predictor in the eyes of the party tree partitioning package as depicted in
Figure 13.6. We can look again at the formula used to call the ctree():

meanabv ~ netincgth + totrevgth + gsprofgth + dnepsgth .

We can ask for a summary of the counts of the predicted response, up and down.

> sum(predRes == "Up>0")
[1] 819
> sum(predRes != "Up>0")
[1] 802

We can interpret these figures to be the number of securities which rise or fall in value
above the S&P 500 Index over the time window, respectively.

314 Prediction Using Fundamentals

We can request a description of the classification tree by having R display the contents
of the variable istree. The output is below, with the four input, stimulus, or predictor
variables listed and the response variable as well. Each line is a node of the tree. We can
think of tree node 1 as the root and then the two lines for the branches which emanate
out from root node 1 are listed in the next lines down.

> istree

Conditional inference tree with 2 terminal nodes

Response: HL
Inputs: netincgth, totrevgth, gsprofgth, dnepsgth
Number of observations: 3252

1) dnepsgth <= 1.03; criterion = 1, statistic = 25.908
2)* weights = 1565

1) dnepsgth > 1.03
3)* weights = 1687

> plot(istree)

We know that we are operating on a machine learning training set which is of size:
> length(train) [1] 3242 and test set of one half that size. When running the code
block below, which attempts to predict high mean return stocks from price statistics and
income statement growth from two years back, we see the resulting confusion matrix,
which is based upon two prediction classes for two labeled classes.

> predRes <- predict(type="response",
+ istree, IStreeDF[-train,])
> tbl <- round(table(predRes,IStreeDF[c(-train), "HL"])/D,3)
> tbl

predRes Down<=0 Up>0
Down<=0 0.335 0.159
Up>0 0.231 0.275

> (tbl[1,1]+tbl[2,2])/sum(tbl)
[1] 0.61

There are two basic categories of price movement which our response variables yi

can be assigned values from: Down <= 0 and Up > 0, where Up is the most bullish
movement. We can look at the distribution of predicted low mean returns in the first three
rows and see that the majority of the predicted lows are, in fact, Down. If we sum the
upper left and lower right quadrants of the two-by-two matrix, we obtain 61.0 percent.

13.6 Comparing Prediction Rates among Classifiers

The majority of the coding effort was devoted to getting the price and income state-
ment data organized to be useful for the party package utility. Being financial data, the

13.6 Comparing Prediction Rates among Classifiers 315

market mean returns do not always reflect what is happening on the income statements
due to the number of external factors that can affect market prices. Having stated that,
however, the results here are encouraging. As delineated in the classic text, Introduction
to Statistical Learning (Gareth, Witten, Hastie, and Tibshirani, 2013), where Logistic
Regression, Linear Discriminant Analysis, and Quadratic Discriminant Analysis is used
on the Smarket dataset, the prediction success rate can be improved from 52 percent to
60 percent by using more advanced techniques in the finance prediction domain. Any
time we are sufficiently more successful than 50 percent in out-of-sample testing, we
should call this a success.

We can try two more classifiers as a comparison to the party package recursive tree.
The randomForest decision tree resamples the training set many times and averages
the results. Often it can yield a more robust prediction result. Support vector machines
(SVM) are one of the more classic statistical learning techniques which attempt to sep-
arate the dataset into clusters to match the response variable values. We combine the
earlier code into the function runClassifier(), which has cases for the party package
tree, randomForest package tree, and e1071 package SVM.

library(party)
library(randomForest)
library(e1071)
attach(IStreeDF)
runClassifier <- function(IStreeDF,train,name="ctree") {

if(name == "ctree") {
classifier=ctree(HL ~ netincgth + totrevgth +

gsprofgth + dnepsgth,
data=IStreeDF, subset=train)

predRes <- predict(type="response",
classifier, IStreeDF[-train,])

} else if(name == "randomForest"){
set.seed(100)
classifier=randomForest(HL ~ netincgth + totrevgth +

gsprofgth + dnepsgth,
data=IStreeDF, subset=train, mtry=4, importance=TRUE)

predRes <- predict(type="response",
classifier, IStreeDF[-train,])

} else if(name == "svm") {
classifier <- svm(formula=HL ~ netincgth + totrevgth +

gsprofgth + dnepsgth,data=IStreeDF, subset=train,
kernel="sigmoid",na.action=na.omit, scale = TRUE)

predRes <- predict(type="response",
classifier, IStreeDF[-train,])

}
par(mar=c(4,4,1,1))
par(mfrow=c(1,1))
if(name == "ctree" || name == "randomForest")

plot(classifier,cex=.25)
tbl <- round(table(predRes,IStreeDF[c(-train), "HL"])/D,3)
print(tbl)
print(tbl[1,1]+tbl[2,2]/sum(tbl))

}

316 Prediction Using Fundamentals

runClassifier(IStreeDF,train,"ctree")
runClassifier(IStreeDF,train,"randomForest")
runClassifier(IStreeDF,train,"svm")

While we strive for perfection in prediction, 100 percent success rates, in finance, we
are challenged by the thousands of market participants who randomly help determine
a security’s price. More than for biological and marketing analytics problems, finan-
cial markets problems have patterns which are constantly interrupted by random and
occasionally extreme events.

Let’s think about it. If it were easy to get an 80 percent success rate predicting and
then investing in securities, everyone would be jumping on board. In practice, it is very
tricky because the success rates are not guaranteed and are up against the threat of losing
large sums of money or losing gains by not getting the required price entries. Transaction
costs also factor into the final results in a significant way.

Classifier Winning percentage

party tree 61.0
random forest 55.2
support vector machine 44.9

In spite of this, so long as our prediction rates are well enough above 50 percent that
we can cover our transaction and employee costs, in the long run profits can be obtained
using predictive recursive partitioning. 61.0 percent for this case involving three years
of prices for the decision tree is reasonably good. At this point, further investigations to
these are exercises and challenges for the reader to extend the foundation of this chapter.

13.7 Exercises

13.1. Setting Up Directory Structure and Acquiring Market Prices

Set up a directory under FinAnalytics called MVO4 with sub-directories NYSE and
NASDAQ. Locate the ticker symbol files NYSEclean.txt and NASDAQclean.txt and
place them in their respective sub-directories. Examine the logic used for unit test-
ing the acquirePrices() function to invoke it properly to obtain cache files in NYSE
and NASDAQ sub-directories. There should be one cache file for each symbol in
the NYSEclean.txt and NASDAQclean.txt files as outlined in Table 4.1; however,
not all symbols will succeed when downloading. Be sure to use readSubDirs() to
set the symbol vector, lab and the dimension variables D = D1 + D2. Note that
D1 should be approximately 2233 and D2 should be approximately 2248.

Create a two-dimensional matrix called prices full of NAs and then invoke
acquirePrices() to obtain D price vectors of length len covering the period:
start = "2011-02-09" end = "2015-02-09" As acquiringPrices() is run-
ning, look into the NYSE directory to see that proper cache files are being created

13.7 Exercises 317

with non-NA prices. If NAs are being produced consistently it is good chance that
the start and end dates do not match the len variable.

13.2. Expanding the Unit Test

Locate the logic for the function findCachedPrices() of Chapter 13. Expand the
unit test of Section 13.3 to contain 12 NYSE and 12 NASDAQ symbols. Among
these 24 symbols, it is fine if there are up to six symbols with unobtainable prices.
What happens to the returned matrix in the case that there are no cache files for
these symbols?

13.3. Obtaining S&P 500 Index Prices

Use the following invocation of getHistPrices() to obtain the index prices for
comparison to the individual stock prices:

pricesSP <- getHistPrices(c('ˆGSPC'), c(1), len, start = "2011

-02-09", end = "2015-02-09", startBck1 = "2011-02-08", start

Fwd1 = "2011-02-10") write.csv(pricesSP, file = "cachedGSPC.

csv", row.names=FALSE) creating the file cachedGSPC.csv in the MVO4
directory.

13.4. Executing the Prediction Using Fundamentals

Obtain and execute the remaining code of Chapter 13 on the newly created
directory structure. Examine whether the text results and plots are as expected.

13.5. Expanding the Dataset for Cross Validation

Once there are several elements in the dataset, cross-validation involves train-
ing on a subset of training data, followed by testing. In Chapter 13 we had only
imported three years of prices, where two years were used for training. Expand
the program logic to import five years of data for training and testing. Leave one
year out of the four possible years of training data and run the party prediction
training and test logic. By leaving one year out, there are four possible training
sets. Report on the prediction rate for each training set. In your report, plot the
resulting tree that is built by each called instance of ctree() in order to see the
thresholds for each random variable used. Report the four prediction success rates
for each case of leaving one year out of the sample.

14 Binomial Model for Options

Derivative securities provide a flexible and more sophisticated exposure to the market
than simply owning the stock. In this section, we will concern ourselves with a particular
type of derivative security known as an option. Options give the purchaser the right, but
not the obligation, to purchase or sell the underlying security at a given price. This right
will expire at the maturity date.

That is correct: the user of the option can determine the price that they want to pay for
the underlying security. However, there is no guarantee that the price of the underlying
will be reached, and so the proposal can become worthless when it reaches its expiration.
Additionally, there is a fee for having this right. It is known as the option premium.

With American options, the right to exercise can occur at any time of any date after
the purchase of the option. With European options, the right to exercise can only occur
at maturity (Hull, 2006).

When one owns a stock, they are subjected to all the highs and the lows that can occur
while holding the position. With an option, however, one is only subject to exposure
in either the long (call) or short (put) direction. Valuing options is a non-trivial exer-
cise due to the stochastic nature of the underlying security. A relatively simple option
model which is used quite often in the options trading world is called the binomial tree.
Our purpose here is to help explain how options operate so we can build an analytics
framework later.

14.1 Applying Computational Finance

In computational finance, one uses probability and statistics to reason about financial
instruments in algorithms. In order to makes sense of the binomial tree and another
related model called the binomial asset pricing model, we assume investors in securities:

• Keep bank accounts;
• Invest in underlying securities like stocks.

In our case here, the best way to illustrate the options market is using an option trading
game. Hypothetical stock investor, Smitty, believes in increased demand for GOOG
stock, buys 1 share on Monday (t = 0), sells on Friday (t = T); GOOG has 50–50
probability of going up (p) or down (q) by $1 per day. GOOG stock is trading at $800
per share on Monday. Here is the situation over time:

14.1 Applying Computational Finance 319

n = 0, 1, 2, 3, 4 or t = 0,

{
1

N

}
,

{
2

N

}
,

{
3

N

}
,

{
4

N

}
.

From these times and potential stock prices we can form a lattice (N is the number
of trading days in a year). Use a coin toss to determine the daily direction: up (H) or
down (T).

Let’s look at one single day of GOOG stock price, S(t), as seen in Figure 14.1. The
time-based random variable representing the stock value, S(t), is a stochastic process.
The buyer of the stock on Monday (t = 0) is long and concerned with expected value
of stock on Friday (t = T). From Figure 14.2, there are 16 paths in the full lattice
of possible outcomes. In this version, the basic form of a binomial tree is shown with
the original stock price, S, and its evolution to future prices in the up, u, or down, d,
direction. Each time step, the current price is multiplied by either u or d. Figure 14.3
shows approximate stocks prices when S = 800. Freezing time at T , there is an expected
value at the end of our experiment:

E [S(T)] = 804p4 + 802 · 4p3q + 800 · 6p2q2 + 798 · 4q3p + 796q4

=
{

804
1

16
+ 802

4

16
+ 800

6

16
+ 798

4

16
+ 796

1

16

}
= 800

P(S(T) > S(0)) =
{

1

16
+ 4

16

}
= 5

16
= .3125 = P(S(T) < S(0)). (14.1)

Options investor Billie believes that GOOG is overvalued and buys a put option
GOOG on Monday and sells on Friday. A put option is a type of derivative security
derived from the right to sell GOOG stock short at a “strike” price K = 801 and has the
ability to either:

• exercise it for profit it if GOOG price goes down to 800, 798, or 796 on Friday where
the profit is the strike minus price at expiration;

• let it expire worthless if GOOG price goes up to 802 or 804.

constraints: 0 < d < (1 + r) < u ; low rates r = 0

800

799

801

q = 1/2

p = 1/2

u = 801
800 = 1.00125; ROR = (801−800)

800 = 1
8 th of 1%

d = 799
800 = 0.99875; ROR = (799−800)

800 = − 1
8 th of 1%

Figure 14.1 Transitioning from one day to the next where the stock price can go up or down at market close.

320 Binomial Model for Options

S

Sd

Su

Sd2

S

Su2

Sd3

Sd

Su

Su3

Sd4

Sd2

S

Su2

Su4

q

p

p

q

p

q

q

p

q

p

q

p

q

p

q

p

q

p

q

p

n = 4 period model

Figure 14.2 All possible outcomes beginning with stock price S. There are 16 possible paths from the root
node to period n = 4.

800

799

801

798

800

802

797

799

801

803

796

798

800

802

804

K K

q = 1/2

p = 1/2

p

q

p

q

q

p

q

p

q

p

q

p

q

p

q

p

q

p

Figure 14.3 Lattice drawn this time with the strike price K = 801.

The owner of a put option has bearish viewpoint. They profit from the quantity
K − S(T) when it is greater than zero. The option payoff is the expected value at T:

E [max(K − S(T), 0)] =
∑

s

max(K − s, 0) · P(S(T) = s)

= (max(801 − 804, 0)P(HHHH)+
max(801 − 802, 0)(P(HHHT) + P(HHTH))+

14.1 Applying Computational Finance 321

max(801 − 802, 0)(P(HTHH) + P(THHH))+
max(801 − 800, 0)(P(HHTT) + P(HTHT))+
max(801 − 800, 0)(P(THTH) + P(TTHH))+
max(801 − 800, 0)(P(HTTH) + P(THHT))+
max(801 − 798, 0)(P(TTTH) + P(TTHT))+
max(801 − 798, 0)(P(THTT) + P(HTTT))+
max(801 − 796, 0)P(TTTT))

= 0p4 + 0 · 4p3q + 1 · 6p2q2 + 3 · 4q3p + 5q4

E [max(K − S(T), 0)] = 1
6

16
+ 3

4

16
+ 5

1

16
= 1.4375. (14.2)

So $1.4375 is what the option is priced at, commonly known as the premium value.
Our third investor, Mayer, is not sure that GOOG is going to go down in value but

does not think it’s going way up either, so wants to sell a put option with strike price
at 801 and profit from collecting the premium, hopefully not having to pay the option
holder any payout. Mayer is taking the other side of the put option. We know that the
value today of this option, as it is expected to possibly payout in the future, is $1.4375.
Mayer’s sold put profit worse case is $1.4375 − $5 = $ –3.5625 in the case when the
put option has reached maximum value to the owner.

This three-player game is best played using a single coin tossed four times to represent
the heads or tails value at the end of Monday through Friday. Before tossing the first
coin, on Monday, Figure 14.4 shows the payouts, where Smitty buys the stock for $800,
Billie buys the put option for $1.44 and that premium goes directly to Mayer. By Friday,
as seen in Figure 14.5, depending upon the outcomes of four tosses, Smitty gets back
the current price of GOOG, Billie gets zero or the difference between the strike price
and the GOOG stock price if that price is below the strike price, and Mayer must pay

Monday

Ex Smitty

Mayer

Billie

$800

$1
.4

4
$1

.4
4

Figure 14.4 Initial payouts on the first day. Ex represents the stock options exchange.

322 Binomial Model for Options

Friday

Ex Smitty

Mayer

Billie

S(T)m
a
x
(0

,K
−

S
(T

))
m

a
x
(0

,K
−

S
(T

))

Figure 14.5 Payout to each investor at expiry.

zero or the difference between the strike price and the GOOG stock price if that price
is below the strike price. These three investors represent typical investors in an options
market.

14.2 Risk-Neutral Pricing and No Arbitrage

In computational finance there is an important elementary principle called risk-neutral
pricing. While the risk-averse investor minimizes their risk, and the risk-seeking investor
is attracted to risk, in this theoretical situation, the risk-neutral investor is neither
risk-seeking nor risk-averse. While it is hard to believe, knowing what we do about per-
sonalities, that such an actual type of person exists, it is the most reasonable assumption
to be made in order for the general case of option valuation to work out. By assuming the
investors are risk-neutral, there is no preference between single guaranteed outcome and
multiple outcomes so long as their expect value is the same. Any more complex assump-
tions cause additional complications, and they do not necessarily add to the accuracy of
the analysis.

Another elementary principle is known as the no arbitrage condition. Arbitrage is a
theoretical condition where investors can profit from a transaction that involves no nega-
tive cash flow at any probabilistic or temporal state, such that there is positive cash flow
in at least one state. It is the possibility of a risk-free profit at zero cost. “No arbitrage”
means that arbitrage, when it exists, disappears quickly. As market participants quickly
take any profits from arbitrage very quickly, and since it is hard to introduce random
variables for arbitrage, this common assumption seems reasonable.

14.3 High Risk-Free Rate Environment

We performed our basic binomial tree option calculations assuming that the interest
rates were zero. While the risk-free rate, μf , the rate paid by a treasury bond from a

14.3 High Risk-Free Rate Environment 323

stable issuer such as the United States Government, has been close to zero through the
early part of the 2010 decade, this was certainly not always the case. In the late 1970s
and early 1980s, some of the highest recorded risk-free rates prevailed.

To illustrate how high these rates can go, and how they affect the binomial tree, con-
sider a story from that period. An Illinois family purchased a home in 1972 for $80,000.
In 1984 that same family sold the same home for $380,000. Let us find the annualized
rate of return, rA and use it as a proxy for prevailing risk-free interest rates like μf .

380000 = 80000 · (1 + rA)12 (14.3)

rA = 14%. (14.4)

Now rA is an annualized real estate appreciation rate, and it can be used as a proxy
for interest rates. In order to obtain a daily interest rate, such as we have been using in
our binomial tree, we need to solve for r in this formula:

(1 + rA) = (1 + r)N |N=250. (14.5)

Solving for r, we determine that

r = 0.00052425. (14.6)

The Binomial Asset Pricing Model says that risk-neutral probability of the stock price
going up, p, is related to the factor by which it goes up, u, and down, d, and the rate, r
(Shreve, 2004a):

p = 1 + r − d

u − d
. (14.7)

Similarly, the probability of the stock price going down, q = 1 − p, is related to the
factor by which it goes down, d, and up, u, and the risk-free interest rate, r:

q = u − 1 − r

u − d
. (14.8)

To determine d and u = 1
d , from Formula 14.7, we can multiply each side by (u − d)

to yield:

pu − pd = 1 + r − d

pu − (p − 1)d = 1 + r

pu + (1 − p)d = 1 + r
p

d
+ qd = 1 + r

.535

d
+ .465d = 1.00052425,

which can be solved as d = .9929 and u = 1.007151.
Figure 14.6 shows the updated binomial tree in the high interest rate environment.

The amounts up and down in dollars are much greater than in prior trees in this chapter.
The prevailing interest rate, r, determines the probability of the price going up p. Just
by holding the stock each day we have a positive probability of it going up each day due
to the risk-neutral pricing assumption forcing the risk interest rates to be applied to the

324 Binomial Model for Options

800.00

794.32

805.72

788.68

800.00

811.48

783.08

794.32

805.72

817.28

777.52

788.68

800.00

811.48

823.13

q = .465

p = .535

Figure 14.6 Binomial tree recalculated with high interest rates.

overall stock market. Risk-neutral probabilities say that we have a 53.5 percent chance
of the stock going up each day. The expected value at the end of the week is $801.79.
The expected value projected out to one year is $906.25.

14.4 Convergence of Binomial Model for Option Data

Now that we have looked at the Binomial Model intuitively, let us examine it as a prac-
tical method to calculate traded option values. Although the Black–Scholes formula has
become the primary way to value European options, following the discrete Binomial
Model with a more robust number of iterations can tell us whether this intuitive method
is accurate enough to price real options in the market.

Following (Haug, 1998), a very handy reference book for anyone performing quanti-
tative analysis of the various flavors of options, we use a set of formulas which gener-
alized the Binomial Model to be usable as a pricing algorithm. Focusing on the simpler
European options, which must be held until expiry, we know from Figure 14.2 that the
model assumes the asset price at each node in the tree with n steps and maturity T in
years is

Suidj−i, i ∈ {0, 1, . . . , j},
where u and d we know are our factors for up and down which are above and below 1
and in the range 0 < d < (1 + r) < u just like in Figure 14.1. More precisely,

u = exp(σ
√
�t), d = exp(−σ√

�t) where �t = T/n.

Our probability of a stock price increase at each step, p is defined:

p = exp(b�t) − d

u − d
and q = 1 − p.

14.4 Convergence of Binomial Model for Option Data 325

Now we can state the formula which simulates evaluation on the entire binomial tree to
price call options and put options on stocks for initial price S and strike price K:

c = exp(−rT)
n∑

i=a

n!
i!(n − i)!piqn−i(Suidn−i − K) (14.9)

p = exp(−rT)
a−1∑
i=0

n!
i!(n − i)!piqn−i(K − Suidn−i). (14.10)

These are expected value formulas which sum the probability of each possible outcome
and its payoff. If we convert the formulas into R code, we have two cases, call and put,
and a for-loop to sum the probability-weighted outcomes. binomial() is the function
name. When considering the call case, for n = 4 steps, the limits on the summation are
2:4. The

n!
i!(n − i)!

term evaluates to 6, 4, and 1 for i = 2, 3, and 4, respectively, and this corresponds to
the numbers of paths to the rightmost nodes of the tree: S, Su2, and Su4. Below is the
binomial() code.

#Binomial option pricing adapted from E.G.Haug book.
r = .08
b = r
sigma = .30
S = 100
K = 95
T = .5

binomial <- function(type,S,K,sigma,t,r,n) {
deltat = T/n
u = exp(sigma*sqrt(deltat))
d = exp(-sigma*sqrt(deltat))
p = (exp(b*deltat)-d)/(u-d)

a = ceiling(log(K/(S*d^n))/log(u/d))
val = 0
if(type=='call') {

for(i in a:n) {
val = val +

(factorial(n)/(factorial(i)*factorial(n-i)))*
p^i*(1-p)^(n-i)*(S*u^i*d^(n-i)-K)

}
} else if(type=='put') {

for(i in 0:(a-1))
val = val +

(factorial(n)/(factorial(i)*factorial(n-i)))*
p^i*(1-p)^(n-i)*(K-S*u^i*d^(n-i))

}
exp(-r*T)*val

}

326 Binomial Model for Options

Index

bm
C

al
lV

al

0 10 20 30 40 50 60

13
.0

14
.0

15
.0

0 10 20 30 40 50 60

4.
5

5.
5

Index

bm
P

ut
V

al

Figure 14.7 Convergence of binomial tree: the number of steps is on the horizontal axis and premium value is
on the vertical axis. Top: call; Bottom: put.

The iterative binomial() method above can be compared to the classic Black–Scholes
formula when valuing European options, below.

bs<-function(type,S,K,sigma,t,r){
d1 <- (log(S/K) + (r+(sigma^2)/2)*t) / (sigma*sqrt(t))
d2 <- (log(S/K) + (r-(sigma^2)/2)*t) / (sigma*sqrt(t))
if (type=='call') val <- pnorm(d1)*S - pnorm(d2)*K*exp(-r*t)
else if (type=='put') val <- pnorm(-d2)*K*exp(-r*t) -

pnorm(-d1)*S
val

}

Now we can see how well the values converge for the Binomial Model. The plot() code
below shows us the calculated value on the y-axis for each n value, where n is the number
of tree steps. Surprisingly, the calculated premiums start off not far off and converge
fairly quickly. Figure 14.7 shows the call on top and the put on the bottom. The stock
price, S stays at 100 and strike price, K is 95, meaning that the call is in-the-money
(ITM) and the put is out-of-the-money (OTM).

#Invoke Binomial Method varying n:
N = 64
par(mfrow=c(1,2))
bmCallVal <- rep(0,length(1:N))
for(n in 1:N)

bmCallVal[n] <- binomial('call',S,K,sigma,T,r,n)
plot(bmCallVal)
lines(bmCallVal,col=4)
bsCallVal <- bs('call',S,K,sigma,T,r)
lines(rep(bsCallVal,N),col=4)
bmPutVal <- rep(0,length(1:N))
for(n in 1:N)

bmPutVal[n] <- binomial('put',S,K,sigma,T,r,n)

14.5 Put–Call Parity 327

plot(bmPutVal)
lines(bmPutVal,col=4)
bsPutVal <- bs('put',S,K,sigma,T,r)
lines(rep(bsPutVal,N),col=4)

The best estimates of the Binomial Model (N = 64) and Black–Scholes values are
shown in the output below.

> bmCallVal[N]
[1] 13.1524944608
> bsCallVal
[1] 13.174384319
> bmCallVal[N]/bsCallVal
[1] 0.998338453044
> bmPutVal[N]
[1] 4.42749118031
> bsPutVal
[1] 4.44938103847
> bmPutVal[N]/bsPutVal
[1] 0.99508024645

They are within one half of 1 percent as seen from the ratios of .995 and .998 above.

14.5 Put–Call Parity

The two major types of European options are related in price by a principle known as
Put–Call Parity:

p = c − (S − K exp(−rT)). (14.11)

When the option is at-the-money (ATM) then the stock price, S, is equal to the present
value of the strike price, K exp(−rT), so p = c. When the stock price is greater than the
present value of the strike price, then the call is in the money, but the put is out-of-the-
money (OTM) so the call price gets reduced by the amount S−K exp(−rT) to make them
equal. Similarly, when the stock price is less than the present value of the strike price,
then the put is in-the-money (ITM) and the call is OTM so the amount S − K exp(−rT)
is negative and increases the right-hand side of Formula 14.11 to make the two sides
equal. To see this more graphically, we have some R code below to plot it. The output is
plotted in Figure 14.8.

#Visualizing Put-Call Parity:
S <- 75:125
M = length(S)
bmCallVal <- vector(length=M)
bmPutVal <- vector(length=M)
n = 64
for(i in 1:M) {

bmCallVal[i] <- binomial('call',S[i],K,sigma,T,r,n)

328 Binomial Model for Options

80 90 100 110 120

5
15

25
35

S

bm
C

al
lV

al
,b

m
P

ut
V

al K*exp(−r*T) = 91.27K*exp(−r*T) = 91.27K*exp(−r*T) = 91.27

Figure 14.8 Put–call parity is most obvious at the present value of the strike price, K exp(−rT), where the
call and put premium values are identical. Everywhere else for varying S and for fixed strike
price K = 95, they are related by Formula 14.11.

bmPutVal[i] <- binomial('put',S[i],K,sigma,T,r,n)
}
par(mfrow=c(1,1))
plot(S,bmCallVal,type='l',col=4,

ylab="bmCallVal,bmPutVal")
lines(S,bmPutVal,col=5)
#At the present value of the strike, K*exp(-r*T),
#the call and put have the same value (ATM).
pvK <- K*exp(-r*T)
abline(v = pvK)
text(c(pvK),c(30),paste("K*exp(-r*T) =",

round(pvK,2)),cex=.75)

Now we consider the results of checking put–call parity:

> #Let's check Put-Call Parity:
> #S=100
> l = ceiling(M/2) #Find the middle price S[l]
> S[l]
[1] 100
> round(bmCallVal[l],4)
[1] 13.1525
> round(bmCallVal[l],4) ==
+ round(bmPutVal[l] + S[l] - pvK,4)
[1] TRUE

We see from the assertation of the last line of code, above, that put–call parity is met
with rounding at four digits when the number of steps N = 64 and at S[26] = 100.

14.6 From Binomial to Log-Normal

The transition from the illustrative discrete-time binomial case and the more realistic
continuous-time case involves going from the binomial distribution of stock prices to

14.6 From Binomial to Log-Normal 329

the familiar log-normal distribution. The binomial trees are used as an approximation to
the case of continuous time in order to:

• illustrate the dynamic nature of the market with a small number of discrete random
variables;

• calculate the value of American options in the case of early exercise.

The connection between the discrete and continuous-time models can be explained in
detail (Shreve, 2004b). Returning back to the zero-risk free rate environment, r = 0, in
the Binomial Model, we can choose any u and d such that:

0 < d < (1 + r) < u. (14.12)

If we choose

un = 1 + σ√
n

, dn = 1 − σ√
n

(14.13)

for step n of the tree, we know that when σ > 0 then constraint (13.12) is met. Using
(13.7) and (13.8),

p = 1 + r + dn

un − dn
= σ/

√
n

2σ/
√

n
= 1

2
, q = un − 1 − r

un − dn
= σ/

√
n

2σ/
√

n
= 1

2
,

and we are, once again, back to symmetric probabilities of Section 14.1 above.
First of all, intuitively, since u > 0 and d > 0 and our initial stock price S(0) > 0

then, in the extension of an n-step binomial tree, S(0)dn can never reach or go below
zero even though it can become infinitely close. This matches the behavior of stock
prices as log-normal. In the log-normal distribution, the values of the random variable
are positive. Secondly, if we use two random variables to indicate the number of heads,
Hn, and tails, Tn at step n, then we know that

n = Hn + Tn, (14.14)

because each outcome is either a head or a tail. We can also define a derived random
variable

Mn = Hn − Tn, (14.15)

as the number of heads minus the number of tails. If we add Equations 13.14 and 13.15
and divide by 2, we obtain

Hn = 1

2
(n + Mn), (14.16)

and, if we subtract Equations 13.14 and 13.15 and divide by 2, we also can obtain

Tn = 1

2
(n − Mn). (14.17)

So, if we have n up and down movements applied to S(0), these can be tracked as

Sn(t) = S(0)uHn
n dTn

n , (14.18)

330 Binomial Model for Options

and, by Equations 13.13 and 13.16 and 13.17,

Sn(t) = S(0)

(
1 + σ√

n

) 1
2 (n+MN) (

1 − σ√
n

) 1
2 (n−MN)

. (14.19)

As n → ∞, the distribution of this random variable Sn(t) converges to the distribution
of

S(t) = S(0) exp

[
σW(t) − 1

2
σ 2t

]
, (14.20)

where W(t) is a N(0, t) random variable with variance t, although proving this is outside
our scope. We now know that the distribution of S(t) is log-normal because it is of the
form CeK where C is a constant and K is normal.

14.7 Exercises

14.1. Asset Appreciation

Risk-neutral valuation of options assume that the prevailing interest rate, signified
by r, is the basic rate of appreciation of equity securities, despite the fact that they
are risky assets. To make this point more tangible, we can think about treasury
bonds and real estate as have a similar rate r.

Assume you own a home in a market where real estate appreciates at a rate of
7 percent per year. If the home costs 100,000 initially and the rate is constant,
what would we expect the home to be worth at the end of a decade?

14.2. Binomial Tree Accuracy

Determine the percentage increase in accuracy when going from N = 32 steps
to N = 64 steps for the binomial tree for one put and one call option where
r = 0.08; b = r; sigma = 0.30; S = 100; K = 95; T = 0.5. Use the Black–
Scholes value as computed by the function bsCallVal() as a reference.

15 Black–Scholes Model and
Option-Implied Volatility

When traveling across the agricultural American Midwest, one can hear AM radio sta-
tions broadcast the futures prices of corn, soybeans, wheat, and other commodities every
weekday at various times of the day. Iowa and Illinois lead the nation in corn production.
Kansas leads the nation in wheat production. Listening to these farm reports is entertain-
ing. Included in the broadcasts are very detailed weather reports. Weather is critical to
many producers’ livelihoods. After a few weeks of listening to these broadcasts, we
learn that nobody truly knows for sure whether the agricultural market prices will go
up or down on a trading day. Hedging the production chain price risk, especially for the
farmers, who seasonally grow the crops, is achieved with futures and option securities.
Producers very often want to lock in a price for delivering corn at the end of the season,
or want to be compensated for a significant reduction in the agricultural price in order
to guarantee recovering their fixed costs over the upcoming days and months.

From Chapter 14, we have gained more familiarity with the random walk processes
assumed by the option models. We continue the option theme from the prior chapter
and examine a very popular model for pricing European options. The most famous and
widely accepted model of option valuation model is known as the Black–Scholes model
of 1973 (Black and Myron, 1973). It revolutionized the pricing and trading of options
which, prior to this, were priced in rather arbitrary ways. Black and Scholes relied upon
the stochastic calculus. Stochastic calculus was invented by Itô in 1951 to address the
need for a calculus for random variables as functions over time, like our stock market
prices (Ito, 1951). Together with Merton, Black and Scholes were awarded the 1997
Nobel Prize in Economic Sciences for this invention. We discuss the Black–Scholes
model here in order to complete our tour of financial analytics. We will try to make
minimal use of stochastic calculus.

We saved this more mathematical material for the end of the book because it involves
the more complex type of security: options. As mentioned in Chapter 14, options are
derivative securities. Many people working in finance and investors in the market may
never encounter options because they are considered too complex or risky for their risk
appetite or they may be restricted from trading them if they work for a bank or securities
firm, again, due to their risky nature. But discussing them provides a more complete
financial analytics framework.

While we discussed mixture models as a way to more accurately represent true market
distributions, most of the option literature and models in practice involve normal and
log-normal distribution assumptions, so we will revert to that convention in order to
discuss the industry standard option valuation model.

332 Black–Scholes Model and Option-Implied Volatility

15.1 Geometric Brownian Motion

Geometric Brownian Motion (GBM) is a stochastic process and the assumption of mar-
ket price movements for the Black–Scholes formula for finding the price of options in
current market conditions. We begin where we left off in the prior chapter with GBM,
which is also a log-normal process as in Formula 14.20. Introducing a drift term μ and
taking the log of each side, we have σW(t) + (μ − σ 2/2)t. Since W(t) ∼ N(0, t), mul-
tiplying it by σ , a standard deviation term, makes the variance σ 2t and adding the term
(μ − σ 2/2)t moves the mean from zero to (μ − σ 2/2)t. So we have the well-known
assumption of our stochastic process,

ln
S(t)

S(0)
∼ Normal(

(
μ− σ 2

2

)
t, σ 2t). (15.1)

Now let’s look at GBM in its differential form. In stochastic calculus for finance, a stock
price is described as having two components:

1. “trend” or deterministic behavior;
2. “random” or stochastic behavior.

In order to model this, we use

dS = Sμdt + SσdB,

where μ is the drift or instantaneous growth rate, σ is the standard deviation of returns,
and dB ∼ N(0, 1). This description is satisfying because both the trend growth and the
random component are proportional to the stocks price. We can rewrite this as

dS

S
= μt + σdB.

In ordinary calculus, if

y = g(x)

then

dy = g′(x)dx.

But in stochastic calculus, the calculus created for random variables, if X is a random
variable:

Y = g(X)

then

dY = g′(X)dX + 1

2
g′′(X)(dX)2,

with the extra term due to the fact that (dX)2 “accumulates.”
Now consider again the stock model

dS

S
= μt + σdB

15.2 Monte Carlo Simulation of Geometric Brownian Motion 333

with a new random variable defined as

Y = ln S,

which is the log of the stock price. Using the Itô’s formula for the stochastic derivative
we have

dY = d ln S

=
(

S−1
)

dS + 1

2

(
−S−2

)
(dS)2

=
(

1

S

)
dS − 1

2

(
dS

S

)2

.

Using Itô’s formula for the stochastic derivative we have

dY = d ln S

=
(

1

S

)
dS − 1

2

(
dS

S

)2

= (μdt + σdB) − 1

2
(μdt + σdB)2

= (μdt + σdB) − 1

2
(μ2dt2 + 2μdtdB + σ 2dB2)

= (μdt + σdB) − 1

2
σ 2t

=
(
μ− 1

2
σ 2

)
dt + σdB,

where the equality from line 4 to line 5 is true since dtḋt ≈ 0, dtḋB ≈ 0, and dBḋB ≈ dt
as well in stochastic calculus. And since

d ln S =
(
μ− 1

2
σ 2

)
dt + σdB,

we can integrate both sides over the interval [0, T] to get

ln S(T) − ln S(0) =
(
μ− 1

2
σ 2

)
T + σB(T)

and take the exponential of both sides to get

S(T) = S(0)e

(
μ− 1

2σ
2
)

T+σB(T)
, (15.2)

which is the expression for geometric Brownian motion.

15.2 Monte Carlo Simulation of Geometric Brownian Motion

This stochastic process can be described without using differential equation notation
simply as:

334 Black–Scholes Model and Option-Implied Volatility

0 500 1000 1500 2000 2500

20
0

40
0

60
0

80
0

Figure 15.1 A 100-path Monte Carlo simulation of a typical stock using Geometric Brownian Motion. The
price begins at 100 and goes as low as 25.04 and as high as 689.58 depending on the simulated
path taken.

S(t) = S(0) exp

[(
μ− σ 2

2

)
t + σ z

√
t

]
where z ∼ N(0, 1). (15.3)

In Figure 15.1 is a 100-path simulation of GBM process with μ = 0.07 and σ = 0.20.
The upward bias is caused by the drift parameter, μ. We can imagine a higher priced
stock like IBM beginning a ten-year time horizon at $100 per share and having 100
possible paths over that time horizon.

The R code for this one-year simulation appears below, inspired by the work of Car-
mona (Carmona, 2004). The paths are colored by the numeric path number to try to get
as many unique colors as are available.

Npaths = 100
Nyears = 10
NdaysPerYr = 252
Ndays = NdaysPerYr*Nyears
muA = .07
muD = (1+muA)^(1/Ndays)-1 #daily ROR avg.
muD = exp(muA)^(1/Ndays)-1
sigmaA = .20
sigmaD = sigmaA/sqrt(Ndays) #daily volatility
rA = (muA - sigmaA^2/2)
rA
set.seed(2009)

#simulate:

sim <- function(init,Npaths,Ndays,muD,sigmaD,rD,isGBM) {
X <- matrix(rep(0,Npaths*Ndays), nrow=Npaths, ncol=Ndays)
X[,1] <- init #initial stock price
for(t in 1:(Ndays-1)) {

print(t)
deltat = 1/NdaysPerYr

15.3 Black–Scholes Derivation 335

tA = t/NdaysPerYr
#Geometric Brownian motion model:
X[,t+1] <- X[,t]*exp(rA*deltat + sigmaA *

sqrt(deltat) * rnorm(Npaths))
}
return(X)

}

The following function displays the simulation paths.

display <- function(X,Npaths,xlab,ylab) {
#now go path by path:
for(p in 1:Npaths)

if(p==1) {
plot(X[p,],col=p,type='l',ylim=c(50,100*8),

xlab=xlab,ylab=ylab)
} else {z

lines(X[p,],col=p)
}

}

The following runs the simulation.

par(mfrow=c(1,1))
par(mar=c(2,2,1,1))
X <- sim(100.0,Npaths,Ndays,muD,sigmaD,rD,isGBM=TRUE)
display(X,Npaths,xlab="Days",ylab="Price")
min(X)
max(X)

15.3 Black–Scholes Derivation

The Black–Scholes formula is the industry standard for valuing European options, and
its derivation is an interesting process to witness. Here, it is being performed using
ordinary calculus. The discount expected payoff of a call option:

c(S, 0) = e−rTE
[
(ST − K)+

]
, (15.4)

where (x)+ means max(0, x) and S(T) follows geometric Brownian motion:

S(T) = S(0)e

(
r− σ2

2

)
T+σ√

Tz
(15.5)

and Z ∼ N(0, 1), where we substitute r for μ and σ
√

Tz in for σB(T) in Equation 15.2
to obtain Equation 15.5. Now,

c(S, 0) = e−rTE
[
(ST − K)+

]
= e−rT

∫ ∞

−∞

(
S0e

(
r− σ2

2

)
T+σ√

Tz − K

)
f (z)dz

= e−rT
∫ ∞

−∞

(
S0e

(
r− σ2

2

)
T+σ√

Tz − K

)
1√
2π

e− z2
2 dz,

336 Black–Scholes Model and Option-Implied Volatility

where f (z) is the p.d.f. for z. Given the definition of Geometric Brownian Motion in
Equation 15.3, we begin by solving for the lower bound of the above integral. Since the
call option only pays when the terminal value of the security is greater than the strike, it
must be that:

S(0)e

(
r− σ2

2

)
T+σ√

Tz − K ≥ 0, (15.6)

so we can look for the lower limit of the integration,

S(0)e

(
r− σ2

2

)
T+σ√

Tz − K ≥ 0

e

(
r− σ2

2

)
T

eσ
√

Tz ≥ K

S0

eσ
√

Tz ≥ K

S0
e
−
(

r− σ2
2

)
T

σ
√

Tz ≥ ln

(
K

S0

)
−
(

r − σ 2

2

)
T

z ≥ 1

σ
√

T

[
ln

(
K

S0

)
−
(

r − σ 2

2

)
T

]
.

Let this lower limit be:

L = 1

σ
√

T

[
ln

(
K

S0

)
− (r − σ 2

2
)T

]
, (15.7)

so that the call option’s discounted expected payoff is now

c(S, 0) = e−rT
∫ ∞

L

(
S0e

(
r− σ2

2

)
T+σ√

Tz − K

)
1√
2π

e− z2
2 dz.

Separating the exponential gives us:

c(S, 0) = e−rT
∫ ∞

L

(
S0erTe− σ2

2 Teσ
√

Tz − K

)
1√
2π

e− z2
2 dz.

Distributing the density through gives us

c(S, 0) = e−rT

√
2π

(∫ ∞

L
S0erTe− σ2

2 Teσ
√

Tze− z2
2 dz −

∫ ∞

L
Ke− z2

2 dz

)

and

c(S, 0) = e−rT

√
2π

∫ ∞

L
S0erTe− σ2

2 Teσ
√

Tze− z2
2 dz − e−rT

√
2π

∫ ∞

L
Ke− z2

2 dz

= S0√
2π

∫ ∞

L
e− σ2

2 T+σ√
Tz− z2

2 dz − Ke−rT
∫ ∞

L

1√
2π

e− z2
2 dz

= S0√
2π

∫ ∞

L
e− 1

2 (z−σ√
T)2

dz − Ke−rT (1 − N(L)).

Now substitute y = z − σ
√

T , which shifts the bounds of integration down to
L − σ

√
T:

15.3 Black–Scholes Derivation 337

c(S, 0) = S0√
2π

∫ ∞

L
e− 1

2 (z−σ√
T)2

dz − Ke−rT (1 − N(L))

= S0√
2π

∫ ∞

L−σ√
T

e− 1
2 y2

dz − Ke−rT (1 − N(L))

= S0(1 − N(L − σ
√

T)) − Ke−rT (1 − N(L)),

where

P(X ≤ x) = N(x) =
∫ x

−∞
1√
2π

e− z2
2 dz (15.8)

is the cumulative standard normal distribution function. Now we are nearing the end of
the derivation!

Now, recalling in Equation 15.7 the lower bound of the integration

L = 1

σ
√

T

[
ln

(
K

S0

)
− (r − σ 2

2
)T

]
.

Subtracting σ
√

T from both sides yields

L − σ
√

T = 1

σ
√

T

[
ln

(
K

S0

)
− (r − σ 2

2
)T

]
− σ

√
T

= 1

σ
√

T

[
ln

(
K

S0

)
− (r − σ 2

2
)T − σ 2T

]

= 1

σ
√

T

[
ln

(
K

S0

)
− (r + σ 2

2
)T

]
.

Now, recalling Equation 15.8 for the function N(x), the cumulative standard normal
distribution function, and we know from probability theory that N(−L) = 1 − N(L). So
that if

L = 1

σ
√

T

[
ln

(
K

S0

)
− (r − σ 2

2
)T

]

then

−L = − 1

σ
√

T

[
ln

(
K

S0

)
− (r − σ 2

2
)T

]

= 1

σ
√

T

[
ln

(
S0

K

)
+ (r − σ 2

2
)T

]
.

Since 1 − N(L − σ
√

T) = N(−(L − σ
√

T)) we have

−(L − σ
√

T) = − 1

σ
√

T

[
ln

(
K

S0

)
− (r + σ 2

2
)T

]

= 1

σ
√

T

[
ln

(
S0

K

)
+ (r + σ 2

2
)T

]
= d1.

338 Black–Scholes Model and Option-Implied Volatility

The price of a European call for a non-dividend-paying stock with current price S0

with strike price X, term T , and interest rate r is:

C = S0N(d1) − Xe−rtN(d2), (15.9)

where

d1 =
ln
(

S0
X

)
+
(

r + σ 2

2

)
t

σ
√

t

d2 = d1 − σ
√

t,

and N(z) = P(Z ≤ z) is the cumulative distribution of the standard Normal random
variable from Equation 15.8. Note that we used X for the strike price this time.

The Black–Scholes option pricing formula allows us to calculate the price of a Euro-
pean call or put option, given the stocks current price, the option strike price, the
risk-free rate over the options life, and volatility.

The price of a European put for a non-dividend-paying stock with current price S0

with strike price X, term T , and interest rate r is:

P = Xe−rT [N(−d2)] − S0[N(−d1)], (15.10)

where

d1 =
ln
(

S0
X

)
+
(

r + σ 2

2

)
T

σ
√

T
(15.11)

and

d2 = d1 − σ
√

T . (15.12)

15.4 Algorithm for Implied Volatility

As derived previously, for a non-dividend-paying stock with current price S0 with strike
price K, term T , and interest rate r the Black–Scholes price of a European call and put
are specified in Equations 15.9 and 15.10.

Often, Equations 15.9 and 15.10 are used to compute what is called the implied
volatility of the option prices. The strike, option price, underlying asset price, term,
and interest rate are all known, but volatility is not. We observe the options prices in the
market and solve the volatility σ that gives us the observed prices. This is accomplished
by root-finding algorithms (Bennett, 2009).

Before we can calculate volatility, we must extract the known information from some
source. Options as a set are represented as a structure known as an option chain. Option
databases are quite large, often over 100 GB, and require R to interface with database
software. We will examine the option chain for TARO, which is around 10 MB. To
aggregate the option data and then extract the chain for TARO, we will use the RSQLite
package. We can use root-finding algorithms to solve for the volatility implied by the
variables known. For this we will implement both the Newton–Raphson and secant

15.5 Implementation of Implied Volatility 339

algorithms. With volatility for a given option estimated, we can aggregate volatilities
for TARO across strike prices and durations to construct what is known as the volatility
surface and the volatility smile. We can also aggregate across estimated volatilities for a
given day and plot the behavior of volatility in time. This we will do using the ggplot2
package.

The Newton–Raphson method solves for f (x) = 0 when the below recursion
converges sufficiently:

xn+1 = xn − f (xn)

f ′(xn)
.

The secant method also solves for f (x) = 0 by approximating the derivative of the
function:

f ′(xn−1) ≈ f (xn−1) − f (xn−2)

xn−1 − xn−2
.

Substituting the approximation into the Newton–Raphson recursion yields:

xn = xn−1 − f (xn−1)
f (xn−1)−f (xn−2)

xn−1−xn−2

= xn−1 − f (xn−1)
xn−1 − xn−2

f (xn−1) − f (xn−2)
.

15.5 Implementation of Implied Volatility

With the option chain in hand, we can read it into R and examine its structure. In our
analysis we will be concerned with DataDate: the date on which the data was recorded,
UnderlyingPrice: the price of TARO on DataDate, Type: whether the option is a
call or a put, Expiration: date on which the option expires, Strike: strike price of
the option, Bid: price being offered by a potential buyer of the option, and Ask: price
being demanded by a potential seller of the option. We need to process the data frame
so it can be more useful.

> setwd(paste(homeuser,"/FinAnalytics/ChapXV",sep=""))
> taro<-read.csv("TARO.csv")
> str(taro)

'data.frame': 27650 obs. of 17 variables:
$ X.1 : int 1 2 3 4 5 6 7 8 9 10 ...
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ UnderlyingSymbol: Factor w/ 1 level "TARO": 1 1 1 1 1 1 1 1 1 1 ...
$ UnderlyingPrice : num 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 ...
$ Exchange : Factor w/ 1 level "*": 1 1 1 1 1 1 1 1 1 1 ...
$ OptionRoot : Factor w/ 418 levels "QTT020420C00025000",..:
$ OptionExt : logi NA NA NA NA NA NA ...
$ Type : Factor w/ 2 levels "call","put": 1 2 1 2 1 2 ...
$ Expiration : Factor w/ 25 levels "2002-04-20","2002-05-18",..:
$ DataDate : Factor w/ 435 levels "2002-03-22","2002-03-25",..:

340 Black–Scholes Model and Option-Implied Volatility

$ Strike : num 25 25 30 30 32.5 32.5 35 35 40 40 ...
$ Last : num 7 0.95 3.3 1.2 1.7 2.4 0.85 3 0.2 9 ...
$ Bid : num 7.2 0 2.9 0.45 1.5 1.25 0.5 2.6 0 6.7 ...
$ Ask : num 8.4 0.5 3.9 0.95 2.15 1.9 0.95 3.4 0.4 7.9 ...
$ Volume : int 0 0 1 0 4 0 10 4 2 0 ...
$ OpenInterest : int 43 90 181 334 946 34 403 75 293 43 ...
$ T1OpenInterest : int 43 90 181 334 948 34 413 79 293 43 ...

> taro$Spread<-taro$Ask-taro$Bid

We proceed and convert DataDate and Expiration from factors to R date objects
so that we can do date arithmetic on them, and define option Price and Maturity. We
define the Price of the option to be the mid-point or average between the Bid and the
Ask prices. While we could incorporate other information such as outstanding contracts
or volume, the simple average will serve as a reasonable approximation. The Maturity
is defined as years to expiration of the option, and so is calculated as the difference
between the Expiration date and the current DataDate date, divided by the number
of days in a year. Lastly, we define an implied volatility IV component which will hold
our calculated implied volatilities and initialize it to zero.

> taro$Expiration<-as.Date(taro$Expiration)
> taro$DataDate<-as.Date(taro$DataDate)
> taro$Price<-(taro$Bid+taro$Ask)/2
> taro$Maturity<-as.double(taro$Expiration-taro$DataDate)/365
> taro$IV<-0.0

To isolate the dates for our analysis, we use the R function unique() to return the set
of all DataDate values in the data frame. We proceed to take the first 150 dates, and
subset to return only the options that correspond to those dates.

> dates<-unique(taro$DataDate)
> dates<-dates[1:150]
> taro<-subset(taro,DataDate %in% dates)

We now define the implied volatility functions we need. Recall that for a non-
dividend-paying stock with current price S0, with strike price X, term T , and interest
rate r, the Black–Scholes price of a European call option and put option are

C = S0N(d1) − Xe−rtN(d2)

P = Xe−rtN(−d2) − S0N(−d1),

where

d1 =
ln
(

S0
X

)
+
(

r + σ 2

2

)
T

σ
√

T

d2 =
ln
(

S0
X

)
+
(

r − σ 2

2

)
T

σ
√

T
,

15.5 Implementation of Implied Volatility 341

and N(z) = P(Z ≤ z) is the cumulative distribution of the standard Normal random
variable. With this in mind we can define a function to calculate the value of either a
call or a put option. We calculate the values of d1 and d2 then the value of the call or
put, depending on whether call or put is specified. Note that the R function pnorm(d1)
calculates the probability N(d1) = P(Z ≤ d1).

> bs<-function(type,S,K,sigma,t,r){
+ d1 <- (log(S/K) + (r+(sigma^2)/2)*t) / (sigma*sqrt(t))
+ d2 <- (log(S/K) + (r-(sigma^2)/2)*t) / (sigma*sqrt(t))
+ if (type=='call') val <- pnorm(d1)*S - pnorm(d2)*K*exp(-r*t)
+ else if (type=='put') val <- pnorm(-d2)*K*exp(-r*t) - pnorm(-d1)*S
+ val
+ }

Finally, we implement the secant method. Recall the secant method recursion

xn = xn−1 − f (xn−1)
xn−1 − xn−2

f (xn−1) − f (xn−2)

and implement the secant function recursively, with the possibility of the approximate
volatility in the case that the recursion diverges. We do this by testing if the estimate
implied volatility gets large enough to be equal to R’s representation of infinity.

> secantIV<-function(type,V,S,K,sigma0,sigma1,t,r){
+ newSigma <- sigma0 - (bs(type,S,K,sigma0,t,r)-V)*(sigma0-sigma1)/
+ (bs(type,S,K,sigma0,t,r) - bs(type,S,K,sigma1,t,r))
+ if(abs(newSigma)==Inf) return(0.0)
+ if(abs(newSigma - sigma0) < .001) return(newSigma)
+ else return(secantIV(type,V,S,K,newSigma,sigma0,t,r))
+ }

We also define the Newton–Raphson algorithm, although we don’t use it extensively
because of instability. Recall the Newton–Raphson method solves for f (x) = 0 when the
recursion below converges sufficiently:

xn+1 = xn − f (xn)

f ′(xn)
.

The problem lies in dividing by the derivative of the option value. In the case of the call
option, and using the chain rule of differentiation, the derivative of the option is given as

∂C

∂σ
= S0φ(d1)

√
T ,

where φ(x) is the density of the standard normal random variable evaluated at x. When
the underlying price is much greater than the strike price and the time until expiration
is long, the value of the normal distribution at this level can be very small, resulting in
division by near zero, and causing the iteration to get out of control. We define the value
of the Black–Scholes below for a call option.

342 Black–Scholes Model and Option-Implied Volatility

> Val<-function(V,S,K,sigma,t,r){
+ d1 <- (log(S/K) + (r+(sigma^2)/2)*t) / (sigma*sqrt(t))
+ d2 <- (log(S/K) + (r-(sigma^2)/2)*t) / (sigma*sqrt(t))
+ val<-pnorm(d1)*S - pnorm(d2)*K*exp(-r*t)
+ return(val-V)
+ }

The Newton–Raphson method uses the derivative of the call option in calculating the
update. Keeping in mind the above formula for the derivative of the call option with
respect to the volatility σ , we define below a function to compute the derivative for the
call option:

> dVal<-function(V,S,K,sigma,t,r){
+ d1 <- (log(S/K) + (r+(sigma^2)/2)*t) / (sigma*sqrt(t))
+ val <- S*dnorm(d1)*sqrt(t)
+ return(val)
+ }

Putting the pieces together, we define a function to estimate the implied volatility via the
Newton–Raphson method xn+1 = xn − f (xn)

f ′(xn) and iterate recursively until convergence is
achieved.

> impliedVol<-function(V,S,K,sigma,t,r){
+ newSigma <- sigma - Val(V,S,K,sigma,t,r) / dVal(V,S,K,sigma,t,r)
+ if(abs(newSigma - sigma) < .001) return(newSigma)
+ else return(impliedVol(V,S,K,newSigma,t,r))
+ }

We test Newton–Raphson and secant methods to ensure they give similar results for the
implied volatility for a call option priced at 2.875 with an underlying price of 24, a strike
price of 22, an interest rate of 5 percent, and a time until expiration of six months, i.e.
half a year.

> impliedVol(2.875,24,22,0.2,.5,0.05)
[1] 0.1871222
> secantIV('call',2.875,24,22,0.5,1,.5,0.05)
[1] 0.1871232

Convinced that our implied volatility solvers are working correctly, we now step
through the option chain by date variable DataDate and calculate the implied volatil-
ity for each option on a given day via the secant method. The secant method can also
diverge, but rarely.

> for(date in dates){
+ sub<-subset(taro,DataDate==date)
+ IV<-rep(0,dim(sub)[1])
+ for(i in 1:dim(sub)[1]){
+ IV[i]<-secantIV(sub$Type[i],sub$Price[i],sub$UnderlyingPrice[i],
+ sub$Strike[i],0.4,1,sub$Maturity[i],0.05)

15.5 Implementation of Implied Volatility 343

+ }
+ taro[taro$DataDate==date,]$IV<-IV
+ }
> taro<-subset(taro,IV!=0.0)
> hist(taro$IV,breaks=100,main="")

Two histograms and a plot of option implied volatility are contained in Figures 15.2,
15.3 and 15.4.

> hist(taro$Spread,main="")
> vol<-data.frame(date=dates)
> vol$IV<-0.0
> for(date in dates){
+ vol[vol$date==date,]$IV<-mean(taro[taro$DataDate==date,]$IV)
+ }
> plot(vol$date,vol$IV,type='l',col='blue')
> library(ggplot2)
> ggplot(vol,aes(x=date,y=IV)) + geom_line()

We turn now to construction of the volatility smile. To examine the volatility smile for
a single day, we subset the dataset for a single date: March 25, 2002. We then subset for
put and call options out of the money, then plot the implied volatilities corresponding to
these strike prices.

> tarosub<-taro[taro$DataDate=='2002-03-25',]
> taroput<-subset(tarosub,Type=='put' & UnderlyingPrice > Strike)
> tarocall<-subset(tarosub,Type=='call' & UnderlyingPrice < Strike)

0.0 0.5 1.0 1.5 2.0 2.5

0
20

0
40

0
60

0
80

0
10

00

Figure 15.2 Histogram of option-implied volatility for TARO, April to November 2002.

344 Black–Scholes Model and Option-Implied Volatility

0.0 0.5 1.0 1.5 2.0

0
50

0
10

00
15

00
20

00

Figure 15.3 Histogram of Ask–Bid Spread of TARO options.

0.6

0.7

0.8

Apr May Jun Jul Aug Sep Oct Nov

date

IV

Figure 15.4 Time series plot of averaged implied volatility for calls and puts of various strikes and maturities
for TARO from April 2002 to November 2002.

R’s mesh-plotting functionality requires monotone values in the x and y directions.
This is a problem since Strike prices are nested in Maturity. We can at least look at one
“slice” of the volatility surface, i.e. for a single maturity to get a look at the volatility
smile.

15.6 The Rcpp Package 345

25 30 35 40 45 50 55

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Figure 15.5 Volatility smile for TARO on March 25, 2002.

We observe in Figure 15.5 what has been documented in finance, specifically that
implied volatilities for strike prices close to the underlying price are lower than implied
volatilities for strike prices further away from the underlying price. And not only higher,
but higher by a factor of two or three. This implies that investors are especially sensitive
to large movements and “overpay” for options far from the current price.

> x<-append(taroput[1:3,]$Strike,tarocall[1:6,]$Strike)
> y<-append(taroput[1:3,]$IV,tarocall[1:6,]$IV)
> plot(x,y,type='l', xlab='Strike', ylab='Implied Volatility')

As an alternative to the mesh plot, we can use the R function plot3d() for a visu-
alization of the volatility surface. We see the 3D object of which the volatility smile in
Figure 15.6 is a single slice. We observe what has been documented in the options litera-
ture, that the steepness of the volatility smile decreases as maturity increases to the point
that, for long maturity options, with maturity of say six months, the volatility smile is
noticeable. This suggests that investors are less concerned with large price movements
over long time frames than large price movements over shorter time frames.

15.6 The Rcpp Package

The Rcpp package, written by Dirk Eddelbuettel, allows the R developer to push down
functions to the more efficient C++ language layer. Of course, C++, being a language for
computer systems development, can be very efficient in terms of the generated code. To
illustrate how R code can be sped up significantly using a C++ implementation of critical

346 Black–Scholes Model and Option-Implied Volatility

25 30 35 40 45 50 55

2

1.5

1

Strike

Maturity

Implied Volatility

0.5

0.5
0.4

0.3
0.2

0.1

Figure 15.6 3D plot of implied volatility as a function of Maturity and Strike price.

functions, we begin with a simple Fibonacci number example (Eddelbuettel, 2013). The
below C++ code is in a file called fibonacci.cpp.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
int fibonacci(const int x){
if(x<2) return x;
else return(fibonacci(x-1)+fibonacci(x-2));
}

We integrate into R using the sourceCpp() function in Rcpp:

library(Rcpp)
sourceCpp(paste(homeuser","/FinAnalytics/ChapXV/fibonacci.cpp",sep=""))

and can now call the fibonacci function in R:

> fibonacci(20)

[1] 6765

Many times we need the function we are calling from R to itself call another func-
tion in C++. This is accomplished by defining the function above the function being
exported to R.

Similarly, we can define and use the Black–Scholes formula in the secant algorithm.
First, we define the file secant.cpp below.

15.6 The Rcpp Package 347

#include <math.h>
#include <Rmath.h>
#include <R.h>
#include <Rcpp.h>
using namespace Rcpp;
double bs(int type, double S, double K, double sigma, double t, double r){

double d1,d2,val;
d1 = (log(S/K) + (r+pow(sigma,2)/2)*t) / (sigma*sqrt(t));
d2 = (log(S/K) + (r-pow(sigma,2)/2)*t) / (sigma*sqrt(t));
if(type==0) val = R::pnorm(d1,0.0,1.0,TRUE,FALSE)*S
- R::pnorm(d2,0.0,1.0,TRUE,FALSE)*K*exp(-r*t);
else if (type==1) val = R::pnorm(-d2,0.0,1.0,TRUE,FALSE)*K*exp(-r*t)
- R::pnorm(-d1,0.0,1.0,TRUE,FALSE)*S;
return val;

}
// [[Rcpp::export]]
double secant(int type, double V, double S, double K,

double sigma0, double sigma1, double t, double r){
if(fabs(sigma0-sigma1) < .001) return(sigma0);
else{

double newSigma = sigma0 - (bs(type,S,K,sigma0,t,r)-V)*
(sigma0-sigma1)/
(bs(type,S,K,sigma0,t,r) - bs(type,S,K,sigma1,t,r));

return(secant(type,V,S,K,newSigma,sigma0,t,r));
}

}

We compile the C++ code and link to R via the Rcpp function sourceCpp().

sourceCpp(paste(homeuser,"/FinAnalytics/ChapXV/secant.cpp",sep=""))

We construct a wrapper for the secant function that reads whether an option is a call or
put and then calls the secant function, coding call as 0 and put as 1:

CsecantIV<-function(type,V,S,K,sigma0,sigma1,t,r){
if(type=='call') val<-secant(0,V,S,K,sigma0,sigma1,t,r)
else if(type=='put') val<-secant(1,V,S,K,sigma0,sigma1,t,r)
val

}

Now, we calculate the Black–Scholes implied volatility via the secant() function imple-
mented in C++ and via the secantIV() function defined earlier in R and compare them
to make sure they agree:

> secantIV('call',2.875,24,22,0.5,1,.1,0.05)
[1] 0.5553217
> CsecantIV('call',2.875,24,22,0.5,1,.1,0.05)
[1] 0.5553217
> dates<-dates[1:3]
> dates
[1] "2002-03-22" "2002-03-25" "2002-03-26"

348 Black–Scholes Model and Option-Implied Volatility

We can now use the R subset() utility to select our dates of interest and calculate the
implied volatilities.

> sub<-subset(taro,DataDate %in% dates)
> n<-dim(sub)[1]
> system.time(for(i in 1:n) sub$IV[i] <- secantIV(sub$Type[i],
+ sub$Price[i],
+ sub$UnderlyingPrice[i],
+ sub$Strike[i],
+ 0.4,
+ 1,
+ sub$Maturity[i],
+ 0.05)
+)

user system elapsed
0.203 0.001 0.272

> system.time(for(i in 1:n) sub$IV[i] <- CsecantIV(sub$Type[i],
+ sub$Price[i],
+ sub$UnderlyingPrice[i],
+ sub$Strike[i],
+ 0.4,
+ 1,
+ sub$Maturity[i],
+ 0.05)
+)

user system elapsed
0.082 0.001 0.084

According to the reported times, we sped up our time to compute the secant method
implied volatilities, implemented by secantIV() and CsecantIV() from 272 millisec-
onds to 84 milliseconds. Depending upon the amount of branching and looping in the
algorithm, results can vary.

15.7 Exercises

15.1. Working with Drift in the GBM Process

In the GBM model the upward trend which occurs when rates are positive is
known as drift, denoted by μ. We can see the drift curve by running the sim() and
display() functions with the annual vol sigmaA = 0.0. Run these functions.

(a) From the plot, what is the approximate total drift per year or net return just by
looking at the plot?

(b) What is the formula for computing the expected future price S(t) of simulation
in terms of time in years t, initial stock price S(0), drift μ, standard deviation,
or volatility σ , when we use a normal variate z to generate the random future
prices?

15.7 Exercises 349

(c) If we begin with an initial market price of 100 for the simulated security, what
is the expected future price in ten years? Use sigmaA = 0.0 again. You can
perform this calculation with R or outside it.

15.2. Working with the Option Chain for TARO Pharmaceutical Industries

Run the code to produce the subset() and option values for TARO. Locate the
price of the call option for expiration date 2002-07-20 upon the valuation date
2002-03-25 for the strike price of 35.0. What is the implied volatility at this price?

For those who have not had a course in basic probability and statistics, or would like
a refresher, here we review the important concepts. Chapter 3 provided a detailed dis-
cussion of the reasoning behind discrete probability, including the classic poker odds
calculations. We will discuss both discrete and continuous probability because they are
all important for financial analytics.

In discrete probability, there are three main distributions: the Bernoulli, the binomial,
and the Poisson. We describe the situations where the binomial behaves as a Poisson,
and the conditions under which both binomial and Poisson behave like a Normal. For
discrete random variables in general, the probability distribution function or p.d.f. is
defined as: P(X = x), read as “the probability that random variable X takes on value x.”

A.1 Distributions

Random variables are used to represent quantities that have random values. The x and y
coordinates of a dart when landing on a dart board are a simple example of two random
variables. As hard as we try to hit the center, there is always random variation with each
attempt in the x and y directions. In statistics, traditionally an upper-case letter such as
X is the random variable and x is a non-random variable representing a specific value it
has. Once the dart is thrown we know that X = x and Y = y, so we can measure the
distance from the center as

√
x2 + y2.

We can also talk about the probability that X = x, written P(X = x) or a range expres-
sion such as P(x1 < X < x2). For example, we may want to know for the dart throw
P(

√
X2 + Y2 ≤ 2cm), to see if the throw was close to the center. These probabilities, P,

can have values in the range [0, 1]. For example, you might have a probability of being
within 2 cm of the center of .35 and I might have a probability of .15.

A series of random variables occurring successively is called a random or stochas-
tic process. We can have a series of three dart throws by one individual person:
(X1, Y1), (X2, Y2), (X3, Y3).

A.2 Bernoulli Distribution

A Bernoulli random variable is an experiment with exactly two outcomes. A random
variable has a Bernoulli distribution if it is distributed as below:

Appendix Probability Distributions and
Statistical Analysis

A.3 Binomial Distribution 351

X =
{

1 with probability p

0 with probability 1 − p
. (A.1)

The outcome X = 1 is called a “success” and occurs with probability p. The outcome
X = 0 is called a “failure” and occurs with probability 1−p. We calculate the mean and
variance of the Bernoulli random variable below:

E(X) =
∑

xp(x) (A.2)

= 1 × p + 0 × (1 − p) = p (A.3)

Var(X) = E(X2) − E2(X) (A.4)

=
∑

x2p(x) −
(∑

xp(x)
)2

(A.5)

= 12 × p + 02 × (1 − p) − p2 (A.6)

= p − p2 = p(1 − p). (A.7)

A.3 Binomial Distribution

The binomial distribution builds directly on the Bernoulli in that the binomial is the
resulting distribution when we sum n independent and identically distributed (i.i.d)
Bernoulli trials.

The p.d.f. for the Binomial distribution is:

P(X = x) =
(

n

x

)
px(1 − p)n−x, (A.8)

where n is the number of trials, x is the number of successes and p is the probability
of any given trial being successful. The number of successes ranges x = 0, 1, 2, · · · , n
and the success probability p is such that 0 ≤ p ≤ 1. The symbol

(n
x

) = n!
x!(n−x)! is

the binomial coefficient and is read “n choose x.” The binomial distribution describes
situations where we are concerned with the probability of the sum of some number of
equivalent events, say the probability of there being six “heads” in the flipping of 10
coins. With this in mind, let us look at an example.

To calculate the mean of the binomial distribution we would by definition calculate

E(Y) =
∑

yp(y) =
n∑

y=0

y

(
n

y

)
py(1 − p)n−y, (A.9)

but solving for the expected value this way requires some messy algebra. An alternative
is to look at the random variable Y as a sum of n Bernoulli random variables: Y =
X1 + X2 + · · · + Xn and then use independence:

E(Y) = E

(
n∑

i=0

Xi

)
=

n∑
i=0

E(Xi) =
n∑

i=0

p = np. (A.10)

352 Probability Distributions and Statistical Analysis

We can tackle calculation of the variance in a similar way. Since the variance of a sum
of independent random variables is the sum of the variances, we can write:

Var(Y) = Var

(
n∑

i=0

Xi

)
=

n∑
i=0

Var(Xi) =
n∑

i=0

p(1 − p) = np(1 − p). (A.11)

Example
We flip a fair coin 100 times and want to calculate the probability of getting exactly 50
heads.

Solution

P(X = 50) =
(

n

x

)
px(1 − p)n−x

=
(

100

50

)(
1

2

)50 (1

2

)100−50

We can calculate this in R as below.

> choose(100,50) * .5^50 * .5^(100-50)
[1] 0.07958924

A.4 Geometric Distribution

The geometric probability distribution is for finding the number, Xi, of Bernoulli trials
needed to get one success, supported on the set i = 1, 2, 3, The p.d.f. is stated as:

P(X = n) = p(x) = P(X1 = 0, X2 = 0, · · · , Xn−1 = 0, Xn = 1) (A.12)

= P(X1 = 0)P(X2 = 0) · · · P(Xx−1 = 0)P(Xn = 1) (A.13)

= (1 − p)n−1p. (A.14)

The Expected Value is

E(N) = 1

p
. (A.15)

The Variance is

Var(N) = 1 − p

p2
. (A.16)

A.5 Poisson Distribution

We turn to the Poisson distribution. The Poisson distribution also describes the number
of successes in a set of trials, but in the case where the number of trials is very large, but
the probability of success for a given trial is very small. The Poisson distribution uses

A.5 Poisson Distribution 353

rpois(200, lambda = 5)

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0
20

40
60

rpois(200, lambda = 5)

F
re

qu
en

cy

2 4 6 8 10

0
5

15
25

35
rpois(200, lambda = 5)

F
re

qu
en

cy

0 2 4 6 8 10

0
10

20
30

40

rpois(200, lambda = 5)

F
re

qu
en

cy

2 4 6 8 10 12
0

5
15

25
35

Figure A.1 Histograms of the Poisson distribution, 200 trials in each, λ = 5.

a discrete random variable N like X above. It is the number of arrivals, an event count,
over a fixed period of time. One common use in finance is to simulate the arrival rate of
jumps in a security price over time, for example, where λ is the mean number of arrivals
in a given amount of time. The p.d.f. for the Poisson distribution is:

P(X = x) = e−λλx

x! ,

and is depicted in Figure A.1.

> library(ggplot2)
> par(mfrow=c(2,2))
> hist(rpois(200,lambda=5),main=""))
> hist(rpois(200,lambda=5),main=""))
> hist(rpois(200,lambda=5),main=""))
> hist(rpois(200,lambda=5),main=""))

To calculate the expected value of the Poisson random variable first recall eλ =(
1 + λ+ λ2

2! + λ3

3! + · · ·
)

E(X) =
∞∑

x=0

xp(x) =
∞∑

x=0

x
e−λλx

x! (A.17)

354 Probability Distributions and Statistical Analysis

= λe−λ
∞∑

x=1

λx−1

(x − 1)! = λe−λ
∞∑

x=0

λx

x! (A.18)

= λe−λ
(

1 + λ+ λ2

2! + λ3

3! + · · ·
)

(A.19)

= λe−λeλ = λ (A.20)

A similar calculation yields the fact that for the Poisson Var(X) = λ.’

Example
Catching the Greedy Counterfeiter

Imagine the king’s minter boxes coins n to a box. Each box contains m false coins.
The king suspects this and randomly draws one coin from each of the n boxes and has
these tested. What is the probability that the sample of n coins drawn contains exactly r
false ones?

Solution
Since there are m counterfeits in each box of n coins, the probability of the drawn coin
being counterfeit is m/n. The drawings are independent, so the probability of having r
counterfeit coins is described as a binomial random variable. This yields:

P(r false coins) =
(

n

r

)(m

n

)r (
1 − m

n

)n−r

= n!
(n − r)!r!

mr

nr

(
1 − m

n

)n (
1 − m

n

)−r

= 1

r!
n(n − 1) · · · (n − r + 1)

nr
mr

(
1 − m

n

)n (
1 − m

n

)−r

≈ e−mmr

r! ,

because
(n

r

) = n!
(n−r)!r! and recalling from calculus, if we hold m and r fixed while letting

n become large, we see that n(n−1)···(n−r+1)
nr → 1,

(
1 − m

n

)n → e−m, and
(
1 − m

n

)r → 1.
The approximation follows.

A.6 Functions for Continuous Distributions

In the case of a continuous distribution we have to be more careful in how we define the
probability function. The core of the problem is that the quantity P(X = x) is no longer
defined in a useful way. Recall, the cumulative distribution function or c.d.f. of a random
variable X is defined as

FX(x) = P(X ≤ x); (A.21)

probability density function or p.d.f. is defined as the function f (x) that satisfies

F(x) =
∫ x

−∞
f (u)du,

A.6 Functions for Continuous Distributions 355

and the relationship to the p.d.f. is defined as

f (x) = d

dx
F(x).

> ggplot(data.frame(x=c(-3,3)),aes(x=x)) +
+ stat_function(fun=dnorm, colour="blue") + +
stat_function(fun=pnorm,colour="red")

Since we have satisfied

{X = x} ⊂ {x − ε < X ≤ x}, (A.22)

we can take probabilities on both sides of the subset to arrive at

P(X = x) ≤ P(x − ε < X ≤ x) = FX(x) − FX(x − ε), (A.23)

but since FX(x) is continuous for a continuous distribution we have

0 ≤ P(X = x) ≤ lim
ε→0

[FX(x) − FX(x − ε)] = 0, (A.24)

which leaves us with the awkward fact that P(X = x) = 0 for all x when the random
variable X has a continuous distribution function. However, looking at it twice, it must be
this way. In the discrete case each segment of the histogram implies a jump in the c.d.f.
FX(x). This means the rectangle of probability in the p.d.f. is of some nonzero width.
In the continuous case, however, the width of this rectangle is zero, which means it can
have no area. For continuous random variables, the meaningful probability to calculate
is:

P(a ≤ X ≤ b) = FX(b) − FX(a) =
∫ b

a
f (u)du. (A.25)

> dnorm1<-function(x) dnorm(x,mean=0,sd=.25)
> ggplot(data.frame(x=c(-3,3)),aes(x=x)) +
+ stat_function(fun=dnorm, colour="blue") +
+ stat_function(fun=dnorm1, colour="blue")

> dnorm(x=0,mean=0,sd=1)
[1] 0.3989423
> dnorm(x=0,mean=0,sd=.25)
[1] 1.595769

In Figure A.3 we can see how changing the parameter of the distribution from σ = 1 for
the standard Normal and σ = 1

4 compare.

> dnorm_limit<-function(x) {
+ y <- dnorm(x)
+ y[x<0|x>2]<-NA
+ y
+ }

356 Probability Distributions and Statistical Analysis

0.00

0.25

0.50

0.75

1.00

20−2
x

y

0

1

2

3

4

−1 0 1 2 3 4
x

y

Figure A.2 On the left are two key functions of the Gaussian continuous distribution: the c.d.f. and the p.d.f.
On the right are typical density functions (p.d.f.s) for uniform random variables.

> ggplot(data.frame(x=c(-3,3)),aes(x=x)) +
+ stat_function(fun=dnorm_limit,geom="area",fill="blue",alpha=0.2) +
+ stat_function(fun=dnorm)

A.7 The Uniform Distribution

This is probably the simplest continuous distribution. Early programming languages
such as FORTRAN supplied this distribution and its variates as the only built-in distri-
bution because of its versatility and the ability to transform the variates to variates of
any other type. The uniform distribution is defined as

f (x) =
{

1
b−a a ≤ x ≤ b

0 otherwise,
(A.26)

with expected value E(X) = a+b
2 and variance Var(X) = (b−a)2

12 . When a = 0 and b = 1
the uniform distribution becomes a unit square. Figure A.2 depicts the square p.d.f.s for
this distribution, generated by the code below.

> dunif1 <-function(x) dunif(x,max=1)
> dunif2 <-function(x) dunif(x,max=2)
> dunif3 <-function(x) dunif(x,max=3)
> ggplot(data.frame(x=c(-3,5)),aes(x=x)) +
+ stat_function(fun=dunif1, colour="blue") +
+ stat_function(fun=dunif2, colour="green") +
+ stat_function(fun=dunif3, colour="red")

A.8 Exponential Distribution 357

A.8 Exponential Distribution

The exponential distribution has a p.d.f. defined as:

f (x) = 1

β
e− x

β (A.27)

and depicted in Figure A.3.

> dexp2<-function(x) dexp(x,2)
> dexp3<-function(x) dexp(x,3)
> ggplot(data.frame(x=c(0,4)),aes(x=x)) +
+ stat_function(fun=dexp, colour="blue") +
+ stat_function(fun=dexp2, colour="blue") +
+ stat_function(fun=dexp3, colour="blue") +
+ ylim(0,4)

To calculate the c.d.f. of the exponential distribution we calculate

FX(x) = P(X ≤ x) =
∫ x

0
f (u)du =

∫ x

0

1

β
e− u

β du (A.28)

= β

β

(
1 − e

u
β

)
= e

x
β . (A.29)

In the context of the exponential distribution it is convenient to introduce the gamma
function. The gamma function is useful in calculating the mean and variance of the expo-
nential distribution and will be necessary for the introduction of the gamma distribution
later. The gamma function �(α) as seen in advanced calculus is defined as

�(α) =
∫ ∞

0
yα−1e−ydy (A.30)

0.0

0.5

1.0

1.5

20−2
x

y

0.0

0.1

0.2

0.3

0.4

20−2
x

y

Figure A.3 The scale of the distribution is determined by the σ or standard deviation parameter on the left.
Here we have σ = 1 for the standard Normal and σ = 1

4 . On the right, the region between σ = 0
and σ = 2 is depicted.

358 Probability Distributions and Statistical Analysis

0

1

2

3

4

0 1 2 3 4
x

y

0.00

0.25

0.50

0.75

1.00

420−2
x

y

Figure A.4 The p.d.f.s for the exponential and the Gaussian or normal distribution are depicted here.

If we let y = x/β we arrive via the chain rule at

�(α) =
∫ ∞

0
yα−1e−ydy =

∫ ∞

0

(
x

β

)α−1

e−x/β
(

dx

β

)
= 1

βα

∫ ∞

0
xα−1e−x/βdx

(A.31)
while multiplying on both sides by βα gives us

�(α)βα =
∫ ∞

0
xα−1e−x/βdx

which is our desired result.
This gamma equation provides (among other things) a short-cut to integrating by

parts. Calculation of the expected value of the exponential distribution shows an
illustration of this. In this case α = 2 and we have:

E(X) =
∫ +∞

−∞
xf (x)dx =

∫ ∞

0
x

1

β
e− x

β dx (A.32)

= 1

β

∫ ∞

0
x2−1e− x

β dx = 1

β
�(2)β2 = β (A.33)

In calculating variance we recall that Var(X) = E(X2) − E2(X). Since we already know
E(X) we need only to calculate E(X2), and since α = 3 in this case we have:

E(X2) =
∫ +∞

−∞
x2f (x)dx =

∫ ∞

0
x2 1

β
e− x

β dx (A.34)

= 1

β

∫ ∞

0
x3−2e− x

β dx = 1

β
�(3)β3 = 2β2 (A.35)

The variance of the exponential random variable is then

Var(X) = E(X2) − E2(X) = 2β2 − β2 = β2 (A.36)

A.10 Log-Normal Distribution 359

A.9 Normal Distribution

The p.d.f. for the Gaussian or Normal distribution is

f (x) = 1

σ
√

2π
e

(x−μ)2

2σ2 , (A.37)

and is depicted in Figure A.3 and A.4. Its c.d.f. and other properties are very well known.

E(X) = μ (A.38)

Var(X) = E(X2) − E2(X) = σ 2. (A.39)

The following code will produce plots for this distribution:

> dnorm11<-function(x) dnorm(x,mean=1,sd=1)
> dnorm12<-function(x) dnorm(x,mean=1,sd=.5)
> ggplot(data.frame(x=c(-2,4)),aes(x=x)) +
+ stat_function(fun=dnorm, colour="blue") +
+ stat_function(fun=dnorm11, colour="green") +
+ stat_function(fun=dnorm12, colour="red") +
+ ylim(0,1)

A.10 Log-Normal Distribution

The log-normal distribution is used to model stocks, also known as equities, and com-
modity prices. The probability density function, depicted in Figure A.5, is defined as:

0.0

0.5

1.0

1.5

420−2
x

y

0.0

0.1

0.2

0.3

0.4

0.5

−4 −2 0 2 4
x

y

Figure A.5 The p.d.f.s for the log-normal and t-distribution are depicted here. On left are log-normal p.d.f.
plots for σ = 1

2 , 1 and 2 where the log-normal distribution is characterized by the standard
deviation parameter, σ . On the right are the p.d.f.s of the t1 (blue), t4 (green), and t25 (red)
distributions.

360 Probability Distributions and Statistical Analysis

f (x) = 1

xσ
√

2π
exp

(
(ln(x) − μ)2

2σ 2

)
. (A.40)

However, in practice, this p.d.f. is rarely used, because the prices are usually converted
to log returns. At that point the normal p.d.f. can be used. The mean is:

E(X) = eμ+ 1
2σ

2
. (A.41)

The variance is:

Var(X) =
(

eσ
2 − 1

)
e2μ+σ 2 =

(
eσ

2 − 1
)

E2(X). (A.42)

The following code will produce plots for this distribution:

> dlognorm <- function(x,sigma) { 1/x*dnorm(log(x),sd=sigma) }
> dlognorm1<-function(x) dlognorm(x,sigma=.5)
> dlognorm2<-function(x) dlognorm(x,sigma=1)
> dlognorm3<-function(x) dlognorm(x,sigma=2)
> ggplot(data.frame(x=c(-2,4)),aes(x=x)) +
+ stat_function(fun=dlognorm1, colour="blue") +
+ stat_function(fun=dlognorm2, colour="green") +
+ stat_function(fun=dlognorm3, colour="red") +
+ ylim(0,1.5)

A.11 The tν Distribution

The tν distribution is encountered often in statistics, and in financial statistics in par-
ticular. The reason for this is that, as the Central Limit Theorem kicks in and a sample
average becomes normally distributed, the tν distribution is the mechanism by which
this occurs. The ν parameter of the tν distribution, which is called the degrees of the
freedom, describes how close the tν distribution is to being normal. With ν = 1, the
tν distribution is a Cauchy distribution, i.e. has tails so thick that both expectation and
variance are undefined. As ν approaches 25 or 30 the tν distribution is close to being
a Normal, and as ν approaches 100 the tν distribution is virtually indistinguishable
from a Normal distribution. In finance we often see returns that are consistent with a
t4 distribution and this is very important. Three plots of the tν distribution appear in
Figure A.5.

The definition of the tν distribution is:

f (x) =
�
(
ν+1

2

)
√
πν�

(
ν
2

) (1 + x2

ν

)− ν+1
2

, (A.43)

with expected value of 0 (for ν > 1) and variance of ν
nu−2 (for ν > 2). The skewness is

0 and excess kurtosis is 6
ν−4 .

> t1<-function(x) dt(x,df=1)
> t4<-function(x) dt(x,df=4)

A.13 Gamma Distribution 361

> t25<-function(x) dt(x,df=25)
> ggplot(data.frame(x=c(-4,4)),aes(x=x)) +
+ stat_function(fun=t1, colour="blue") +
+ stat_function(fun=t4, colour="green") +
+ stat_function(fun=t25, colour="red") +
+ ylim(0,.5)

A.12 Multivariate Normal Distribution

Another important distribution for securities is known as multivariate Gaussian or
multivariate Normal distribution (MVN). It is useful when we have p stochastic ran-
dom variables representing p stock securities in the p-dimensional vector, x. The p.d.f.
formula is as follows:

f (x) = (2π)−
k
2 |�|− 1

2 exp

(
−1

2
(x − μ)T�−1(x − μ)

)
, (A.44)

where μ = (μ1,μ2, · · · ,μp)T is the mean vector, � is the covariance matrix, and |�| is
the determinant of �.

A.13 Gamma Distribution

The gamma distribution is defined by the p.d.f.:

f (x) =
{

1
�(α)βα xαe− x

β for x > 0

0 elsewhere
. (A.45)

Calculating expected value gives us:

E(X) =
∫ +∞

−∞
xf (x)dx =

∫ ∞

0

1

�(α)βα
xαe− x

β dx (A.46)

= 1

�(α)βα

∫ ∞

0
xαe− x

β dx (A.47)

= 1

�(α)βα
�(α + 1)βα+1 (A.48)

= 1

(α − 1)!βα α!βαβ = αβ. (A.49)

Similar calculations yield the second moment E(X2) = α(α + 1)β2 from which we
can calculate the variance:

Var(X) = E(X2) − E2(X) (A.50)

= α(α + 1)β2 − (αβ)2 (A.51)

= α2β2 + αβ2 − α2β2 (A.52)

= αβ2. (A.53)

362 Probability Distributions and Statistical Analysis

A.14 Estimation via Maximum Likelihood

These parameters are properties of the theoretical distributions. A very important result
in probability and statistics takes us from the theoretical distributions to the sample
distributions of our datasets using a concept known as the maximum likelihood estimator
(MLE). If we have a set of parameters like μ, σ 2, Skew, or Kurt, we want to estimate
any of them for a sample which we believe is distributed according to their theoretical
distribution. If we have a set of parameters θ = {θ1, . . . , θN}, for example θ = {μ, σ },
and a joint distribution function g(X|θ) where X = (X1, . . . , XN), we can think about
the likelihood function L(θ |X) as a function of the parameters themselves. Then we can
also think about maximizing the likelihood of a parameter being equal to a given value.
Since the log function is monotonically increasing, maximizing the log of a function is
the same as maximizing the function itself. We can find the maximum by taking the first
derivative, setting it equal to zero and solving for the independent variable, θ in this case
(Hogg and Craig, 1978).

Let us begin with the classic Gaussian or Normal distribution. We know that the
density function or p.d.f. for the normal distribution, N(μ, σ 2), for example, is:

f (x) = 1

σ
√

2π
exp

(
− (x − μ)2

2σ 2

)
. (A.54)

If we have a sample of size N denoted by these random variables, Xi we can form the
joint distribution, g, of these by multiplying N density functions together:

f (x1, . . . , xN |{μ, σ }) =
(

1

σ
√

2π

)N N∏
i=1

exp

(
− (xi − μ)2

2σ 2

)
. (A.55)

If we already know σ 2 then this can be simplified and also serve as our likelihood
function, L of μ:

= L(μ|X) =
(
σ
√

2π
)−N

exp

(
−

N∑
i=1

(xi − μ)2

2σ 2

)
(A.56)

=
(
σ
√

2π
)−N

exp

(
−

N∑
i=1

(xi − μ)2

2σ 2

)
. (A.57)

Now we can take the log of L:

log L(μ|X) = −N log
(
σ
√

2π
)

+
(

N∑
i=1

− (xi − μ)2

2σ 2

)
. (A.58)

Now, taking the derivative with respect to μ and setting it equal to zero and solving will
find the optimal μ:

∂

∂μ
log L(μ|X) = −2

2σ 2

N∑
i=1

(xi − μ) = 0. (A.59)

A.14 Estimation via Maximum Likelihood 363

After multiplying each side by −2σ 2/2, now we are left with

N∑
i=1

(xi − μ) = 0 ⇐⇒
N∑

i=1

(xi) − Nμ = 0 ⇐⇒ μ = 1

N

N∑
i=1

xi. (A.60)

This classic derivation is a great illustration of a closed-form maximum likelihood esti-
mator. Unfortunately for many distributions, this type of derivation is not possible, and
so numerical techniques are required.

For the Poisson distribution, the MLE derivation goes as follows:

L(x|λ) = f (x1, x2, · · · , xn|p) =
n∏

i=1

f (xi) (A.61)

=
n∏

i=1

e−λ λxi

xi! = e−nλ λ
∑n

i=1 xi

x1!x2! · · · xn! . (A.62)

Taking log yields:

l(x|λ) = −nλ+
(

n∑
i=1

xi

)
log λ− log (x1!x2! · · · xn!) . (A.63)

Taking the derivative and setting equal to zero yields

∂

∂λ
l(x|λ) = −n +

n∑
i=1

xi
1

λ
= 0. ⇐⇒ λ = 1

n

n∑
i=1

xi. (A.64)

And for the geometric distribution, the MLE derivation goes as follows:

L(x|p) = f (x1, x2, · · · , xn|p) =
n∏

i=1

f (xi) (A.65)

=
n∏

i=1

p(1 − p)xi = pn(1 − p)
∑n

i=1 xi . (A.66)

Taking log yields

l(x|p) = log L(x|p) (A.67)

= log
(

pn(1 − p)
∑n

i=1 xi
)

(A.68)

= log pn + log(1 − p)
∑n

i=1 xi (A.69)

= n log p +
(

n∑
i=1

xi

)
log(1 − p). (A.70)

Recall that
∫ 1

x dx = ln x and that d
dx ln x = 1

x , and taking the derivative and setting equal
to zero gives us

∂

∂p
l(x|p) = n

1

p
−

n∑
i=1

xi
1

1 − p
= 0 (A.71)

364 Probability Distributions and Statistical Analysis

n

p
=

∑n
i=1 xi

1 − p
. (A.72)

Cross-multiplying and distributing lets us solve for the maximum likelihood estimate p̂:

n(1 − p) = p
n∑

i=1

xi (A.73)

n − np = p
n∑

i=1

xi (A.74)

n = p
n∑

i=1

xi + np (A.75)

n = p

(
n∑

i=1

xi + n

)
(A.76)

p = n∑n
i=1 xi + n

(A.77)

= 1

X̄ + 1
. (A.78)

A.15 Central Limit Theorem

Now that we have derived optimal estimators of statistical parameters, we would like
to know some properties of these estimators. What are the mean and variance of an
estimator? How is an estimator distributed? The Central Limit Theorem states that a
sum of more than 25 or 30 random variables is Normally distributed. The individual
random variables might be all from the same distribution, or they can each be from
a different distribution. This is an astonishing fact and is the reason why the Normal
distribution is observed so often. Take, for example, the Scholastic Aptitude Test, or
SAT. The distribution of scores on the SAT is nearly perfectly Normal. This is because
a score on the SAT results from an accumulation of a multitude of factors: parental
involvement in the student’s education, innate ability, work ethic, diet, exercise habits,
and so on. The same type of reasoning leads us to believe that market returns should be
highly Normal. If individual investors make buy and sell decisions largely independently
of each other, and based on varied information, then it should follow that the cumulative
effect of these independently acting investors results in a return distribution that is close
to being Normal. And indeed this is frequently the case. However, there are also many
times when it is not the case. Sometimes investors do not buy and sell independently of
each other. Sometimes they buy or sell all at the same time, resulting in a cumulative
effect that is no longer Normal. We will illustrate this later.

Before we can formally define the Central Limit Theorem, we need to know some
facts about sample averages. Let X ∼ (μ, σ 2) be taken from an arbitrary distribution.

A.15 Central Limit Theorem 365

The sample average X̄ is defined as:

X̄ = 1

n

n∑
i=1

Xi

= X1 + X2 + X3 + · · · + Xn

n
.

What are the properties of E(X̄) and Var(X̄)?

E(X̄) = E

(
1

n

n∑
i=1

Xi

)

= 1

n
E

(
n∑

i=1

Xi

)

= 1

n
E (X1 + X2 + X3 + · · · + Xn)

= 1

n
[E(X1) + E(X2) + E(X3) + · · · + E(Xn)]

= nE(X)

n
= E(X).

Var(X̄) = Var

(
1

n

n∑
i=1

Xi

)
=
(

1

n

)2

Var

(
n∑

i=1

Xi

)

= 1

n2
Var (X1 + X2 + X3 + · · · + Xn)

= 1

n2
[Var(X1) + Var(X2) + Var(X3) + · · · + Var(Xn)]

= n · Var(X)

n2

= Var(X)

n
.

For n ≥ 25 and any probability distribution for the Xis, we assume that X̄ is Normally
distributed. Due to the Central Limit Theorem, we can find the probability that a sample
average is in an interval. This amazing convergence is illustrated in statistics books
(Hogg and Craig, 1978).

P(a ≤ X̄ ≤ b) = P

(
a − μ
σ√

n

≤ X̄ − μ
σ√

n

≤ b − μ
σ√

n

)

= P

(
a − μ
σ√

n

≤ Z ≤ b − μ
σ√

n

)

= P

(
Z ≤ b − μ

σ√
n

)
− P

(
Z ≤ a − μ

σ√
n

)

where Z ∼ N(0, 1) is the standard normal random variable.

366 Probability Distributions and Statistical Analysis

A.16 Confidence Intervals

We now discuss confidence intervals for the mean, variance, and sample proportion.
When we have a large enough sample, we can find the Large-Sample Confidence
Interval for μ.

P
(−zα/2 ≤ Z ≤ zα/2

) = 1 − α. (A.79)

Due to Central Limit Theorem we can rewrite:

1 − α = P

(
−zα/2 ≤ X̄ − μ

σ/n
≤ zα/2

)
(A.80)

= P
(
−zα/2

σ

n
≤ X̄ − μ ≤ zα/2

σ

n

)
(A.81)

= P
(

X̄ − zα/2
σ

n
≤ μ ≤ X̄ + zα/2

σ

n

)
. (A.82)

The Large-Sample Confidence Interval for probability parameter p:

1 − α = P

⎛
⎝−zα/2 ≤ p̂ − p√

p̂(1−p̂)
n

≤ zα/2

⎞
⎠ (A.83)

= P

(
−zα/2

√
p̂(1 − p̂)

n
≤ p̂ − p ≤ zα/2

√
p̂(1 − p̂)

n

)
(A.84)

= P

(
p̂ − zα/2

√
p̂(1 − p̂)

n
≤ p ≤ p̂ + zα/2

√
p̂(1 − p̂)

n

)
. (A.85)

A.17 Hypothesis Testing

The basic goal of hypothesis testing is to make a decision between two states of the
world. Many times an analyst or researcher wants to answer a simple yes/no question.
Does a drug produce an effect or not? Does smoking damage overall health or not? Is a
given coin I am flipping fair or not? Are two stocks correlated or not? Are market returns
normally distributed or not?

A good place to begin with is the coin-flipping example. Say we are in Las Vegas and
flipping a coin provided by the house. We get the impression heads is showing up more
than tails, but it is hard to gauge how much more, if there is even a difference at all.
This raises an important question: How many flips of our mystery coin do we need, to
conclude beyond reasonable doubt that the coin is not fair?

> flip<-rbinom(50,1,.55)
> flip
[1] 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1

[36] 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
> prop.test(sum(flip), 50, p=0.5, correct=FALSE)

1-sample proportions test without continuity correction

A.18 Regression 367

data: sum(flip) out of 50, null probability 0.5
X-squared = 9.68, df = 1, p-value = 0.001863
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.5833488 0.8252583

sample estimates:
p

0.72

The code above illustrates hypothesis testing applied to a flipped coin. We have sampled
from a slightly biased coin a total of 50 flips, where the coin is slightly biased in that
the probability of getting ‘heads’ on a single flip is 0.55 or 55%. Now if we were to
‘eyeball’ such a scenario and guess whether the coin were fair or not, it would in most
cases be difficult to say. However, if we apply our statistical machinery to the problem
the answer is unabiguous. We observe sum(flip) heads and we wish to test whether
this number of heads could have been produced from 50 flips of a coin with success
probability of 0.5 or 50%. We observe a p val of 0.001863 and conclude that the observe
number of heads would be highly unlikely to be produced by a fair coin. We therefore
reject the claim that the coin is fair.

A.18 Regression

In regression, we are given vectors x = (x1, . . . , xp) and known ys that correspond to the
xs. We try to determine a set of weights, β0 and also β1, . . . βp to multiply x1, . . . , xn by
and a sum to try to approximate ys. The equation for this is

ŷ = β0 +
n∑

i=1

βixi. (A.86)

ŷ is only an estimate while y is the actual observed value.
We can limit ourselves to the two-dimensional case when p = 1. The error between

ŷ = β0 + β1x1 and y can be found.
We can write the sum of the squared errors, also known as a Residual Sum of Squares

or RSS, as

RSS = S(β0,β1) =
p∑

i=1

ε2
i =

p∑
i=1

(yi − μi)
2 (A.87)

=
n∑

i=1

(yi − β0 − β1xi)
2. (A.88)

The goal now is to minimize this sum with respect to the model coefficients: the slope
of the regression line β1 and the y-intercept of the regression line β0.

We take the derivative of the above equation with respect to β0 and β1, and set the
derivatives equal to zero:

368 Probability Distributions and Statistical Analysis

∂S(β0,β1)

∂β0
= −2

p∑
i=1

(yi − β0 − β1xi) = 0 (A.89)

∂S(β0,β1)

∂β1
= −2

p∑
i=1

(yi − β0 − β1xi)xi = 0. (A.90)

Distribution through the summation leads to

nβ0 + β1

p∑
i=1

xi =
p∑

i=1

yi (A.91)

β0

p∑
i=1

xi + β1

p∑
i=1

x2
i =

p∑
i=1

xiyi (A.92)

β1 =
∑

xiyi −
∑

xi
∑

xi
p∑

x2
i − (

∑
xi)

2

n

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

= Sxy

Sxx
(A.93)

and

β0 = ȳ − β1x̄, (A.94)

where x̄ = 1
p

∑
xi and ȳ = 1

p

∑
yi.

Example
Fuel Efficiency For the classic case of fuel efficiency, we can use our equations for
prediction:

> library(datasets)
> data(mtcars)
> x<-mtcars$mpg
> y<-mtcars$wt
> Sxy<-sum((x-mean(x))*(y-mean(y)))
> Sxx <- sum((x-mean(x))^2)
> beta1 <- Sxy/Sxx
> beta1

Now we have β1.

[1] -0.140862
> beta0 <- mean(y) - beta1*mean(x)
> beta0

Now we have β0.

[1] 6.047255

Below is the simple regression prediction formula which can be used once we have β0

and β1.

A.19 Model Selection Criteria 369

> yhat <- beta0 + beta1*x
> length(x)
[1] 32

We can use R to determine our β0 and β1 and compare these values to those computed
above. Linear model or lm() is the way to access R’s regression algorithm.

> m1<-lm(data=mtcars,wt~mpg+1)
> summary(m1)
> m1$coeff
(Intercept) mpg

6.047255 -0.140862

Indeed, they match. We should now look at the regression report from the lm()
function.

Call:
lm(formula = wt ~ mpg + 1, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-0.6516 -0.3490 -0.1381 0.3190 1.3684

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.04726 0.30869 19.590 < 2e-16 ***
mpg -0.14086 0.01474 -9.559 1.29e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4945 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

> yhat = m1$coeff[1]+m1$coeff[2]*x
> plot(x,y,col=4,xlab="x: weight",ylab="y: weight")
> points(x,yhat,col=2)

Figure A.6 depicts the regression line found by the R lm() function.

A.19 Model Selection Criteria

The Akaike Information Criterion or AIC is defined as

AICk = −2 log
(

L̂
)

+ 2k, (A.95)

where L̂ is the maximized likelihood, k is the number of parameters in the model and n
is the sample size. The Bayesian Information Criteria or BIC is similar and is defined as

BIC = −2 log
(

L̂
)

+ 2k log(n). (A.96)

370 Probability Distributions and Statistical Analysis

10 15 20 25 30

2
3

4
5

x: weight

y:
 w

ei
gh

t

Figure A.6 Actual x and y values with the regression line found by calling lm().

The AIC and BIC are model selection criteria based on the idea that, while minimizing
the log likelihood, there is a trade-off between the goodness of fit of the model and the
complexity of the model. Model precision comes at a cost: model complexity. We want
a model complex enough to be precise, but penalize the complexity at the rate 2k for
the AIC and at a rate of 2k log(n) for the BIC. The selected model is then the one that
minimizes the sum of the negative log likelihood and penalization.

A.20 Required Packages

The following packages need to be downloaded to run the code in the various chapters:

library(DBI)
library(PerformanceAnalytics)
library(Quandl)
library(RSQLite)
library(Rcpp)
library(TSA)
library(corrplot)
library(datasets)
library(e1071)
library(foreign)
library(ggplot2)
library(huge)
library(igraph)
library(leaps)
library(moments)
library(party)
library(quadprog)

A.20 Required Packages 371

library(quantmod)
library(randomForest)
library(reshape2)
library(sbgcop)
library(stats)
library(tseries)

References

Ang, A., Bekaert, G. (2003). How Do Regimes Affect Asset Allocation? NBER Working Paper
No. 10080, November. www.nber.org/papers/w10080.pdf

Ang, A., Bekaert, G. (2004). How Regimes Affect Asset Allocation. Financial Analysts Journal
60 (2).

Becker, R., Chambers, J., Wilks, A. (1988). The New S Language: A Programming Environment
for Data Analysis and Graphics. Pacific Grove, CA, USA: Wadsworth and Brooks/Cole. ISBN
0-534-09192-X.

Benedict, N., Brewer, J., Haddad, A. (2015). Mean-Variance Optimization for Equity Portfolios,
MSc capstone project, Graduate Program in Analytics, University of Chicago, June.

Bennett, M. J. (1986). Proving Correctness of Asynchronous Circuits Using Temporal
Logic, UCLA Computer Science Department, Ph.D. Thesis. http://ftp.cs.ucla.edu/
tech-report/198_-reports/860089.pdf

Bennett, M. (2009). Accelerated Root Finding for Computational Finance. Symposium on Appli-
cation Accelerators in High-Performance Computing (SAAHPC’09), July 28–30, Urbana,
Illinois, http://saahpc.ncsa.illinois.edu/09/papers/Bennett_paper.pdf

Bennett, M. J. (2014). Data Mining with Markowitz Portfolio Optimization in Higher Dimensions,
May 21, http://ssrn.com/abstract=2439051.

Black, F., Myron, S. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political
Economy 81 (3): pp. 637–54.

Bodie, Z., Kane, A., Marcus, A. (2013). Investments, Tenth Edition. McGraw-Hill, September.
Box, G. E. P., Cox D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical

Society. Series B (Methodological) 26 (2): pp. 211–52.
Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (1984). Classification and Regression

Trees. Belmont, CA: Wadsworth.
Brin, S., Page, L. (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine, Proceed-

ings of the Intl. World-Wide-Web Conference, pp. 107–17.
Bruder, B., Gaussel, N., Richard, J-C., Roncalli, T. (2013). Regularization of Portfolio Allocation.

Lyxor Research, June.
Bystrom, H. (2013). Movie Recommendations from User Ratings, http://cs229.stanford.

edu/proj2013/Bystrom-MovieRecommendationsFromUserRatings.pdf, Stanford Uni-
versity.

Carmona, R. (2004). Statistical Analysis of Financial Data in S-Plus, Springer Texts in Statistics.
New York: Springer, ISBN 0387-20286-2.

Chamberlin, D. D., Boyce, R. F. SEQUEL: A Structured English Query Language. Proc. ACM
SIGMOD Workshop on Data Description, Access and Control, Ann Arbor, Michigan (May
1974), pp. 249–64.

References 373

ACE and Chubb Are Now One, http://new.chubb.com/en/us/?utm_source=bra
nd_announcement&utm_medium=Q1&utm_term=SEM&utm_content=Google&utm_campa
ign=Brand_Announce_US_EN_2016

Clarke, E. M., Emerson, E. A. (1981). Design and Synthesis of Synchronization Skeletons
Using Branching Time Temporal Logic, Proceedings of Workshop on Logic of Programs,
pp. 52–71.

Colmerauer, A., Roussel, P. (1983). The Birth of Prolog. ACM SIGPLAN Notices 28 (3): p. 37.
Cryer, J. D., Chan, K. S. (2010). Time Series Analysis with Applications in R. Springer.
Damodaran, A. Notes from New York University Stern School of Business, http://pages.

stern.nyu.edu/~adamodar/New_Home_Page/invfables/pricepatterns.htm
Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. New York: Springer, 2013,

ISBN 978-1461468677.
Eddelbuettel, D., Sanderson, C. (2014). RcppArmadillo: Accelerating R with High-Performance

C++ Linear Algebra. Computational Statistics and Data Analysis, Volume 71, March 2014:
pp. 1054–63.

Fairchild, G., Fries, J. (2012). Lecture Notes: Social Networks: Models, Algorithms, and Applica-
tions Lecture 3: January 24, http://homepage.cs.uiowa.edu/~sriram/196/spring12/
lectureNotes/Lecture3.pdf

Fama, E. F., French, K. R. (1995). Size and Book-to-Market Factors in Earnings and Returns.
Journal of Finance, 50: pp. 131–55.

Fama, E. F., French, K. R. (1996). Multifactor Explanations of Asset Pricing Anomalies. Journal
of Finance, 51: pp. 55–84.

Fletcher, T., Hussain, Z., Shawe-Taylor, J. (2010). Multiple Kernel Learning on the Limit Order
Book. JMLR Proceedings, 11: pp. 167–74. http://jmlr.org/proceedings/papers/v11/
fletcher10a/fletcher10a.pdf

Fletcher, T. (2012). Machine Learning for Financial Market Prediction, Ph.D. Thesis, University
College of London, http://discovery.ucl.ac.uk/1338146/1/1338146.pdf

Floyd, R. W. (1967). Assigning Meanings to Programs. Proceedings of the American Mathemati-
cal Society Symposia on Applied Mathematics, 19: pp. 19–31.

Forbes.com (2013). Tenet to Buy Vanguard Health Amid “Obamacare” M&A Frenzy, June 24.
Friedman, J., Hastie, T., Tibshirani, R. (2008). Sparse Inverse Covariance Estimation with the

Graphical Lasso. Biostatistics 9: pp. 432–41.
Gareth, J., Witten, D., Hastie, T., Tibshirani, R. (2013). An Introduction to Statistical Learning.

Springer.
GoogleFinance.com, Titanium Metals Corp (NYSE:TIE), December 7, 2014. www.google.com/

finance?cid=660449
Goldfarb, D., Idnani, A. (1982). Dual and Primal-Dual Methods for Solving Strictly Convex

Quadratic Programs. In J. P. Hennart (ed.), Numerical Analysis. Berlin: Springer-Verlag,
pp. 226–39.

Goldfarb, D., Idnani, A. (1983). A Numerically Stable Dual Method for Solving Strictly Convex
Quadratic Programs. Mathematical Programming. 27: pp. 1–33.

Greenblatt, J. (2006). The Little Book That Beats the Market, ISBN 0-471-73306-7.
Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press.
Hartigan, J. A., Wong, M. A. (1979). Algorithm AS 136: A k-Means Clustering Algorithm.

Journal of the Royal Statistical Society, Series C 28 (1): pp. 100–8. JSTOR 2346830.
Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, Second Edition. Springer, February 2009.

374 References

Haug, E. G. (1998). The Complete Guide to Option Pricing Formulas. McGraw-Hill, ISBN 0-
7863-1240-8.

Hoare, C. A. R. (1969). An Axiomatic Basis for Computer Programming. Communications of the
ACM 12 (10): pp. 576–80, October.

Hogg, R. T., Craig, A. T. (1978). Introduction to Mathematical Statistics, Fourth Edition.
Macmillan.

Hothorn, T., Hornik, K., Strobl, C., Zeileis, A. (2015). Party: A Laboratory for Recursive
Partytioning. http://cran.r-project.org/web/packages/party/vignettes/party.
pdf

Hull, J. (2006). Options, Futures, and Other Derivatives. Pearson/Prentice Hall.
Ihaka, R. (1998). R: Past and Future History (PDF) (Technical report). Statistics Department, The

University of Auckland, Auckland, New Zealand.
Ito, K. (1951). On Stochastic Differential Equations. Memoirs, American Mathematical Society

4: pp. 1–51.
www.jdsu.com/News-and-Events/news-releases/Pages/jdsu-announces-1-for-8

-reverse-stock-split.aspx
Karoui, N. E. (2009). On the Realized Risk of High-Dimensional Markowitz Portfolios. Depart-

ment of Statistics, UC Berkeley, October.
Kinlay, J. (2011). Can Machine Learning Techniques Be Used to Predict Mar-

ket Direction? The 1,000,000 Model Test. Posted on web site March 17,
www.trade2win.com/boards/attachments/metatrader/130540d1330423251-build
-neural-network-indicator-mt4-using-neuroshell-million-model-test.pdf

Laber, E.B., Zhou, H. Notes for ST 810 Advanced Computing, Department of Statistics,
North Carolina State University, February, 25, 2013, www.stat.ncsu.edu/people/zhou/
courses/st810/notes/lect09QP.pdf.

Ledolter, J. (2013). Data Mining and Business Analytics with R. John Wiley, May. ISBN: 978-1-
118-44714-7, 368 pages.

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Multivariate Observa-
tions. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability
1, University of California Press, pp. 281–97.

Markowitz, H. M. (1952). Portfolio Selection. Journal of Finance 7 (1): pp. 77–91.
Markowitz, H. M. (1959). Portfolio Selection: Efficient Diversification of Investments. New York:

John Wiley & Sons. (Reprinted by Yale University Press, 1970, ISBN 978-0-300-01372-6.)
Morandat, F., Hill, B., Osvald, L., Vitek, J. (2012). Evaluating the Design of the R Language,

ECOOP 2012-Object-Oriented Programming, 104-131, Lecture Notes in Computer Science
7313, Springer.

Oracle Unveils the Oracle Big Data Appliance: New Engineered System Helps Customers Max-
imize the Value of Enterprise Big Data. Oracle Openworld, San Francisco, October 3, 2011.
www.oracle.com/us/corporate/press/512001

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Francisco: Morgan Kauf-
mann.

Pennacchi, G. (2007). Theory of Asset Pricing. Prentice Hall.
Perlin, M. (2006). fMarkovSwitching: An R Package for Markov Regime Switching.
Pnueli, A. (1977). The Temporal Logic of Programs. 18th Annual Symposium on Foundations of

Computer Science (SFCS 1977), IEEE, pp. 46–57.
R Development Core Team. (2011). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing.

References 375

Ruppert, D. (2011). Statistics and Data Analysis for Financial Engineering, Springer Texts in
Statistics. New York: Springer, ISBN 9781441977861.

Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of
Risk. Journal of Finance 19 (3), September 1964: pp. 425–42.

Sharpe, W. F., Alexander, G. J., Bailey, J. V. (1999). Investments, 6th Edition. Upper Saddle River,
NJ: Prentice-Hall.

Shreve, S. (2004). Stochastic Calculus for Finance I, The Binomial Asset Pricing Model. New
York: Springer.

Shreve, S. (2004). Stochastic Calculus for Finance II, Continuous Time Models. New York:
Springer.

Shumway, R. H., Stoffer, D. S. (2006). Time Series Analysis, and Its Applications with R
Examples. Springer.

Spechler, L. (2011). Reverse Stock Splits Are Usually Good for Investors: Report,
Tuesday, March 22. www.cnbc.com/id/42212417jdsu-announces-1-for-8-reverse-
stock-split.aspx

Swiss Move Roils Global Markets. The Wall Street Journal, January 16, 2015.
Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal

Statistical Society, Series B 58: pp. 267–88.
Ullrich, C., Seese, D., Chalup, S. (2007). Foreign Exchange Trading with Support Vector

Machines. In Advances in Data Analysis. Heidelberg, Berlin: Springer, pp. 539–46.
Venables, W. N., Ripley, B. D. (2002). Modern Applied Statistics with S, Fourth edition. Springer.
Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. John Wiley, January,

ISBN: 978-0-471-91750-2, 466 pages.
Zhao, T., Liu, H., Roeder, K., Lafferty, J., Wasserman, L. (2012). The Huge Package for High-

Dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research 13:
pp. 1059–62, April.

	Contents
	1 Analytical Thinking
	1.1WhatIsFinancialAnalytics?
	1.2WhatIstheLaptopLaboratoryforDataScience?
	1.3WhatIsRandHowCanItBeUsedintheProfessionalAnalyticsWorld?
	Exercises

	2 R Language for Statistical Computing
	2.1GettingStartedwithR
	2.2LanguageFeatures:Functions,Assignment,Arguments,andTypes
	2.3LanguageFeatures:BindingandArrays
	2.4ErrorHandling
	2.5Numeric,Statistical,andCharacterFunctions
	2.6DataFramesandInput–Output
	2.7Lists
	Exercises

	3 Financial Statistics
	3.1Probability
	3.2Combinatorics
	3.3MathematicalExpectation
	3.4SampleMean,StandardDeviation,andVariance
	3.5SampleSkewnessandKurtosis
	3.6SampleCovarianceandCorrelation
	3.7FinancialReturns
	3.8CapitalAssetPricingModel
	Exercises

	4 Financial Securities
	4.1BondInvestments
	4.2StockInvestments
	4.3TheHousingCrisis
	4.4TheEuroCrisis
	4.5SecuritiesDatasetsandVisualization
	4.6AdjustingforStockSplits
	4.7AdjustingforMergers
	4.8PlottingMultipleSeries
	4.9SecuritiesDataImporting
	4.10SecuritiesDataCleansing
	4.11SecuritiesQuoting
	Exercises

	5 Dataset Analytics & Risk Measurement
	5.1GeneratingPricesfromLogReturns
	5.2NormalMixtureModelsofPriceMovements
	5.3SuddenCurrencyPriceMovementin2015
	Exercises

	6 Time Series Analysis
	6.1ExaminingTimeSeries
	6.2StationaryTimeSeries
	6.3Auto-RegressiveMovingAverageProcesses
	6.4PowerTransformations
	6.5The
	Package
	6.6Auto-RegressiveIntegratedMovingAverageProcesses
	6.7CaseStudy:EarningsofJohnson&Johnson
	6.8CaseStudy:MonthlyAirlinePassengers
	6.9CaseStudy:ElectricityProduction
	6.10GeneralizedAuto-RegressiveConditionalHeteroskedasticity
	6.11CaseStudy:VolatilityofGoogleStockReturns
	Exercises

	7 Sharpe Ratio
	7.1SharpeRatioFormula
	7.2TimePeriodsandAnnualizing
	7.3RankingInvestmentCandidates
	7.4The
	Package
	7.5MeasuringIncomeStatementGrowth
	7.6SharpeRatiosforIncomeStatementGrowth
	Exercises

	8 Markowitz Mean-Variance Optimization
	8.1OptimalPortfolioofTwoRiskyAssets
	8.2QuadraticProgramming
	8.3DataMiningwithPortfolioOptimization
	8.4Constraints,Penalization,andtheLasso
	8.5ExtendingtoHighDimensions
	8.6CaseStudy:SurvivingStocksoftheS&P500Indexfrom2003to2008
	8.7CaseStudy:ThousandsofCandidateStocksfrom2008to2014
	8.8CaseStudy:Exchange-TradedFunds
	Exercises

	9 Cluster Analysis
	9.1K-MeansClustering
	9.2DissectingtheK-MeansAlgorithm
	9.3SparsityandConnectednessofUndirectedGraphs
	9.4CovarianceandPrecisionMatrices
	9.5VisualizingCovariance
	9.6TheWishartDistribution
	9.7Glasso:PenalizationforUndirectedGraphs
	9.8RunningtheGlassoAlgorithm
	9.9TrackingaValueStockthroughtheYears
	9.10RegressiononYearlySparsity
	9.11RegressiononQuarterlySparsity
	9.12RegressiononMonthlySparsity
	9.13ArchitectureandExtension
	Exercises

	10 Gauging the Market Sentiment
	10.1MarkovRegimeSwitchingModel
	10.2ReadingtheMarketData
	10.3BayesianReasoning
	10.4TheBetaDistribution
	10.5PriorandPosteriorDistributions
	10.6ExaminingLogReturnsforCorrelation
	10.7MomentumGraphs
	Exercises

	11 Simulating Trading Strategies
	11.1ForeignExchangeMarkets
	11.2ChartAnalytics
	11.3InitializationandFinalization
	11.4MomentumIndicators
	11.5BayesianReasoningwithinPositions
	11.6Entries
	11.7Exits
	11.8Proﬁtability
	11.9Short-TermVolatility
	11.10TheStateMachine
	11.11SimulationSummary
	Exercises

	12 Data Exploration using Fundamentals
	12.1The
	Package
	12.2FindingMarket-to-BookRatios
	12.3The
	Package
	12.4CaseStudy:Google
	12.5CaseStudy:Walmart
	12.6ValueInvesting
	12.7Lab:TryingtoBeattheMarket
	12.8Lab:FinancialStrength
	Exercises

	13 Prediction using Fundamentals
	13.1BestIncomeStatementPortfolio
	13.2ReformattingIncomeStatementGrowthFigures
	13.3ObtainingPriceStatistics
	13.4CombiningtheIncomeStatementwithPriceStatistics
	13.5PredictionUsingClassiﬁcationTreesandRecursivePartitioning
	13.6ComparingPredictionRatesamongClassiﬁers
	Exercises

	14 Binomial Model for Options
	14.1ApplyingComputationalFinance
	14.2Risk-NeutralPricingandNoArbitrage
	14.3HighRisk-FreeRateEnvironment
	14.4ConvergenceofBinomialModelforOptionData
	14.5Put–CallParity
	14.6FromBinomialtoLog-Normal
	Exercises

	15 Black–Scholes Model & Option-implied Volatility
	15.1GeometricBrownianMotion
	15.2MonteCarloSimulationofGeometricBrownianMotion
	15.3Black–ScholesDerivation
	15.4AlgorithmforImpliedVolatility
	15.5ImplementationofImpliedVolatility
	15.6 Rcpp Package
	Exercises

	Probability Distributions & Statistical Analysis
	Distributions
	Bernoulli Distribution
	Binomial Distribution
	Geometric Distribution
	Poisson Distribution
	Functions for Continuous Distributions
	Uniform Distribution
	Exponential Distribution
	Normal Distribution
	Log-Normal Distribution
	Tv Distribution
	Multivariate Normal Distribution
	Gamma Distribution
	Estimation via Maximum Likelihood
	Central Limit Theorem
	Conﬁdence Intervals
	Hypothesis Testing
	Regression
	Model Selection Criteria
	Required Packages

	Refs

